तनन परीक्षण: Difference between revisions
Line 154: | Line 154: | ||
तन्यता परीक्षण पदार्थों में क्रीप की परीक्षण के लिए प्रयुक्त किया जा सकता है, जिसमें पदार्थ की धीमी प्लास्टिक विकृति होती है, जो निरंतर लागू तनावों के प्राप्त किए गए समय अवधि के समय होती है। क्रीप सामान्यतः प्रसार और अव्यवस्था की चलन के द्वारा सहायक होता है। क्रीप का परीक्षण करने के बहुत सारे नियम होते हैं, परंतु तन्यता परीक्षण पदार्थ जैसे कि कंक्रीट और सिरेमिक्स के लिए उपयोगी होता है जो तन्यता और दबाव में विभिन्न व्यवहार करते हैं, और इसलिए वे विभिन्न तन्यता और दबाव क्रीप दर रखते हैं। इस प्रकार, तनाव क्रीप को समझना महत्वपूर्ण है जब ऐसे संरचनों के प्रारूप में जोड होता है जिन्हें तन्यता का सामना करना पड़ता है, जैसे कि पानी धारित करने वाले बर्तनों के लिए, या सामान्य संरचनात्मक सतर्कता के लिए।।<ref>{{cite journal |last1=Bissonnette |first1=Benoit |last2=Pigeon |first2=Michel |last3=Vaysburd |first3=Alexander M. |title=Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters |journal=Materials Journal |date=1 July 2007 |volume=104 |issue=4 |pages=360–368 |id={{ProQuest|197938866}} |doi=10.14359/18825 }}</ref> | तन्यता परीक्षण पदार्थों में क्रीप की परीक्षण के लिए प्रयुक्त किया जा सकता है, जिसमें पदार्थ की धीमी प्लास्टिक विकृति होती है, जो निरंतर लागू तनावों के प्राप्त किए गए समय अवधि के समय होती है। क्रीप सामान्यतः प्रसार और अव्यवस्था की चलन के द्वारा सहायक होता है। क्रीप का परीक्षण करने के बहुत सारे नियम होते हैं, परंतु तन्यता परीक्षण पदार्थ जैसे कि कंक्रीट और सिरेमिक्स के लिए उपयोगी होता है जो तन्यता और दबाव में विभिन्न व्यवहार करते हैं, और इसलिए वे विभिन्न तन्यता और दबाव क्रीप दर रखते हैं। इस प्रकार, तनाव क्रीप को समझना महत्वपूर्ण है जब ऐसे संरचनों के प्रारूप में जोड होता है जिन्हें तन्यता का सामना करना पड़ता है, जैसे कि पानी धारित करने वाले बर्तनों के लिए, या सामान्य संरचनात्मक सतर्कता के लिए।।<ref>{{cite journal |last1=Bissonnette |first1=Benoit |last2=Pigeon |first2=Michel |last3=Vaysburd |first3=Alexander M. |title=Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters |journal=Materials Journal |date=1 July 2007 |volume=104 |issue=4 |pages=360–368 |id={{ProQuest|197938866}} |doi=10.14359/18825 }}</ref> | ||
