सिद्धांत सजातीय समष्टि: Difference between revisions
m (Abhishekkshukla moved page प्रधान सजातीय स्थान to सिद्धांत सजातीय समष्टि without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, '''सिद्धांत सजातीय समष्टि'''<ref>{{cite journal|title=एबेलियन किस्मों पर प्रमुख सजातीय स्थान|author=S. Lang and J. Tate|journal=American Journal of Mathematics|volume=80|issue=3|year=1958|pages=659–684|doi=10.2307/2372778}}</ref> अथवा टोरसर, समूह (गणित) ''G'' के लिए [[सजातीय स्थान|सजातीय समष्टि]] ''X'' है जिसमें प्रत्येक बिंदु का स्टेबलाइज़र उपसमूह है। सामान्यतः समूह ''G'' के लिए सिद्धांत सजातीय समष्टि गैर-रिक्त समुच्चय ''X'' है जिस पर ''G'' स्वतंत्र और सकर्मक रूप से कार्य करता है (अर्थात्, किसी भी ''x के लिए'', ''X में y,'' ''G'' में अद्वितीय ''g'' उपस्तिथ है जैसे कि {{nowrap|1=''x''·''g'' = ''y''}}, जहाँ X पर G की (दाईं ओर) क्रिया को प्रदर्शित करता है। | |||
गणित में, | |||
समरूप परिभाषा अन्य [[श्रेणी (गणित)|श्रेणियों (गणित)]] में होती है| उदाहरण के लिए, जहां, | समरूप परिभाषा अन्य [[श्रेणी (गणित)|श्रेणियों (गणित)]] में होती है| उदाहरण के लिए, जहां, | ||
*G[[ टोपोलॉजिकल समूह | टोपोलॉजिकल समूह]] है, X [[टोपोलॉजिकल स्पेस]] है और क्रिया [[निरंतर (टोपोलॉजी)]] होती है। | *G[[ टोपोलॉजिकल समूह | टोपोलॉजिकल समूह]] है, X [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] है और क्रिया [[निरंतर (टोपोलॉजी)]] होती है। | ||
*G [[झूठ समूह|समूह]] है, X[[ चिकना कई गुना | स्मूथ मैनिफोल्ड]] है और क्रिया[[ चिकना समारोह | स्मूथ]] होती है| | *G [[झूठ समूह|समूह]] है, X[[ चिकना कई गुना | स्मूथ मैनिफोल्ड]] है और क्रिया[[ चिकना समारोह | स्मूथ]] होती है| | ||
*G [[बीजगणितीय समूह]] है, X [[बीजगणितीय किस्म|बीजगणितीय प्रकार]] है और क्रिया नियमित होती है। | *G [[बीजगणितीय समूह]] है, X [[बीजगणितीय किस्म|बीजगणितीय प्रकार]] है और क्रिया नियमित होती है। | ||
Line 10: | Line 9: | ||
यदि G [[गैर-अबेलियन समूह]] है, तो व्यक्ति को बाएं और दाएं टॉर्सर्स के मध्य अंतर क्रिया की दिशा के आधार पर करना चाहिए। इस लेख में, हम उत्तम कार्यों का उपयोग करेंगे। | यदि G [[गैर-अबेलियन समूह]] है, तो व्यक्ति को बाएं और दाएं टॉर्सर्स के मध्य अंतर क्रिया की दिशा के आधार पर करना चाहिए। इस लेख में, हम उत्तम कार्यों का उपयोग करेंगे। | ||
परिभाषा को स्पष्ट रूप से अध्यन्न करने के लिए, X, G-टोरसर या G- | परिभाषा को स्पष्ट रूप से अध्यन्न करने के लिए, X, G-टोरसर या G-सिद्धांत सजातीय समष्टि है यदि X रिक्त है और मानचित्र से सुसज्जित है, तो (उपयुक्त श्रेणी में) {{nowrap|''X'' × ''G'' → ''X''}} जैसे कि | ||
:x·1 = x | :x·1 = x | ||
:x·(gh) = (x·g)·h | :x·(gh) = (x·g)·h | ||
Line 19: | Line 18: | ||
