चॉपर (इलेक्ट्रॉनिक्स): Difference between revisions

From Vigyanwiki
(Text)
(Text)
Line 18: Line 18:
| आउटपुट वोल्टेज के लिए अभिव्यक्ति || VL dc = D × V वोल्ट || V{{sub|o}} = V/(1 – D) वोल्ट
| आउटपुट वोल्टेज के लिए अभिव्यक्ति || VL dc = D × V वोल्ट || V{{sub|o}} = V/(1 – D) वोल्ट
|-
|-
| बाह्य प्रेरण || Not required || Required for boosting the output voltage
| बाह्य प्रेरण || आवश्यक नहीं || आउटपुट वोल्टेज को बढ़ाने के लिए आवश्यक है
|-
|-
| Use || For motoring operation, for motor load || For regenerative braking for motor load.
| उपयोग || मोटरिंग ऑपरेशन के लिए, मोटर लोड के लिए || मोटर लोड के लिए पुनर्योजी ब्रेकिंग के लिए।
|-
|-
| Type of chopper || Single quadrant || Single quadrant
| चॉपर का प्रकार || एकल चतुर्थांश || एकल चतुर्थांश
|-
|-
| Quadrant of operation || 1st quadrant || 1st quadrant
| संचालन का चतुर्थांश || पहला चतुर्थांश || पहला चतुर्थांश
|-
|-
| Applications || Motor speed control|| Battery charging/voltage boosters
| अनुप्रयोग || मोटर गति नियंत्रण|| बैटरी चार्जिंग/वोल्टेज बूस्टर
|}
|}




== अनुप्रयोग ==
== अनुप्रयोग ==
चॉपर सर्किट का उपयोग कई अनुप्रयोगों में किया जाता है, जिनमें शामिल हैं:
चॉपर सर्किट का उपयोग कई अनुप्रयोगों में किया जाता है, जिनमें सम्मिलित हैं:


* [[डीसी से डीसी कनवर्टर]] सहित स्विच-मोड बिजली की आपूर्ति।
* [[डीसी से डीसी कनवर्टर]] सहित स्विच-मोड बिजली की आपूर्ति।
* [[ डीसी यंत्र ]]्स के लिए स्पीड नियंत्रक
* [[ डीसी यंत्र | डीसी मोटरों]] के लिए गति नियंत्रक
* [[ गति देनेवाला ]]्स में ब्रशलेस डीसी [[टॉर्क मोटर]] या [[स्टेपर मोटर]] चलाना
* [[ गति देनेवाला | एक्चुएटर्स]] में ब्रशलेस डीसी [[टॉर्क मोटर]] या [[स्टेपर मोटर]] चलाना
* क्लास डी [[इलेक्ट्रॉनिक एम्पलीफायर]]
* क्लास डी [[इलेक्ट्रॉनिक एम्पलीफायर]]
* [[ स्विचित संधारित्र ]] [[ इलेक्ट्रॉनिक फ़िल्टर ]]
* [[ स्विचित संधारित्र ]][[ इलेक्ट्रॉनिक फ़िल्टर |इलेक्ट्रॉनिक फ़िल्टर]]
* परिवर्तनीय-आवृत्ति ड्राइव
* परिवर्तनीय-आवृत्ति ड्राइव
* डी.सी. वोल्टेज बढ़ाना
* डी.सी. वोल्टेज बढ़ाना
* बैटरी से चलने वाली इलेक्ट्रिक कारें
* बैटरी से चलने वाली इलेक्ट्रिक कारें
* बैटरी चार्जर
* बैटरी चार्जर
* रेलवे_इलेक्ट्रिक_ट्रैक्शन
* रेलवे कर्षण
* प्रकाश और लैंप नियंत्रण
*प्रकाश और लैंप नियंत्रण


