कम्यूटेशन सेल: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 57: | Line 57: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 10/08/2023]] | [[Category:Created On 10/08/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 14:53, 9 October 2023
कम्यूटेशन सेल पावर इलेक्ट्रॉनिक्स में बुनियादी संरचना है। यह दो इलेक्ट्रॉनिक स्विच (आजकल, एक उच्च-शक्ति अर्धचालक, यांत्रिक स्विच नहीं) से बना है। इसे परंपरागत रूप से हेलिकॉप्टर के रूप में जाना जाता था, लेकिन चूंकि विद्युत की आपूर्ति बदलना विद्युत रूपांतरण का एक प्रमुख रूप बन गया है, इसलिए यह नया शब्द अधिक लोकप्रिय हो गया है।[1]
कम्यूटेशन सेल का उद्देश्य डीसी पावर को वर्गाकार तरंग प्रत्यावर्ती धारा में "काटना" पड़ता है। ऐसा इसलिए किया जाता है ताकि वोल्टेज को बदलने के लिए एलसी परिपथ में एक प्रेरक और संधारित्र का उपयोग किया जा सके। सिद्धांत रूप में, यह एक हानिरहित प्रक्रिया है; व्यवहार में, 80-90% से ऊपर दक्षता नियमित रूप से हासिल की जाती है। स्वच्छ डीसी विद्युत का उत्पादन करने के लिए आउटपुट को सामान्यतः एक फिल्टर के माध्यम से चलाया जाता है। कम्यूटेशन सेल में स्विच के ऑन और ऑफ टाइम (ड्यूटी चक्र) को नियंत्रित करके, आउटपुट वोल्टेज को नियंत्रित किया जा सकता है।
यह मूल सिद्धांत पोर्टेबल उपकरणों में छोटे डीसी-डीसी परिवर्तक से लेकर उच्च वोल्टेज डीसी पावर ट्रांसमिशन के लिए बड़े पैमाने पर स्विचिंग स्टेशनों तक, अधिकांश आधुनिक विद्युत आपूर्ति का मूल है।
दो विद्युत तत्वों का कनेक्शन (संपर्क)
कम्यूटेशन सेल दो विद्युत तत्वों को जोड़ता है, जिन्हें प्रायः स्रोत के रूप में जाना जाता है, हालांकि वे या तो विद्युत का उत्पादन या अवशोषित कर सकते हैं।[2]
विद्युत स्रोतों को जोड़ने के लिए कुछ आवश्यकताएँ उपस्थित हैं। असंभव विन्यास चित्र 1 में सूचीबद्ध हैं। वे मूल रूप से हैं:
- वोल्टेज स्रोत को छोटा नहीं किया जा सकता है, क्योंकि लघु परिपथ एक शून्य वोल्टेज लगाएगा जो स्रोत द्वारा उत्पन्न वोल्टेज के विपरीत होगा;
- उसी प्रकार, किसी धारा स्रोत को खुले परिपथ में नहीं रखा जा सकता;
- दो (या अधिक) वोल्टेज स्रोतों को समानांतर में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक परिपथ पर वोल्टेज थोपने का प्रयास करेगा;
- दो (या अधिक) धारा स्रोतों को श्रृंखला में नहीं जोड़ा जा सकता है, क्योंकि उनमें से प्रत्येक लूप में विद्युत धारा आरोपित करने का प्रयास करेगा।
यह चिरसम्मत स्रोतों (बैटरी, जनरेटर) और संधारित्र और कुचालक पर लागू होता है: एक छोटे समय के पैमाने पर, संधारित्र वोल्टेज स्रोत के समान होता है और प्रारंभकर्ता धारा स्रोत के समान होता है। समानांतर में विभिन्न वोल्टेज स्तरों के साथ दो संधारित्र को कनेक्ट करना दो वोल्टेज स्रोतों को जोड़ने के अनुरूप है, चित्र 1 में निषिद्ध कनेक्शन में से एक है।
चित्र 2 ऐसे कनेक्शन की खराब दक्षता को दर्शाता है। संधारित्र को वोल्टेज V पर चार्ज किया जाता है, और उसे समान क्षमता वाले संधारित्र से जोड़ा जाता है, लेकिन डिस्चार्ज किया जाता है।
कनेक्शन से पहले, परिपथ में ऊर्जा , होती है और आवेशों की मात्रा Q के बराबर , है जहाँ U स्थितिज ऊर्जा है।
कनेक्शन हो जाने के बाद, आवेशों की मात्रा स्थिर रहती है और कुल धारिता स्थिर रहती है। इसलिए, धारिता पर वोल्टेज है। परिपथ में ऊर्जा तब होती है। इसलिए, कनेक्शन के समय में आधी ऊर्जा नष्ट हो गई है।