चूँकि X समूह नहीं है, इसलिए हम तत्वों का गुणन नहीं कर सकते हैं| यद्यपि, हम उनका भागफल ले सकते हैं। अर्थात् मानचित्र {{nowrap|''X'' × ''X'' → ''G''}}, जो अद्वितीय तत्व g = x \ y ∈ G को (x, y) भेजता है जैसे कि y = x·g | चूँकि X समूह नहीं है, इसलिए हम तत्वों का गुणन नहीं कर सकते हैं| यद्यपि, हम उनका भागफल ले सकते हैं। अर्थात् मानचित्र {{nowrap|''X'' × ''X'' → ''G''}}, जो अद्वितीय तत्व g = x \ y ∈ G को (x, y) भेजता है जैसे कि y = x·g | ||
चूँकि, उत्तम समूह क्रिया के साथ संक्रिया की संरचना, त्रिगुट संक्रिया {{nowrap|''X'' × (''X'' × ''X'') → ''X''}}, उत्पन्न करती है, जो समूह गुणन के सामान्य रूप में कार्य करता है और जो प्रमुख सजातीय | चूँकि, उत्तम समूह क्रिया के साथ संक्रिया की संरचना, त्रिगुट संक्रिया {{nowrap|''X'' × (''X'' × ''X'') → ''X''}}, उत्पन्न करती है, जो समूह गुणन के सामान्य रूप में कार्य करता है और जो प्रमुख सजातीय समष्टि को बीजगणितीय रूप से चिह्नित करने के लिए पर्याप्त है और इसके साथ जुड़े समूह को आंतरिक रूप से चिह्नित करता है| यदि इस त्रिगुट संक्रिया के परिणाम <math>x/y \cdot z \,:=\, x \cdot (y\backslash z)</math> को निरूपित करते हैं, तो सर्वसमिका (गणित) निम्नलिखित है- | ||
:<math>x/y \cdot y = x = y/y \cdot x</math> | :<math>x/y \cdot y = x = y/y \cdot x</math> | ||
:<math>v/w \cdot (x/y \cdot z) = (v/w \cdot x)/y \cdot z</math> | :<math>v/w \cdot (x/y \cdot z) = (v/w \cdot x)/y \cdot z</math> | ||
प्रमुख सजातीय | प्रमुख सजातीय समष्टि को परिभाषित करने के लिए पर्याप्त होगी| जबकि अतिरिक्त संपत्ति हैं- | ||
:<math>x/y \cdot z = z/y \cdot x</math> | :<math>x/y \cdot z = z/y \cdot x</math> | ||
उन | उन समष्टिों को प्रमाणित करती है जो एबेलियन समूहों से जुड़े होते हैं। समूह को औपचारिक भागफल के रूप में परिभाषित किया जा सकता है <math>x \backslash y</math> तुल्यता संबंध के अधीन के रूप में हैं- | ||
:<math>x \backslash y = u \backslash v \quad \text{iff} \quad v = u/x \cdot y</math> , | :<math>x \backslash y = u \backslash v \quad \text{iff} \quad v = u/x \cdot y</math> , | ||
:समूह उत्पाद के साथ, प्रमाण और व्युत्क्रम में परिभाषित, क्रमशः हैं- | :समूह उत्पाद के साथ, प्रमाण और व्युत्क्रम में परिभाषित, क्रमशः हैं- | ||
Line 39: | Line 38: | ||
गुणन की प्राकृतिक क्रिया के अधीन प्रत्येक समूह G को स्वयं बाएं या दाएं G-टोरसर के रूप में विचार किया जा सकता है। | गुणन की प्राकृतिक क्रिया के अधीन प्रत्येक समूह G को स्वयं बाएं या दाएं G-टोरसर के रूप में विचार किया जा सकता है। | ||
अन्य उदाहरण [[affine space|एफ्फिन | अन्य उदाहरण [[affine space|एफ्फिन समष्टि]] की अवधारणा है, सदिश समष्टि V के अंतर्निहित एफ्फिन समष्टि A का विचार संक्षेप में यह कहा जा सकता है कि A, V के लिए प्रमुख सजातीय समष्टि है जो अनुवादों के योज्य समूह के रूप में कार्य करता है। | ||