क्रीप का तन्य परीक्षण सामान्यतः मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, यद्यपि प्लास्टिक क्रीप के अतिरिक्त क्रीप कार्यक्षेत्र में बने रहने के लिए सामान्यतः कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता क्रीप परीक्षण उपकरण के प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को सम्मिलित किया जा सकता है।<ref>{{Cite web |title=लीवर आर्म टेस्ट सिस्टम|url=https://www.mltest.com/index.php/applied-test-systems/creep-stress-rupture-testing/lever-arm-test-systems |access-date=2022-05-21 |website=www.mltest.com}}</ref> प्रारूपों को स्थिर तापमान और तनाव पर रखा जाता है, और पदार्थ | क्रीप का तन्य परीक्षण सामान्यतः मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, यद्यपि प्लास्टिक क्रीप के अतिरिक्त क्रीप कार्यक्षेत्र में बने रहने के लिए सामान्यतः कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता क्रीप परीक्षण उपकरण के प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को सम्मिलित किया जा सकता है।<ref>{{Cite web |title=लीवर आर्म टेस्ट सिस्टम|url=https://www.mltest.com/index.php/applied-test-systems/creep-stress-rupture-testing/lever-arm-test-systems |access-date=2022-05-21 |website=www.mltest.com}}</ref> प्रारूपों को स्थिर तापमान और तनाव पर रखा जाता है, और पदार्थ पर तनाव को स्ट्रेन गेज या लेजर गेज का उपयोग करके मापा जाता है। मापा तनाव को क्रीप के विभिन्न तंत्रों को नियंत्रित करने वाले समीकरणों के साथ फिट किया जा सकता है, जैसे कि पावर लॉ क्रीप या प्रसार क्रीप, (अधिक जानकारी के लिए क्रीप देखें)। फ्रैक्चर के बाद प्रारूपों की जांच से आगे का विश्लेषण प्राप्त किया जा सकता है। क्रीप तंत्र और दर को समझने मे पदार्थ चयन और प्रारूप में सहायता मिल सकता है।<ref name=":0">{{cite journal |last1=Carroll |first1=Daniel F. |last2=Wiederhorn |first2=Sheldon M. |last3=Roberts |first3=D. E. |title=सिरेमिक के तन्यता रेंगने के परीक्षण की तकनीक|journal=Journal of the American Ceramic Society |date=September 1989 |volume=72 |issue=9 |pages=1610–1614 |doi=10.1111/j.1151-2916.1989.tb06291.x }}</ref> | ||
तनाव परीक्षण में क्रीप के लिए प्रतिरूप संरेखण का महत्वपूर्ण है। संरेखित लोडिंग के बिना प्रतिरूप पर बंकन तन्यता लागू होगा। बंकन को प्रतिरूप के सभी पक्षों पर तनाव को ट्रैक करके मापा जा सकता है। प्रतिशत बंकन पुनः एक छोर पर तनाव (ε₁) और औसत तनाव (ε₀) के मध्य का अंतर के रूप में परिभाषित किया जा सकता है। | |||
<math>\text{Percent Bending} = \frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_0} \times 100</math> | <math>\text{Percent Bending} = \frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_0} \times 100</math> | ||
लोड किए गए | |||
लोड किए गए प्रारूपों के व्यापक छोर पर प्रतिशत झुकाव 1% से कम होना चाहिए, और पतले छोर पर 2% से कम होना चाहिए। लोडिंग उपकरण पर गलत संरेखण और प्रारूपों की असममित यंत्रों के कारण बंकन हो सकता है।<ref name=":0" /> | |||
Line 167: | Line 169: | ||
===धातु=== | ===धातु=== | ||
* एएसटीएम ई8/ई8एम-13: धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2013) | * एएसटीएम ई8/ई8एम-13: धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2013) | ||
* मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-1: धातु | * मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-1: धातु पदार्थ। तन्यता परीक्षण. परिवेश के तापमान पर परीक्षण की विधि (2009) | ||
* मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-2: धातु पदार्थ । तन्यता परीक्षण. ऊंचे तापमान पर परीक्षण की विधि (2011) | * मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-2: धातु पदार्थ । तन्यता परीक्षण. ऊंचे तापमान पर परीक्षण की विधि (2011) | ||
* [[जापानी औद्योगिक मानक]] Z2241 धातु पदार्थ के लिए तन्यता परीक्षण की विधि | * [[जापानी औद्योगिक मानक]] Z2241 धातु पदार्थ के लिए तन्यता परीक्षण की विधि | ||
Line 173: | Line 175: | ||
===समग्र=== | ===समग्र=== | ||
* एएसटीएम डी 3039/डी 3039एम: पॉलिमर | * एएसटीएम डी 3039/डी 3039एम: पॉलिमर आव्यूह मिश्रित पदार्थ के तन्य गुणों के लिए मानक परीक्षण विधि | ||
===लचीली पदार्थ === | ===लचीली पदार्थ === |
Revision as of 11:48, 3 October 2023
तन्यता परीक्षण, जिसे तनाव परीक्षण भी कहा जाता है,[1] एक मौलिक पदार्थ विज्ञान और अभियांत्रिकी परीक्षण है जिसमें कोई प्रारूप, विफल होने तक नियंत्रित तनाव के अधीन होता है। जिन गुणों को सीधे तन्यता परीक्षण के माध्यम से सीधे मापे जाने वाले गुण हैं, उच्चतम तन्यता शक्ति, खंडन शक्ति, अधिकतम विस्तार और क्षेत्र में कमी आदि।[2] इन मापों से निम्नलिखित गुण भी निर्धारित किए जा सकते हैं: यंग का मापांक, पॉइसन का अनुपात, मुद्रण प्रतिरक्षा, और तनाव- दृढ़ करने की विशेषताएं आदि ।[3]समानुवर्ती पदार्थों की यांत्रिक विशेषताओं को प्राप्त करने के लिए एकाक्षीय तन्यता परीक्षण का सबसे अधिक उपयोग किया जाता है। कुछ पदार्थ द्विअक्षीय तन्यता परीक्षण का उपयोग करते हैं। इन परीक्षण यंत्रों के बीच मुख्य अंतर यह है कि पदार्थ पर भार कैसे लगाया जाता है।
तन्यता परीक्षण के उद्देश्य
तन्यता परीक्षण के कई उद्देश्य हो सकते हैं, जैसे:
- किसी एप्लिकेशन के लिए पदार्थ या वस्तु का चयन करें
- पूर्वानुमानित करें कि कोई पदार्थ उसके सामान्य और अत्यधिक बल में कैसे प्रदर्शन करेगी:
- निर्धारित करें कि क्या, या सत्यापित करें कि, किसी विनिर्देश, विनियमन या अनुबंध की आवश्यकताएं पूरी की गई हैं
- सुनिश्चित करें कि कोई नया उत्पाद विकास कार्यक्रम पटरी पर है या नहीं
- अवधारणा का प्रमाण प्रदर्शित करें
- प्रस्तावित पेटेंट की उपयोगिता प्रदर्शित करें
- अन्य वैज्ञानिक, अभियांत्रिकी और गुणवत्ता आश्वासन कार्यों के लिए तकनीकी मानक डेटा प्रदान करें
- तकनीकी संचार के लिए एक आधार प्रदान करें
- कई विकल्पों के सापेक्ष तकनीकी साधन प्रदान करें
- कानूनी कार्यवाही में साक्ष्य प्रदान करें
तन्यता प्रारूप