==नियंत्रण रणनीतियाँ==
==नियंत्रण रणनीतियाँ==


एक निश्चित डीसी इनपुट वोल्टेज से संचालित होने वाले सभी चॉपर कॉन्फ़िगरेशन के लिए, आउटपुट वोल्टेज का औसत मूल्य चॉपर सर्किट में उपयोग किए जाने वाले स्विच के आवधिक उद्घाटन और समापन द्वारा नियंत्रित किया जाता है।
एक निश्चित डीसी इनपुट वोल्टेज से संचालित होने वाले सभी चॉपर विन्यास  के लिए, आउटपुट वोल्टेज का औसत मूल्य चॉपर सर्किट में उपयोग किए जाने वाले स्विच के आवधिक उद्घाटन और समापन द्वारा नियंत्रित किया जाता है। औसत आउटपुट वोल्टेज को विभिन्न तकनीकों द्वारा नियंत्रित किया जा सकता है:
औसत आउटपुट वोल्टेज को विभिन्न तकनीकों द्वारा नियंत्रित किया जा सकता है:
* [[पल्स चौड़ाई उतार - चढ़ाव|पल्स चौड़ाई मॉडुलन]]  
* [[पल्स चौड़ाई उतार - चढ़ाव]]
* आवृति मॉडुलन
* आवृति का उतार - चढ़ाव
* परिवर्तनीय आवृत्ति, परिवर्तनीय पल्स चौड़ाई
* परिवर्तनीय आवृत्ति, परिवर्तनीय पल्स चौड़ाई
* सीएलसी नियंत्रण
* सीएलसी नियंत्रण


पल्स-चौड़ाई मॉड्यूलेशन में स्विच निरंतर चॉपिंग आवृत्ति पर चालू होते हैं। आउटपुट तरंगरूप के एक चक्र की कुल समय अवधि स्थिर होती है। औसत आउटपुट वोल्टेज चॉपर के चालू समय के सीधे आनुपातिक है। कुल समय के लिए चालू समय के अनुपात को कर्तव्य चक्र के रूप में परिभाषित किया गया है। यह 0 और 1 के बीच या 0 और 100% के बीच भिन्न हो सकता है। पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम), या पल्स-ड्यूरेशन मॉड्यूलेशन (पीडीएम), एक तकनीक है जिसका उपयोग किसी संदेश को पल्सिंग सिग्नल में एनकोड करने के लिए किया जाता है। यद्यपि इस मॉड्यूलेशन तकनीक का उपयोग ट्रांसमिशन के लिए जानकारी को एन्कोड करने के लिए किया जा सकता है, इसका मुख्य उपयोग विद्युत उपकरणों, विशेष रूप से मोटर जैसे जड़त्वीय भार को आपूर्ति की जाने वाली बिजली को नियंत्रित करने की अनुमति देना है। लोड को दिए गए वोल्टेज (और करंट) का औसत मूल्य आपूर्ति और लोड के बीच स्विच को तेज दर से चालू और बंद करके नियंत्रित किया जाता है। बंद अवधि की तुलना में स्विच जितना अधिक समय तक चालू रहेगा, लोड को आपूर्ति की गई कुल बिजली उतनी ही अधिक होगी। पीडब्लूएम स्विचिंग आवृत्ति लोड (वह उपकरण जो बिजली का उपयोग करता है) को प्रभावित करने वाली आवृत्ति से कहीं अधिक होनी चाहिए, जिसका अर्थ यह है कि लोड द्वारा महसूस की जाने वाली परिणामी तरंग यथासंभव चिकनी होनी चाहिए। आमतौर पर इलेक्ट्रिक स्टोव में एक मिनट में कई बार स्विचिंग करनी पड़ती है, लैंप डिमर में 120 हर्ट्ज़, मोटर ड्राइव के लिए कुछ किलोहर्ट्ज़ (kHz) से दसियों kHz तक और ऑडियो एम्पलीफायरों और कंप्यूटर में दसियों या सैकड़ों kHz तक स्विच करना पड़ता है। बिजली की आपूर्ति।
पल्स-चौड़ाई मॉड्यूलेशन में स्विच निरंतर चॉपिंग आवृत्ति पर चालू होते हैं। आउटपुट तरंगरूप के एक चक्र की कुल समय अवधि स्थिर होती है। औसत आउटपुट वोल्टेज चॉपर के चालू समय के सीधे आनुपातिक है। कुल समय के लिए चालू समय के अनुपात को कर्तव्य चक्र के रूप में परिभाषित किया गया है। यह 0 और 1 के बीच या 0 और 100% के बीच भिन्न हो सकता है। पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम), या पल्स-ड्यूरेशन मॉड्यूलेशन (पीडीएम), एक तकनीक है जिसका उपयोग किसी संदेश को पल्सिंग सिग्नल में एनकोड करने के लिए किया जाता है। यद्यपि इस मॉड्यूलेशन तकनीक का उपयोग ट्रांसमिशन के लिए जानकारी को एन्कोड करने के लिए किया जा सकता है, इसका मुख्य उपयोग विद्युत उपकरणों, विशेष रूप से मोटर जैसे जड़त्वीय भार को आपूर्ति की जाने वाली बिजली को नियंत्रित करने की अनुमति देना है। लोड को दिए गए वोल्टेज (और करंट) का औसत मूल्य आपूर्ति और लोड के बीच स्विच को तेज दर से चालू और बंद करके नियंत्रित किया जाता है। बंद अवधि की तुलना में स्विच जितना अधिक समय तक चालू रहेगा, लोड को आपूर्ति की गई कुल बिजली उतनी ही अधिक होगी। पीडब्लूएम स्विचिंग आवृत्ति लोड (वह उपकरण जो बिजली का उपयोग करता है) को प्रभावित करने वाली आवृत्ति से कहीं अधिक होनी चाहिए, जिसका अर्थ यह है कि लोड द्वारा महसूस की जाने वाली परिणामी तरंग यथासंभव चिकनी होनी चाहिए। प्रायः इलेक्ट्रिक स्टोव में एक मिनट में कई बार स्विचिंग करनी पड़ती है, लैंप डिमर में 120 हर्ट्ज़, मोटर ड्राइव के लिए कुछ किलोहर्ट्ज़ (kHz) से दसियों kHz तक और ऑडियो एम्पलीफायरों और कंप्यूटर बिजली आपूर्ति में दसियों या सैकड़ों kHz तक स्विच करना पड़ता है।