किसी भी [[नियमित पॉलीटॉप]] का ध्वज (ज्यामिति) समरूपता समूह के लिए टोरसर बनाता है। | किसी भी [[नियमित पॉलीटॉप]] का ध्वज (ज्यामिति) समरूपता समूह के लिए टोरसर बनाता है। | ||
सदिश समष्टि V दिए जाने पर हम G को [[सामान्य रैखिक समूह]] GL(V) और X को V के सभी (आदेशित) [[आधार (रैखिक बीजगणित)]] का समुच्चय मान सकते हैं। तब, X पर G इस प्रकार कार्य करता है जैसे कि यह V के सदिशों पर कार्य करता है और यह समूह क्रिया (गणित) का कार्य करता है क्योंकि किसी भी आधार को G के माध्यम से अन्य में रूपांतरित किया जा सकता है। आधार के प्रत्येक वेक्टर को उचित करने वाला रैखिक परिवर्तन, सामान्य रैखिक समूह GL(V) का तटस्थ तत्व होने के कारण V में सभी v को उत्तम करेगा, जिससे वास्तव में X प्रमुख सजातीय | सदिश समष्टि V दिए जाने पर हम G को [[सामान्य रैखिक समूह]] GL(V) और X को V के सभी (आदेशित) [[आधार (रैखिक बीजगणित)]] का समुच्चय मान सकते हैं। तब, X पर G इस प्रकार कार्य करता है जैसे कि यह V के सदिशों पर कार्य करता है और यह समूह क्रिया (गणित) का कार्य करता है क्योंकि किसी भी आधार को G के माध्यम से अन्य में रूपांतरित किया जा सकता है। आधार के प्रत्येक वेक्टर को उचित करने वाला रैखिक परिवर्तन, सामान्य रैखिक समूह GL(V) का तटस्थ तत्व होने के कारण V में सभी v को उत्तम करेगा, जिससे वास्तव में X प्रमुख सजातीय समष्टि हो सके। रेखीय बीजगणित पद्धति में आधार-निर्भरता का पालन करने का मार्ग ''X'' में ''x'' को ट्रैक करना है। इसी प्रकार, [[ऑर्थोनॉर्मल आधार]] का समष्टि (एन-फ्रेम्स के स्टीफेल मनीफोल्ड <math>V_n(\mathbf{R}^n)</math>) [[ऑर्थोगोनल समूह]] के लिए प्रमुख सजातीय समष्टि है। | ||
[[श्रेणी सिद्धांत]] में, यदि दो वस्तुएँ X और Y समरूपी हैं, तो उनके मध्य की समरूपता, Iso(X,Y) है| ऑटोमोर्फिज़्म समूह Aut(X) के लिए X टॉर्सर बनाती है, और इसी प्रकार Aut(Y) के लिए टॉर्सर बनाती है| वस्तुओं के मध्य समरूपता का विकल्प समूहों को उत्पन्न करता है और इन दो समूहों के साथ टॉर्सर को प्रमाणित करता है जो टॉर्सर को समूह संरचना देता है (क्योंकि अब इसका [[आधार बिंदु]] है)। | [[श्रेणी सिद्धांत]] में, यदि दो वस्तुएँ X और Y समरूपी हैं, तो उनके मध्य की समरूपता, Iso(X,Y) है| ऑटोमोर्फिज़्म समूह Aut(X) के लिए X टॉर्सर बनाती है, और इसी प्रकार Aut(Y) के लिए टॉर्सर बनाती है| वस्तुओं के मध्य समरूपता का विकल्प समूहों को उत्पन्न करता है और इन दो समूहों के साथ टॉर्सर को प्रमाणित करता है जो टॉर्सर को समूह संरचना देता है (क्योंकि अब इसका [[आधार बिंदु]] है)। | ||
Line 49: | Line 48: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