परीक्षण संरचना की तैयारी परीक्षण के उद्देश्यों और शासकीय परीक्षण विधि या विनिर्देश पर निर्भर करती है। एक तन्यता प्रारूपों में सामान्यतः एक मानकीकृत प्रारूप क्रॉस-सेक्शन होता है। इसके दो कंधे और बीच में एक गेज (खंड) होता है। कंधे और पकड़ अनुभाग सामान्यतः गेज अनुभाग से 33% बड़े होते हैं [4] जिससे उन्हें सरलता से पकड़ा जा सके. गेज अनुभाग का छोटा व्यास भी इस क्षेत्र में क्रीप और विफलता की अनुमति देता है।[2][5]
परीक्षण संरचना के कंधों को परीक्षण यंत्र में विभिन्न पकड़ के साथ जोड़ने के लिए विभिन्न तरीकों से निर्मित किया जा सकता है (नीचे दी गई छवि देखें)। प्रत्येक प्रणाली के लाभ और हानि होते हैं; उदाहरण के लिए, दाँतेदार पकड़ के लिए प्रारूपित किए गए कंधों का निर्माण सरल और सस्ता है, परंतु प्रारूपों का संरेखण तकनीकज्ञ के कौशल पर निर्भर करता है। दूसरी ओर, पिन वाले ग्रिप्स सुनिश्चित अच्छा संरेखण करता हैं। परंतु तकनीकज्ञ को प्रत्येक कंधे को कम से कम एक व्यास की लंबाई तक ग्रिप में थ्रेड करना आवश्यक होता है, अन्यथा प्रारूप के विफल से पहले थ्रेड्स फिसल सकते हैं।[6]
बड़े कास्टिंग्स और फॉर्जिंग्स में प्रायः अतिरिक्त पदार्थ जोड़ना सामान्य होता है, जिसका उद्देश्य कास्टिंग से हटाने के लिए प्रारूपित किया जाता है जिससे इससे परीक्षण संरचना बना सकें। ये प्रारूप पूरे वर्कपीस का सटीक प्रतिनिधित्व नहीं कर सकते क्योंकि पदार्थ की संरचना प्रत्येक जगह भिन्न हो सकती है। छोटे वर्कपीस में या जब कास्टिंग के महत्वपूर्ण भागों का परीक्षण किया जाता है तो परीक्षण संरचना बनाने के लिए एक वर्कपीस का त्याग किया जा सकता है।[7] बार स्टॉक से मशीनीकृत वर्कपीस के लिए, परीक्षण संरचना बार स्टॉक के समान टुकड़े से बनाया जा सकता है।
मृदु और गंदे पदार्थ के लिए, जैसे कि नैनोफाइबर्स से बने इलेक्ट्रोस्पन नॉनवोवेंस, सामान्यतः प्रारूप एक लेख फ्रेम द्वारा समर्थित एक संरचना स्ट्रिप होता है जिससे इसे मशीन पर आलंबन करने की सुविधाजनक बनाया जा सके और मेम्ब्रेन को बिगड़ने से बचाया जा सके।[8][9]
परीक्षण मशीन की पुनरावृत्ति विशेष परीक्षण प्रारूपों का उपयोग करके पाई जा सकती है जिन्हें सावधानीपूर्वक यथासंभव समान बनाया जाता है।[7]
एक मानक संरचना, मानक के आधार पर, गेज लंबाई के साथ एक गोल या एक वर्ग खंड में तैयार किया जाता है। संरचना के दोनों अंशों को परीक्षण के समय मजबूती से पकड़ा जा सकने वाली लंबाई और सतह की स्थिति होनी चाहिए। प्रारंभिक गेज लंबाई "Lo" मानक होती है और संरचना के व्यास ("Do") या पार्श्वीय क्षेत्र ("Ao") के साथ विभिन्न होती है, जैसा कि सूचीबद्ध होता है।
प्रतिदर्शी प्रकार | संयुक्त राज्य अमेरिका(एएसटीएम) | ब्रिटेन | जर्मनी |
---|---|---|---|
शीट( Lo / √Ao) | 4.5 | 5.65 | 11.3 |
रॉड ( Lo / Do) | 4.0 | 5.00 | 10.0 |
निम्नलिखित तालिकाएँ मानक एएसटीएम ई8 के अनुसार परीक्षण संरचना आयामों और सहनशीलता के उदाहरण देती हैं।
