गतिज युग्मन: Difference between revisions
(Created page with "{{Short description|Fixture which constrains all degrees of freedom of a part}} काइनेमेटिक युग्मन उस स्थिरता (उपकर...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Fixture which constrains all degrees of freedom of a part}} | {{Short description|Fixture which constrains all degrees of freedom of a part}} | ||
काइनेमैटिक युग्मन, स्थान की सटीकता और [[स्थिरता (उपकरण)|निश्चितता]] प्रदान करते हुए, संबंधित हिस्से को बिल्कुल बाधित करने के लिए डिज़ाइन किए गए फिक्स्चर का वर्णन करता है। किनेमैटिक कप्लिंग का एक कैननिकल उदाहरण एक पार्ट में तीन रेडियल वी-ग्रूव्स से बना होता है जो दूसरे पार्ट में मैट करते हैं, जिनमें तीन हेमिस्फियर्स होते हैं। प्रत्येक गोलार्ध में कुल छह संपर्क बिंदुओं के लिए दो संपर्क बिंदु हैं, जो भाग की [[स्वतंत्रता की डिग्री (यांत्रिकी)|स्वतंत्रता की डिग्री]] की सभी छह डिग्री को बाधित करने के लिए पर्याप्त हैं। एक वैकल्पिक डिज़ाइन में एक भाग पर तीन गोलार्ध होते हैं जो क्रमशः टेट्राहेड्रल डेंट, एक वी-ग्रूव और एक फ्लैट में फिट होते हैं।<ref name="MIT">{{cite journal|last1=Slocum|first1=Alexander|title=Kinematic Couplings: A Review of Design Principles and Applications|journal=Prof. Slocum Via Angie Locknar |date=April 2010 |publisher=Elsevier B.V.|hdl=1721.1/69013}}</ref> | |||
== पृष्ठभूमि == | == पृष्ठभूमि == | ||
संरचनात्मक इंटरफेस के बीच सटीक युग्मन की आवश्यकता से काइनेमैटिक कपलिंग उत्पन्न हुई, जिन्हें नियमित रूप से अलग किया जाना था और वापस एक साथ रखा जाना था। | |||
=== केल्विन युग्मन === | === केल्विन युग्मन === | ||
Line 11: | Line 9: | ||
|width1 = 200 | |width1 = 200 | ||
|image1 = Kelvin Kinematic Coupling.png | |image1 = Kelvin Kinematic Coupling.png | ||
|caption1 = | |caption1 = केल्विन गतिक युग्मन | ||
|width2 = 215 | |width2 = 215 | ||
|image2 = Maxwell Kinematic Coupling.png | |image2 = Maxwell Kinematic Coupling.png | ||
|caption2 = | |caption2 = मैक्सवेल गतिक युग्मन | ||
}} | }} | ||
केल्विन कपलिंग का नाम | केल्विन कपलिंग का नाम विलियम थॉम्पसन (लॉर्ड केल्विन) के नाम पर रखा गया है, जिन्होंने 1868-71 में डिज़ाइन प्रकाशित किया था।<ref name="Baltec">{{cite web|last1=Bal-tec|title=काइनेमैटिक इनसाइक्लोपीडिया|url=http://www.precisionballs.com/KINEMATIC_ENCYCLOPEDIA.php#k1|publisher=Bal-tec|accessdate=5 October 2016}}</ref> इसमें तीन गोलाकार सतहें होती हैं जो एक अवतल [[ चतुर्पाश्वीय |चतुष्फलक]] पर टिकी होती हैं, एक वी-नाली चतुष्फलक की ओर इशारा करती है और एक सपाट प्लेट होती है। टेट्राहेड्रोन तीन संपर्क बिंदु प्रदान करता है, जबकि वी-नाली दो प्रदान करता है और फ्लैट कुल आवश्यक छह संपर्क बिंदुओं के लिए एक प्रदान करता है। इस डिज़ाइन का लाभ यह है कि रोटेशन का केंद्र टेट्राहेड्रोन पर स्थित है, हालांकि, यह उच्च-लोड अनुप्रयोगों में संपर्क तनाव की समस्याओं से ग्रस्त है।<ref name="MIT" /> | ||