सिद्धांत सजातीय समष्टि की अवधारणा प्रमुख बंडल का विशिष्ट विषय है| इसका अर्थ एकल बिंदु आधार का प्रमुख बंडल है। अन्य शब्दों में [[प्रमुख बंडल|प्रमुख]] बंडलों के समष्टिीय सिद्धांत में कुछ मापदंडों के आधार पर प्रमुख सजातीय रिक्त समष्टि के सदस्य का है। बंडल के खंड द्वारा 'मूल' की आपूर्ति की जा सकती है| सामान्यतः ऐसे वर्गों को आधार पर समष्टिीय रूप से उपस्थित किया जाता है| बंडल समष्टिीय रूप से महत्त्वहीन होता है, जिससे समष्टिीय संरचना कार्टेशियन उत्पाद की हो सकती है। किन्तु खंड अधिकांशतः विश्व स्तर पर उपस्थित नहीं होते हैं। उदाहरण के लिए ,[[ अंतर कई गुना | डिफरेंशियल मैनिफोल्ड]] M में [[फ्रेम बंडल]] का प्रमुख बंडल होता है जो उसके [[स्पर्शरेखा बंडल]] से जुड़ा होता है। वैश्विक खंड तभी उपस्थित होगा जब M समानांतर हो, जिसका तात्पर्य दृढ़ सामयिक प्रतिबंधों से होता है। | |||
[[संख्या सिद्धांत]] में, क्षेत्र K (और अधिक सामान्य [[एबेलियन किस्म|एबेलियन प्रकार]]) पर परिभाषित अण्डाकार वक्र E के लिए प्रमुख सजातीय | [[संख्या सिद्धांत]] में, क्षेत्र K (और अधिक सामान्य [[एबेलियन किस्म|एबेलियन प्रकार]]) पर परिभाषित अण्डाकार वक्र E के लिए प्रमुख सजातीय समष्टिों पर विचार करने का (सतही रूप से भिन्न) कारण है। जब ज्ञान हो गया तो बीजगणितीय समूहों के लिए अन्य उदाहरण एकत्रित किए गए| ऑर्थोगोनल समूहों के लिए [[द्विघात रूप]], और [[प्रक्षेपी रैखिक समूह|प्रक्षेपी रैखिक]] समूहों के लिए सेवेरी-ब्राउर दो प्रकार के हैं। | ||
अंडाकार वक्र स्तिथि में डायोफैंटिन समीकरणों के लिए रुचि का कारण यह है कि K [[बीजगणितीय रूप से बंद]] नहीं हो सकता है। ऐसे वक्र C उपस्थित हो सकते हैं जिनके निकट K पर परिभाषित कोई बिंदु नहीं है, और जो E के लिए बड़े क्षेत्र पर समरूप बन जाते हैं| परिभाषा के अनुसार, K पर बिंदु है जो इसके अतिरिक्त कानून के लिए प्रमाण तत्व के रूप में कार्य करता है। इस स्तिथि के लिए हमें C को भिन्न करना चाहिए जिसमें [[जीनस (गणित)]] 1 है, अंडाकार वक्र E से जिसमें K-बिंदु है (या, दूसरे शब्दों में, डायोफैंटिन समीकरण प्रदान करता है जिसका समाधान K में है)। वक्र C, E के ऊपर टॉर्सर्स बन जाता है और इस स्तिथि में समृद्ध संरचना का सेट बनाता है, जहाँ K [[संख्या क्षेत्र]] ([[सेल्मर समूह]] का सिद्धांत) है। वास्तव में 'Q' के ऊपर विशिष्ट समतल घन वक्र C के निकट परिमेय बिंदु होने का कोई विशेष कारण नहीं है; मानक वीयरस्ट्रैस मॉडल सदैव करता है, अर्थात् अनंत पर बिंदु K के रूप में C के लिए K पर बिंदु की आवश्यकता होती है। | अंडाकार वक्र स्तिथि में डायोफैंटिन समीकरणों के लिए रुचि का कारण यह है कि K [[बीजगणितीय रूप से बंद]] नहीं हो सकता है। ऐसे वक्र C उपस्थित हो सकते हैं जिनके निकट K पर परिभाषित कोई बिंदु नहीं है, और जो E के लिए बड़े क्षेत्र पर समरूप बन जाते हैं| परिभाषा के अनुसार, K पर बिंदु है जो इसके अतिरिक्त कानून के लिए प्रमाण तत्व के रूप में कार्य करता है। इस स्तिथि के लिए हमें C को भिन्न करना