सभी मान इंच में | प्लेट प्रकार (1.5 इंच चौड़ा) | शीट का प्रकार (0.5 इंच चौड़ा | उप-आकार का प्रारूप (0.25 इंच चौड़ा) |
---|---|---|---|
लंबाई गेज | 8.00±0.01 | 2.00±0.005 | 1.000±0.003 |
चौड़ाई | 1.5 +0.125–0.25 | 0.500±0.010 | 0.250±0.005 |
मोटाई | 0.188 ≤ T | 0.005 ≤ T ≤ 0.75 | 0.005 ≤ T ≤ 0.25 |
फ़िलेट त्रिज्या (न्यूनतम) | 1 | 0.25 | 0.25 |
कुल लंबाई (न्यूनतम) | 18 | 8 | 4 |
घटे हुए खंड की लंबाई (न्यूनतम) | 9 | 2.25 | 1.25 |
पकड़ अनुभाग की लंबाई (न्यूनतम) | 3 | 2 | 1.25 |
पकड़ अनुभाग की चौड़ाई (लगभग) | 2 | 0.75 | 3⁄8 |
सभी मान इंच में | नाममात्र व्यास पर मानक प्रारूप : | नाममात्र व्यास पर छोटा प्रारूप | |||
---|---|---|---|---|---|
0.500 | 0.350 | 0.25 | 0.160 | 0.113 | |
लंबाई गेज | 2.00±0.005 | 1.400±0.005 | 1.000±0.005 | 0.640±0.005 | 0.450±0.005 |
व्यास सहिष्णुता | ±0.010 | ±0.007 | ±0.005 | ±0.003 | ±0.002 |
फ़िलेट त्रिज्या (न्यूनतम) | 3⁄8 | 0.25 | 5⁄16 | 5⁄32 | 3⁄32 |
घटे हुए खंड की लंबाई (न्यूनतम) | 2.5 | 1.75 | 1.25 | 0.75 | 5⁄8 |
उपकरण
तन्यता परीक्षण प्रायः पदार्थ परीक्षण प्रयोगशाला में किया जाता है। एएसटीएम डी638 सबसे सरल तन्यता परीक्षण प्रोटोकॉल में से एक है। एएसटीएम डी638 परम तन्यता शक्ति , उपज शक्ति, बढ़ाव और पॉइसन अनुपात सहित प्लास्टिक तन्यता गुणों को मापता है।
तन्यता परीक्षण में उपयोग की जाने वाली सबसे आम परीक्षण मशीन सार्वभौमिक परीक्षण मशीन है। इस प्रकार की मशीन में दो क्रॉसहेड होते हैं; एक को प्रारूपों की लंबाई के लिए समायोजित किया जाता है और दूसरे को परीक्षण प्रारूपों पर तनाव लागू करने के लिए संचालित किया जाता है। दो प्रकार हैं: हाइड्रोलिक मशीनरी संचालित और विद्युत चुम्बकीय रूप से संचालित मशीनें।[5]
इलेक्ट्रोमैकेनिकल मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एक इलेक्ट्रिक मोटर, गियर रिडक्शन प्रणाली और एक, दो या चार स्क्रू का उपयोग करती है। मोटर की गति को बदलकर क्रॉसहेड गति की एक श्रृंखला प्राप्त की जा सकती है। क्रॉसहेड की गति और परिणामस्वरूप लोड दर को बंद-लूप सर्वो नियंत्रक में एक माइक्रोप्रोसेसर द्वारा नियंत्रित किया जा सकता है। एक हाइड्रोलिक परीक्षण मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एकल या दोहरे-अभिनय पिस्टन का उपयोग करती है। मैन्युअल रूप से संचालित परीक्षण प्रणालियाँ भी उपलब्ध हैं। मैनुअल कॉन्फ़िगरेशन के लिए लोड दर को नियंत्रित करने के लिए ऑपरेटर को सुई वाल्व को समायोजित करने की आवश्यकता होती है। एक सामान्य तुलना से पता चलता है कि विद्युत यांत्रिक मशीन परीक्षण गति और लंबे क्रॉसहेड विस्थापन की एक विस्तृत श्रृंखला में सक्षम है, जबकि हाइड्रोलिक मशीन उच्च बल उत्पन्न करने के लिए एक लागत प्रभावी समाधान है।[11]