=== मैक्सवेल कपलिंग === | === मैक्सवेल कपलिंग === | ||
[[File:Maxwell kinematic coupling.png|thumb|मैक्सवेल गतिक युग्मन का उदाहरण]]इस युग्मन प्रणाली के सिद्धांत मूल रूप से 1871 में [[जेम्स क्लर्क मैक्सवेल]] द्वारा प्रकाशित किए गए थे।<ref name="Baltec" />मैक्सवेल कीनेमेटिक प्रणाली में तीन वी-आकार के खांचे होते हैं जो भाग के केंद्र की ओर उन्मुख होते हैं, जबकि संभोग भाग में तीन घुमावदार | [[File:Maxwell kinematic coupling.png|thumb|मैक्सवेल गतिक युग्मन का उदाहरण]]इस युग्मन प्रणाली के सिद्धांत मूल रूप से 1871 में [[जेम्स क्लर्क मैक्सवेल]] द्वारा प्रकाशित किए गए थे।<ref name="Baltec" /> मैक्सवेल कीनेमेटिक प्रणाली में तीन वी-आकार के खांचे होते हैं जो भाग के केंद्र की ओर उन्मुख होते हैं, जबकि संभोग भाग में तीन घुमावदार सतह होती हैं जो तीन खांचे में बैठती हैं।<ref name="MIT" /> तीन वी-ग्रूव्स में से प्रत्येक कुल छह के लिए दो संपर्क बिंदु प्रदान करता है। इस डिज़ाइन को समरूपता और इसलिए आसान निर्माण तकनीकों से लाभ मिलता है। इसके अलावा, इस समरूपता के कारण मैक्सवेल युग्मन थर्मल रूप से स्थिर है क्योंकि घुमावदार सतहें वी-खांचे में एक साथ विस्तार या अनुबंध कर सकती हैं।<ref name="Baltec" /> | ||
== सिद्धांत == | == सिद्धांत == | ||
गतिज युग्मन की | गतिज युग्मन की पुनरुत्पादकता और सटीकता सटीक बाधा डिजाइन के विचार से आती है। सटीक बाधा डिज़ाइन का सिद्धांत यह है कि बाधा के बिंदुओं की संख्या, बाधित होने वाली स्वतंत्रता की डिग्री की संख्या के बराबर होनी चाहिए।<ref name="MIT" /> एक यांत्रिक प्रणाली में स्वतंत्रता की छह संभावित कोटियाँ होती हैं। "x", "y", और "z" अक्ष के साथ स्वतंत्रता की तीन रैखिक डिग्री ([[अनुवाद (भौतिकी)|अनुवाद]] के रूप में भी जाना जाता है) हैं, और प्रत्येक अक्ष के चारों ओर स्वतंत्रता की तीन घूर्णी डिग्री हैं जिन्हें आमतौर पर [[रोल रोटेशन|रोल]], [[पिच रोटेशन|पिच]] और [[यव घूर्णन|यॉ]] कहा जाता है।<ref name="Baltec" /> यदि कोई सिस्टम अंडर-बाधित है, तो हिस्से एक-दूसरे के संबंध में स्थानांतरित होने के लिए स्वतंत्र हैं। यदि सिस्टम अत्यधिक बाधित है, तो उदाहरण के लिए, [[थर्मल विस्तार]] के प्रभाव में यह अवांछित रूप से विकृत हो सकता है। गतिज युग्मन डिज़ाइन केवल उन बिंदुओं की संख्या के साथ संपर्क बनाते हैं जो स्वतंत्रता की डिग्री की संख्या के बराबर होते हैं जिन्हें नियंत्रित किया जाना चाहिए और इसलिए पूर्वानुमान लगाया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:07, 23 September 2023