फ़्रीक्वेंसी मॉड्यूलेशन में, एक निश्चित आयाम और अवधि की दालें उत्पन्न होती हैं और आउटपुट का औसत मूल्य यह बदलकर समायोजित किया जाता है कि कितनी बार दालें उत्पन्न होती हैं।
फ़्रीक्वेंसी मॉड्यूलेशन में, एक निश्चित आयाम और अवधि की दालें उत्पन्न होती हैं और आउटपुट का औसत मूल्य यह बदलकर समायोजित किया जाता है कि कितनी बार दालें उत्पन्न होती हैं।

Revision as of 14:40, 27 September 2023

चॉपर के रूप में वाइब्रेटर का उपयोग करते हुए एक इन्वर्टर का योजनाबद्ध।

इलेक्ट्रानिक्स में, चॉपर सर्किट बिजली नियंत्रण और सिग्नल अनुप्रयोगों में उपयोग किए जाने वाले कई प्रकार के इलेक्ट्रॉनिक स्विचिंग उपकरणों और सर्किटों में से एक है। चॉपर एक उपकरण है जो निश्चित डीसी इनपुट को सीधे एक चर डीसी आउटपुट वोल्टेज में परिवर्तित करता है। अनिवार्य रूप से, चॉपर एक इलेक्ट्रॉनिक स्विच है जिसका उपयोग दूसरे के नियंत्रण में एक सिग्नल को बाधित करने के लिए किया जाता है।

पावर इलेक्ट्रॉनिक्स अनुप्रयोगों में, चूंकि स्विचिंग तत्व या तो पूरी तरह से चालू या पूरी तरह से बंद है, इसलिए इसका नुकसान कम है और सर्किट उच्च दक्षता प्रदान कर सकता है। हालाँकि, लोड को आपूर्ति की जाने वाली धारा असंतुलित है और अवांछनीय प्रभावों से बचने के लिए इसे सुचारू करने या उच्च स्विचिंग आवृत्ति की आवश्यकता हो सकती है। सिग्नल प्रोसेसिंग सर्किट में, चॉपर का उपयोग इलेक्ट्रॉनिक घटकों के बहाव के खिलाफ सिस्टम को स्थिर करता है; मूल सिग्नल को सिंक्रोनस डेमोडुलेटर द्वारा प्रवर्धन या अन्य प्रसंस्करण के बाद पुनर्प्राप्त किया जा सकता है जो अनिवार्य रूप से "चॉपिंग" प्रक्रिया को पूर्ववत करता है।