परीक्षण किए जा रहे परीक्षण प्रारूपों के लिए मशीन में उचित क्षमताएं होनी चाहिए। चार मुख्य पैरामीटर हैं: बल क्षमता, गति, परिशुद्धता और सटीकता। बल क्षमता इस तथ्य को संदर्भित करती है कि मशीन को प्रारूपों को विफल करने के लिए पर्याप्त बल उत्पन्न करने में सक्षम होना चाहिए। मशीन को इतनी तेजी से या धीरे-धीरे बल लगाने में सक्षम होना चाहिए कि वह वास्तविक अनुप्रयोग की ठीक से नकल कर सके। अंत में, मशीन को गेज की लंबाई और लागू बलों को सटीक और सटीकता से मापने में सक्षम होना चाहिए; उदाहरण के लिए, एक बड़ी मशीन जिसे लंबे बढ़ाव को मापने के लिए प्रारूपित किया गया है वह भंगुर पदार्थ के साथ काम नहीं कर सकती है जो विफल से पहले छोटे बढ़ाव का अनुभव करती है।[6]
परीक्षण मशीन में परीक्षण प्रारूपों का संरेखण महत्वपूर्ण है, क्योंकि यदि प्रारूप गलत संरेखित है, या तो एक कोण पर या एक तरफ ऑफसेट है, तो मशीन प्रारूपों पर एक झुकने वाला बल लगाएगी। यह भंगुर पदार्थों के लिए विशेष रूप से बुरा है, क्योंकि यह नाटकीय रूप से परिणामों को ख़राब कर देगा। पकड़ और परीक्षण मशीन के बीच गोलाकार सीटों या यू-जोड़ों का उपयोग करके इस स्थिति को कम किया जा सकता है।[6]यदि तनाव-विकृति वक्र का प्रारंभिक भाग घुमावदार है और रैखिक नहीं है, तो यह इंगित करता है कि प्रारूप परीक्षण मशीन में गलत विधि से संरेखित है।[12]
तनाव मापन सबसे सामान्यतः एक एक्सटेन्सोमीटर के साथ मापे जाते हैं, परंतु कई बार पॉइसन की अनुपात को मापते समय छोटे परीक्षण प्रारूप या तनाव मापकों का भी उपयोग किया जाता है।[6] नई परीक्षण मशीनों में विद्युतकीय सेंसर्स से जुड़े डिजिटल समय, बल, और विस्तारण मापन प्रणालियाँ होती हैं, जो डेटा संग्रहण उपकरण से जुड़ी होती हैं और डेटा को संविचालित और निर्गत करने के लिए सॉफ़्टवेयर का उपयोग करती हैं। यद्यपि, एनालॉग मशीन आज भी एएसटीएम, एनआईएसटी और एएसएम धातु तन्यता परीक्षण यथार्थ आवश्यकताओं को पूरा करती है और उन्हें पूरी तरह से आज भी उपयोग की जाती है।
प्रक्रिया
परीक्षण प्रक्रिया में परीक्षण नमूना को परीक्षण मशीन में रखा जाता है और धीरे-धीरे इसे विफल होने तक फैलाया जाता है। इस प्रक्रिया के समय, लागू बल के विपरीत गेज सेक्शन के विस्तार को दर्ज किया जाता है। डेटा को इस प्रकार से प्रसंस्कृत किया जाता है कि यह परीक्षण संरचना की ज्यामित्री के लिए विशेष नहीं होता है। विस्तार मापन का उपयोग अभियांत्रिकी क्रीप, ε, की गणना के लिए इस समीकरण का प्रयोग किया जाता है:[5]
ΔL गेज लंबाई में परिवर्तन, L_0 प्रारंभिक गेज लंबाई है, और L अंतिम लंबाई है। बल मापन का उपयोग अभियांत्रिकी क्रीप, σ, की गणना के लिए निम्नलिखित समीकरण का प्रयोग किया जाता है::[5]
जहां F तन्यता बल है और A प्रारूपों का नाममात्र क्रॉस-सेक्शन है। मशीन ये गणना बल बढ़ने पर करती है, जिससे डेटा बिंदुओं को तनाव-तनाव वक्र में ग्राफ़ किया जा सके।[5]