काइनेमैटिक युग्मन, स्थान की सटीकता और निश्चितता प्रदान करते हुए, संबंधित हिस्से को बिल्कुल बाधित करने के लिए डिज़ाइन किए गए फिक्स्चर का वर्णन करता है। किनेमैटिक कप्लिंग का एक कैननिकल उदाहरण एक पार्ट में तीन रेडियल वी-ग्रूव्स से बना होता है जो दूसरे पार्ट में मैट करते हैं, जिनमें तीन हेमिस्फियर्स होते हैं। प्रत्येक गोलार्ध में कुल छह संपर्क बिंदुओं के लिए दो संपर्क बिंदु हैं, जो भाग की स्वतंत्रता की डिग्री की सभी छह डिग्री को बाधित करने के लिए पर्याप्त हैं। एक वैकल्पिक डिज़ाइन में एक भाग पर तीन गोलार्ध होते हैं जो क्रमशः टेट्राहेड्रल डेंट, एक वी-ग्रूव और एक फ्लैट में फिट होते हैं।[1]
पृष्ठभूमि
संरचनात्मक इंटरफेस के बीच सटीक युग्मन की आवश्यकता से काइनेमैटिक कपलिंग उत्पन्न हुई, जिन्हें नियमित रूप से अलग किया जाना था और वापस एक साथ रखा जाना था।
केल्विन युग्मन
केल्विन कपलिंग का नाम विलियम थॉम्पसन (लॉर्ड केल्विन) के नाम पर रखा गया है, जिन्होंने 1868-71 में डिज़ाइन प्रकाशित किया था।[2] इसमें तीन गोलाकार सतहें होती हैं जो एक अवतल चतुष्फलक पर टिकी होती हैं, एक वी-नाली चतुष्फलक की ओर इशारा करती है और एक सपाट प्लेट होती है। टेट्राहेड्रोन तीन संपर्क बिंदु प्रदान करता है, जबकि वी-नाली दो प्रदान करता है और फ्लैट कुल आवश्यक छह संपर्क बिंदुओं के लिए एक प्रदान करता है। इस डिज़ाइन का लाभ यह है कि रोटेशन का केंद्र टेट्राहेड्रोन पर स्थित है, हालांकि, यह उच्च-लोड अनुप्रयोगों में संपर्क तनाव की समस्याओं से ग्रस्त है।[1]
मैक्सवेल कपलिंग
इस युग्मन प्रणाली के सिद्धांत मूल रूप से 1871 में जेम्स क्लर्क मैक्सवेल द्वारा प्रकाशित किए गए थे।[2] मैक्सवेल कीनेमेटिक प्रणाली में तीन वी-आकार के खांचे होते हैं जो भाग के केंद्र की ओर उन्मुख होते हैं, जबकि संभोग भाग में तीन घुमावदार सतह होती हैं जो तीन खांचे में बैठती हैं।[1] तीन वी-ग्रूव्स में से प्रत्येक कुल छह के लिए दो संपर्क बिंदु प्रदान करता है। इस डिज़ाइन को समरूपता और इसलिए आसान निर्माण तकनीकों से लाभ मिलता है। इसके अलावा, इस समरूपता के कारण मैक्सवेल युग्मन थर्मल रूप से स्थिर है क्योंकि घुमावदार सतहें वी-खांचे में एक साथ विस्तार या अनुबंध कर सकती हैं।[2]
सिद्धांत
गतिज युग्मन की पुनरुत्पादकता और सटीकता सटीक बाधा डिजाइन के विचार से आती है। सटीक बाधा डिज़ाइन का सिद्धांत यह है कि बाधा के बिंदुओं की संख्या, बाधित होने वाली स्वतंत्रता की डिग्री की संख्या के बराबर होनी चाहिए।[1] एक यांत्रिक प्रणाली में स्वतंत्रता की छह संभावित कोटियाँ होती हैं। "x", "y", और "z" अक्ष के साथ स्वतंत्रता की तीन रैखिक डिग्री (अनुवाद के रूप में भी जाना जाता है) हैं, और प्रत्येक अक्ष के चारों ओर स्वतंत्रता की तीन घूर्णी डिग्री हैं जिन्हें आमतौर पर रोल, पिच और यॉ कहा जाता है।[2] यदि कोई सिस्टम अंडर-बाधित है, तो हिस्से एक-दूसरे के संबंध में स्थानांतरित होने के लिए स्वतंत्र हैं। यदि सिस्टम अत्यधिक बाधित है, तो उदाहरण के लिए, थर्मल विस्तार के प्रभाव में यह अवांछित रूप से विकृत हो सकता है। गतिज युग्मन डिज़ाइन केवल उन बिंदुओं की संख्या के साथ संपर्क बनाते हैं जो स्वतंत्रता की डिग्री की संख्या के बराबर होते हैं जिन्हें नियंत्रित किया जाना चाहिए और इसलिए पूर्वानुमान लगाया जा सकता है।
यह भी देखें
संदर्भ