तुलना (स्टेप डाउन चॉपर और स्टेप अप चॉपर)

स्टेप अप और स्टेप डाउन चॉपर के बीच तुलना:

स्टेप डाउन चॉपर स्टेप अप चॉपर
आउटपुट वोल्टेज की रेंज 0 से V वोल्ट V से +∞ वोल्ट
चॉपर स्विच की स्थिति भार के साथ श्रृंखला में भार के समानांतर
आउटपुट वोल्टेज के लिए अभिव्यक्ति VL dc = D × V वोल्ट Vo = V/(1 – D) वोल्ट
बाह्य प्रेरण आवश्यक नहीं आउटपुट वोल्टेज को बढ़ाने के लिए आवश्यक है
उपयोग मोटरिंग ऑपरेशन के लिए, मोटर लोड के लिए मोटर लोड के लिए पुनर्योजी ब्रेकिंग के लिए।
चॉपर का प्रकार एकल चतुर्थांश एकल चतुर्थांश
संचालन का चतुर्थांश पहला चतुर्थांश पहला चतुर्थांश
अनुप्रयोग मोटर गति नियंत्रण बैटरी चार्जिंग/वोल्टेज बूस्टर


अनुप्रयोग

चॉपर सर्किट का उपयोग कई अनुप्रयोगों में किया जाता है, जिनमें सम्मिलित हैं:

नियंत्रण रणनीतियाँ

एक निश्चित डीसी इनपुट वोल्टेज से संचालित होने वाले सभी चॉपर विन्यास के लिए, आउटपुट वोल्टेज का औसत मूल्य चॉपर सर्किट में उपयोग किए जाने वाले स्विच के आवधिक उद्घाटन और समापन द्वारा नियंत्रित किया जाता है। औसत आउटपुट वोल्टेज को विभिन्न तकनीकों द्वारा नियंत्रित किया जा सकता है:

पल्स-चौड़ाई मॉड्यूलेशन में स्विच निरंतर चॉपिंग आवृत्ति पर चालू होते हैं। आउटपुट तरंगरूप के एक चक्र की कुल समय अवधि स्थिर होती है। औसत आउटपुट वोल्टेज चॉपर के चालू समय के सीधे आनुपातिक है। कुल समय के लिए चालू समय के अनुपात को कर्तव्य चक्र के रूप में परिभाषित किया गया है। यह 0 और 1 के बीच या 0 और 100% के बीच भिन्न हो सकता है। पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम), या पल्स-ड्यूरेशन मॉड्यूलेशन (पीडीएम), एक तकनीक है जिसका उपयोग किसी संदेश को पल्सिंग सिग्नल में एनकोड करने के लिए किया जाता है। यद्यपि इस मॉड्यूलेशन तकनीक का उपयोग ट्रांसमिशन के लिए जानकारी को एन्कोड करने के लिए किया जा सकता है, इसका मुख्य उपयोग विद्युत उपकरणों, विशेष रूप से मोटर जैसे जड़त्वीय भार को आपूर्ति की जाने वाली बिजली को नियंत्रित करने की अनुमति देना है। लोड को दिए गए वोल्टेज (और करंट) का औसत मूल्य आपूर्ति और लोड के बीच स्विच को तेज दर से चालू और बंद करके नियंत्रित किया जाता है। बंद अवधि की तुलना में स्विच जितना अधिक समय तक चालू रहेगा, लोड को आपूर्ति की गई कुल बिजली उतनी ही अधिक होगी। पीडब्लूएम स्विचिंग आवृत्ति लोड (वह उपकरण जो बिजली का उपयोग करता है) को प्रभावित करने वाली आवृत्ति से कहीं अधिक होनी चाहिए, जिसका अर्थ यह है कि लोड द्वारा महसूस की जाने वाली परिणामी तरंग यथासंभव चिकनी होनी चाहिए। प्रायः इलेक्ट्रिक स्टोव में एक मिनट में कई बार स्विचिंग करनी पड़ती है, लैंप डिमर में 120 हर्ट्ज़, मोटर ड्राइव के लिए कुछ किलोहर्ट्ज़ (kHz) से दसियों kHz तक और ऑडियो एम्पलीफायरों और कंप्यूटर बिजली आपूर्ति में दसियों या सैकड़ों kHz तक स्विच करना पड़ता है।