इलेक्ट्रोस्पून नैनोफाइबर झिल्ली के रूप में झरझरा और नरम पदार्थ के साथ काम करते समय, उपरोक्त तनाव सूत्र का अनुप्रयोग समस्याग्रस्त है। झिल्ली की मोटाई, वास्तव में, उसके माप के समय लगाए गए दबाव पर निर्भर होती है, जिससे मोटाई का मान भिन्न होता है। परिणामस्वरूप, प्राप्त तनाव-विकृति वक्र उच्च परिवर्तनशीलता दिखाते हैं। इस स्थिति में, विश्वसनीय तन्य परिणाम प्राप्त करने के लिए क्रॉस-सेक्शन क्षेत्र (ए) के अतिरिक्त प्रारूप द्रव्यमान के संबंध में भार के सामान्यीकरण की अनुशंसा की जाती है।[13]
तन्यता परीक्षण क्रीप
तन्यता परीक्षण पदार्थों में क्रीप की परीक्षण के लिए प्रयुक्त किया जा सकता है, जिसमें पदार्थ की धीमी प्लास्टिक विकृति होती है, जो निरंतर लागू तनावों के प्राप्त किए गए समय अवधि के समय होती है। क्रीप सामान्यतः प्रसार और अव्यवस्था की चलन के द्वारा सहायक होता है। क्रीप का परीक्षण करने के बहुत सारे नियम होते हैं, परंतु तन्यता परीक्षण पदार्थ जैसे कि कंक्रीट और सिरेमिक्स के लिए उपयोगी होता है जो तन्यता और दबाव में विभिन्न व्यवहार करते हैं, और इसलिए वे विभिन्न तन्यता और दबाव क्रीप दर रखते हैं। इस प्रकार, तनाव क्रीप को समझना महत्वपूर्ण है जब ऐसे संरचनों के प्रारूप में जोड होता है जिन्हें तन्यता का सामना करना पड़ता है, जैसे कि पानी धारित करने वाले बर्तनों के लिए, या सामान्य संरचनात्मक सतर्कता के लिए।।[14]
क्रीप का तन्य परीक्षण सामान्यतः मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, यद्यपि प्लास्टिक क्रीप के अतिरिक्त क्रीप कार्यक्षेत्र में बने रहने के लिए सामान्यतः कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता क्रीप परीक्षण उपकरण के प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को सम्मिलित किया जा सकता है।[15] प्रारूपों को स्थिर तापमान और तनाव पर रखा जाता है, और पदार्थ पर तनाव को स्ट्रेन गेज या लेजर गेज का उपयोग करके मापा जाता है। मापा तनाव को क्रीप के विभिन्न तंत्रों को नियंत्रित करने वाले समीकरणों के साथ फिट किया जा सकता है, जैसे कि पावर लॉ क्रीप या प्रसार क्रीप, (अधिक जानकारी के लिए क्रीप देखें)। फ्रैक्चर के बाद प्रारूपों की जांच से आगे का विश्लेषण प्राप्त किया जा सकता है। क्रीप तंत्र और दर को समझने मे पदार्थ चयन और प्रारूप में सहायता मिल सकता है।[16]
तनाव परीक्षण में क्रीप के लिए प्रतिरूप संरेखण का महत्वपूर्ण है। संरेखित लोडिंग के बिना प्रतिरूप पर बंकन तन्यता लागू होगा। बंकन को प्रतिरूप के सभी पक्षों पर तनाव को ट्रैक करके मापा जा सकता है। प्रतिशत बंकन पुनः एक छोर पर तनाव (ε₁) और औसत तनाव (ε₀) के मध्य का अंतर के रूप में परिभाषित किया जा सकता है।
लोड किए गए प्रारूपों के व्यापक छोर पर प्रतिशत झुकाव 1% से कम होना चाहिए, और पतले छोर पर 2% से कम होना चाहिए। लोडिंग उपकरण पर गलत संरेखण और प्रारूपों की असममित यंत्रों के कारण बंकन हो सकता है।[16]
मानक
धातु