यही बात दो प्रेरकों की श्रृंखला में कनेक्शन के साथ भी लागू होती है। चुंबकीय प्रवाह () रूपान्तरण से पहले और बाद में स्थिर रहता है। चूँकि कम्यूटेशन के बाद कुल प्रेरकत्व 2L है, धारा बन जाती है (चित्र 2 देखें)। आवागमन से पहले की ऊर्जा के बाद, यह है। यहाँ भी, आवागमन के समय में आधी ऊर्जा नष्ट हो जाती है।
परिणामस्वरूप, यह देखा जा सकता है कि कम्यूटेशन सेल केवल वोल्टेज स्रोत को धारा स्रोत (और इसके विपरीत) से जोड़ सकता है। हालाँकि, कुचालक और संधारित्र का उपयोग करके, किसी स्रोत के व्यवहार को बदलना संभव है: उदाहरण के लिए, दो वोल्टेज स्रोतों को एक परिवर्तक के माध्यम से जोड़ा जा सकता है यदि यह ऊर्जा स्थानांतरित करने के लिए एक प्रारंभकर्ता का उपयोग करता है।
कम्यूटेशन सेल की संरचना
जैसा कि ऊपर बताया गया है, वोल्टेज और धारा स्रोतों के बीच एक कम्यूटेशन सेल रखा जाना चाहिए। सेल की स्थिति के आधार पर, दोनों स्रोत या तो जुड़े हुए हैं, या पृथक हैं। पृथक होने पर, धारा स्रोत को छोटा कर देना चाहिए, क्योंकि खुले परिपथ में धारा का निर्माण करना असंभव है। इसलिए कम्यूटेशन सेल की मूल योजना चित्र 3 (शीर्ष) में दी गई है। यह विपरीत स्थितियों के साथ दो स्विच का उपयोग करता है: चित्र 3 में दर्शाए गए कॉन्फ़िगरेशन में, दोनों स्रोत अलग-थलग हैं, और धारा स्रोत छोटा है। जब शीर्ष स्विच चालू होता है (और नीचे का स्विच बंद होता है) तो दोनों स्रोत जुड़े होते हैं।
स्विचों के बीच पूर्ण तालमेल होना असंभव है। कम्यूटेशन के समय में एक बिंदु पर, वे या तो चालू होंगे (इस प्रकार वोल्टेज स्रोत को छोटा कर देंगे) या बंद हो जाएंगे (इस प्रकार धारा स्रोत को एक खुले परिपथ में छोड़ देंगे)। यही कारण है कि एक स्विच को डायोड से बदलना पड़ता है। डायोड एक प्राकृतिक कम्यूटेशन डिवाइस है, यानी, इसकी स्थिति परिपथ द्वारा ही नियंत्रित होती है। यह ठीक उसी समय चालू या बंद हो जाएगा जब इसे बंद करना होगा। कम्यूटेशन सेल में डायोड का उपयोग करने का परिणाम यह होता है कि यह इसे दिशाहीन बना देता है (चित्र 3 देखें)। एक द्विदिश सेल बनाया जा सकता है, लेकिन यह समानांतर में जुड़े दो दिशाहीन सेल के बराबर है।
कन्वर्टर्स में कम्यूटेशन सेल
कम्यूटेशन सेल किसी भी विद्युत इलेक्ट्रॉनिक परिवर्तक में पाया जा सकता है। कुछ उदाहरण चित्र 4 में दिए गए हैं। जैसा कि देखा जा सकता है, "धारा स्रोत" (वास्तव में लूप जिसमें अधिष्ठापन होता है) सदैव मध्य बिंदु और कम्यूटेशन सेल के बाहरी कनेक्शनों में से एक के बीच जुड़ा होता है, जबकि वोल्टेज स्रोत (या संधारित्र, या वोल्टेज स्रोत और संधारित्र की श्रृंखला में कनेक्शन) सदैव दो बाहरी कनेक्शनों से जुड़ा होता है।[3]
यह भी देखें
- पावर इलेक्ट्रॉनिक्स
- डीसी डीसी
- स्विच्ड-मोड विद्युत की आपूर्ति
- बक कन्वर्टर
- बूस्ट कनर्वटर
- बक-बूस्ट परिवर्तक
- कुक परिवर्तक
संदर्भ
- ↑ Perret, Robert (2013-03-01). पावर इलेक्ट्रॉनिक्स सेमीकंडक्टर डिवाइस (in English). John Wiley & Sons. ISBN 978-1-118-62320-6.
- ↑ Lemmen, E. (2017). The Extended Commutation Cell : a Path Towards Flexible Multilevel Power Processing (in English). Technische Universiteit Eindhoven. ISBN 978-90-386-4216-1.
- ↑ Cheron, Y. (2012-12-06). नरम कम्यूटेशन (in English). Springer Science & Business Media. ISBN 978-94-011-2350-1.