फ़्रीक्वेंसी मॉड्यूलेशन में, एक निश्चित आयाम और अवधि की दालें उत्पन्न होती हैं और आउटपुट का औसत मूल्य यह बदलकर समायोजित किया जाता है कि कितनी बार दालें उत्पन्न होती हैं।

परिवर्तनीय पल्स चौड़ाई और आवृत्ति पल्स चौड़ाई और पुनरावृत्ति दर दोनों परिवर्तनों को जोड़ती है।

वर्तमान सीमा नियंत्रण (सीएलसी) तकनीक में, कर्तव्य चक्र को अधिकतम और न्यूनतम मूल्यों के बीच लोड वर्तमान को नियंत्रित करके नियंत्रित किया जाता है। चॉपर को समय-समय पर चालू और बंद किया जाता है ताकि लोड करंट पूर्व निर्धारित अधिकतम और न्यूनतम मूल्यों के बीच बना रहे।[1]


चॉपर एम्पलीफायर

चॉपर सर्किट के लिए एक क्लासिक उपयोग और जहां यह शब्द अभी भी उपयोग में है वह चॉपर एम्पलीफायरों में है। ये प्रत्यक्ष धारा प्रवर्धक हैं। कुछ प्रकार के सिग्नल जिन्हें प्रवर्धित करने की आवश्यकता होती है, वे इतने छोटे हो सकते हैं कि अविश्वसनीय रूप से उच्च लाभ (इलेक्ट्रॉनिक्स) की आवश्यकता होती है, लेकिन बहुत अधिक लाभ वाले डीसी एम्पलीफायरों को कम ऑफसेट और 1/ के साथ बनाना बहुत कठिन होता है। शोर, और उचित स्थिरता और बैंडविड्थ (सिग्नल प्रोसेसिंग)। इसके बजाय एक प्रत्यावर्ती धारा एम्पलीफायर बनाना बहुत आसान है। एक चॉपर सर्किट का उपयोग इनपुट सिग्नल को तोड़ने के लिए किया जाता है ताकि इसे संसाधित किया जा सके जैसे कि यह एक एसी सिग्नल था, फिर आउटपुट पर डीसी सिग्नल में एकीकृत किया गया। इस तरह, अत्यंत छोटे डीसी सिग्नलों को प्रवर्धित किया जा सकता है। इस दृष्टिकोण का उपयोग अक्सर इलेक्ट्रॉनिक उपकरणीकरण में किया जाता है जहां स्थिरता और सटीकता आवश्यक होती है; उदाहरण के लिए, इन तकनीकों का उपयोग करके पिको-वोल्टमीटर और हॉल प्रभाव सेंसर का निर्माण संभव है।

बहुत अधिक लाभ के साथ छोटे संकेतों को बढ़ाने की कोशिश करते समय एम्पलीफायरों का निवेश समायोजन विद्युत संचालन शक्ति महत्वपूर्ण हो जाता है। क्योंकि यह तकनीक बहुत कम इनपुट ऑफसेट वोल्टेज एम्पलीफायर बनाती है, और क्योंकि यह इनपुट ऑफसेट वोल्टेज समय और तापमान के साथ ज्यादा नहीं बदलता है, इन तकनीकों को शून्य-बहाव एम्पलीफायर भी कहा जाता है (क्योंकि समय और तापमान के साथ इनपुट ऑफसेट वोल्टेज में कोई बहाव नहीं होता है) ). संबंधित तकनीकें जो ये शून्य-बहाव लाभ भी देती हैं, वे हैं ऑटो-शून्य और चॉपर-स्थिर एम्पलीफायर।