- एएसटीएम ई8/ई8एम-13: धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2013)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-1: धातु पदार्थ। तन्यता परीक्षण. परिवेश के तापमान पर परीक्षण की विधि (2009)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-2: धातु पदार्थ । तन्यता परीक्षण. ऊंचे तापमान पर परीक्षण की विधि (2011)
- जापानी औद्योगिक मानक Z2241 धातु पदार्थ के लिए तन्यता परीक्षण की विधि
- एमपीआईएफ परीक्षण मानक 10: पाउडर धातुकर्म (पीएम) पदार्थ के तन्य गुणों के लिए विधि धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2015)
समग्र
- एएसटीएम डी 3039/डी 3039एम: पॉलिमर आव्यूह मिश्रित पदार्थ के तन्य गुणों के लिए मानक परीक्षण विधि
लचीली पदार्थ
- प्लास्टिक के तन्य गुणों के लिए एएसटीएम डी638 मानक परीक्षण विधि
- एएसटीएम डी828 निरंतर-दर-बढ़ाव उपकरण का उपयोग करके कागज और पेपरबोर्ड के तन्य गुणों के लिए मानक परीक्षण विधि
- एएसटीएम डी882 पतली प्लास्टिक शीटिंग के तन्य गुणों के लिए मानक परीक्षण विधि
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 37 रबर, वल्केनाइज्ड या थर्मोप्लास्टिक-तन्य तनाव-तनाव गुणों का निर्धारण
संदर्भ
- ↑ Czichos, Horst (2006). सामग्री मापन विधियों की स्प्रिंगर हैंडबुक. Berlin: Springer. pp. 303–304. ISBN 978-3-540-20785-6.
- ↑ 2.0 2.1 Davis, Joseph R. (2004). तन्यता परीक्षण (2nd ed.). ASM International. ISBN 978-0-87170-806-9.
- ↑ Davis 2004, p. 33.
- ↑ Common Material Tests. The Engineering Archive. (n.d.). https://theengineeringarchive.com/material-science/page-common-material-tests.html
- ↑ 5.0 5.1 5.2 5.3 5.4 Davis 2004, p. 2.
- ↑ 6.0 6.1 6.2 6.3 Davis 2004, p. 9.
- ↑ 7.0 7.1 Davis 2004, p. 8.
- ↑ Maccaferri, Emanuele; Cocchi, Davide; Mazzocchetti, Laura; Benelli, Tiziana; Brugo, Tommaso Maria; Giorgini, Loris; Zucchelli, Andrea (July 2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7): 2100183. doi:10.1002/mame.202100183.
- ↑ How to correctly prepare nanofibrous mat specimens for tensile testing. youtube.com
- ↑ 10.0 10.1 Davis 2004, p. 52.
- ↑ Gedney, 2005
- ↑ Davis 2004, p. 11.
- ↑ Maccaferri, Emanuele; et al. (2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7). doi:10.1002/mame.202100183.
- ↑ Bissonnette, Benoit; Pigeon, Michel; Vaysburd, Alexander M. (1 July 2007). "Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters". Materials Journal. 104 (4): 360–368. doi:10.14359/18825. ProQuest 197938866.
- ↑ "लीवर आर्म टेस्ट सिस्टम". www.mltest.com. Retrieved 2022-05-21.
- ↑ 16.0 16.1 Carroll, Daniel F.; Wiederhorn, Sheldon M.; Roberts, D. E. (September 1989). "सिरेमिक के तन्यता रेंगने के परीक्षण की तकनीक". Journal of the American Ceramic Society. 72 (9): 1610–1614. doi:10.1111/j.1151-2916.1989.tb06291.x.