ऑटो-शून्य एम्पलीफायर मुख्य एम्पलीफायर के इनपुट ऑफसेट वोल्टेज को सही करने के लिए एक माध्यमिक सहायक एम्पलीफायर का उपयोग करते हैं। चॉपर-स्थिर एम्पलीफायर कुछ उत्कृष्ट डीसी परिशुद्धता विनिर्देश देने के लिए ऑटो-शून्य और चॉपर तकनीकों के संयोजन का उपयोग करते हैं।[2] कुछ उदाहरण चॉपर और ऑटो-शून्य एम्पलीफायर LTC2050 हैं,[3] MAX4238/MAX4239[4] और OPA333.[5]


सूत्र

वोल्टेज स्रोत वाला एक सामान्य स्टेप-अप चॉपर लें जो प्रेरक के साथ श्रृंखला में है , डायोड और औसत वोल्टेज के साथ लोड . चॉपर स्विच श्रृंखला डायोड और लोड के समानांतर होगा। जब भी चॉपर स्विच चालू होता है, तो आउटपुट छोटा हो जाता है। प्रारंभ करनेवाला वोल्टेज का निर्धारण करने में किर्चोफ़ वोल्टेज नियम का उपयोग करना,

और टर्न-ऑफ समय के भीतर औसत धारा लेना,

कहाँ वह समय है जब लोड वोल्टेज मौजूद था और के संबंध में परिवर्तन धारा . जब भी चॉपर स्विच बंद होता है और टर्न-ऑन समय के भीतर औसत वर्तमान के संबंध में प्रारंभ करनेवाला वोल्टेज निर्धारित करने में किरचॉफ वोल्टेज कानून का उपयोग किया जाता है,

कहाँ वह समय है जब लोड वोल्टेज शून्य होता है। औसत धारा और कर्तव्य चक्र दोनों को बराबर करना ,[6]

कहाँ औसत आउटपुट वोल्टेज है.

स्टेप-डाउन चॉपर

वोल्टेज स्रोत के साथ एक सामान्य स्टेप-डाउन चॉपर लेना जो चॉपर स्विच, प्रारंभ करनेवाला और वोल्टेज के साथ लोड के साथ श्रृंखला में है . डायोड श्रृंखला प्रारंभकर्ता और लोड के समानांतर होगा। उसी तरह टर्न-ऑन और टर्न-ऑफ समय के दौरान औसत प्रारंभ करनेवाला वर्तमान को बराबर करके, हम औसत वोल्टेज प्राप्त कर सकते हैं [6]

कहाँ औसत आउटपुट वोल्टेज है, कर्तव्य चक्र है और स्रोत वोल्टेज है.

स्टेप-अप / स्टेप-डाउन चॉपर

एक सामान्य हिरन-बूस्ट चॉपर लें जो स्टेपअप और डाउन चॉपर के रूप में काम करता है, वोल्टेज स्रोत को जाने दें चॉपर स्विच, रिवर्स बायस्ड डायोड और वोल्टेज के साथ लोड के साथ श्रृंखला में रहें . प्रारंभ करनेवाला श्रृंखला डायोड और लोड के समानांतर होगा। उसी तरह टर्न-ऑन और टर्न-ऑफ समय के दौरान औसत प्रारंभ करनेवाला वर्तमान को बराबर करके, हम औसत वोल्टेज प्राप्त कर सकते हैं [6]

कहाँ औसत आउटपुट वोल्टेज है, कर्तव्य चक्र है और स्रोत वोल्टेज है.

यह भी देखें

संदर्भ

  1. "चॉपर का वोल्टेज नियंत्रण - समय अनुपात और वर्तमान सीमा नियंत्रण". Electronics Mind. 25 February 2022.
  2. US Patent 7132883 - Chopper chopper-stabilized instrumentation and operational amplifiers
  3. LTC2050
  4. MAX4238/MAX4239
  5. OPA333
  6. 6.0 6.1 6.2 Singh, M. D. (2008-07-07). बिजली के इलेक्ट्रॉनिक्स (in English). Tata McGraw-Hill Education. ISBN 9780070583894.


साहित्य

श्रेणी:इलेक्ट्रॉनिक सर्किट श्रेणी:चॉपर