चाहिए जिसमें [[जीनस (गणित)]] 1 है, अंडाकार वक्र E से जिसमें K-बिंदु है (या, दूसरे शब्दों में, डायोफैंटिन समीकरण प्रदान करता है जिसका समाधान K में है)। वक्र C, E के ऊपर टॉर्सर्स बन जाता है और इस स्तिथि में समृद्ध संरचना का सेट बनाता है, जहाँ K [[संख्या क्षेत्र]] ([[सेल्मर समूह]] का सिद्धांत) है। वास्तव में 'Q' के ऊपर विशिष्ट समतल घन वक्र C के निकट परिमेय बिंदु होने का कोई विशेष कारण नहीं है; मानक वीयरस्ट्रैस मॉडल सदैव करता है, अर्थात् अनंत पर बिंदु K के रूप में C के लिए K पर बिंदु की आवश्यकता होती है। | ||
इस सिद्धांत को [[स्थानीय विश्लेषण]] पर अत्यन्त ध्यान से विकसित किया गया है, जिससे [[टेट-शफारेविच समूह]] की परिभाषा को बढ़ावा मिला है। सामान्य रूप से टॉरसर सिद्धांत को लेने का दृष्टिकोण, बीजगणितीय रूप से बंद क्षेत्र पर सरल, और छोटे से क्षेत्र में 'नीचे' जाने का प्रयास करना [[वंश (श्रेणी सिद्धांत)]] का स्वरूप है। यह [[गैलोइस कोहोलॉजी]] के प्रश्नों की ओर ले जाता है, क्योंकि टॉर्स [[समूह कोहोलॉजी]] एच में कक्षाओं का प्रतिनिधित्व करते हैं| | इस सिद्धांत को [[स्थानीय विश्लेषण|समष्टिीय विश्लेषण]] पर अत्यन्त ध्यान से विकसित किया गया है, जिससे [[टेट-शफारेविच समूह]] की परिभाषा को बढ़ावा मिला है। सामान्य रूप से टॉरसर सिद्धांत को लेने का दृष्टिकोण, बीजगणितीय रूप से बंद क्षेत्र पर सरल, और छोटे से क्षेत्र में 'नीचे' जाने का प्रयास करना [[वंश (श्रेणी सिद्धांत)]] का स्वरूप है। यह [[गैलोइस कोहोलॉजी]] के प्रश्नों की ओर ले जाता है, क्योंकि टॉर्स [[समूह कोहोलॉजी]] एच में कक्षाओं का प्रतिनिधित्व करते हैं| | ||
== अन्य उपयोग == | == अन्य उपयोग == | ||
प्रमुख सजातीय | प्रमुख सजातीय समष्टि की अवधारणा को निम्नानुसार वैश्वीकृत भी किया जा सकता है। यदि X को समष्टि ([[योजना (गणित)]]/[[कई गुना]]/स्थलीय समष्टि आदि) और G को X पर समूह माने, अर्थात, X पर समष्टि की श्रेणी (गणित) में [[समूह वस्तु]] है। तो इस स्तिथि में, X पर G-टॉर्सर E, (दाएं) G समूह एक्शन (गणित) के साथ X के ऊपर समष्टि E (उसी प्रकार का) है, जैसे कि आकृतिवाद | ||
:<math>E \times_X G \rightarrow E \times_X E </math> द्वारा दी गयी | :<math>E \times_X G \rightarrow E \times_X E </math> द्वारा दी गयी | ||
:<math>(x,g) \mapsto (x,xg)</math> उपयुक्त श्रेणी (गणित) में समाकृतिकता है, और जैसे E, X पर | :<math>(x,g) \mapsto (x,xg)</math> उपयुक्त श्रेणी (गणित) में समाकृतिकता है, और जैसे E, X पर समष्टिीय रूप से महत्त्वहीन है, जिसमे, X पर {{nowrap|''E'' → ''X''}} समष्टिीय रूप से खंड प्राप्त करता है। अर्थात, टॉर्सर्स की आइसोमोर्फिज्म कक्षाएं (X,G) [[सह-समरूपता]] समूह ''H''<sup>1</sup> में कक्षाओं के अनुरूप हैं| | ||
जब हम स्मूथ मैनिफोल्ड श्रेणी (गणित) में होते हैं, तब G-टॉर्सर का प्रमुख बंडल होता है, जैसा कि ऊपर परिभाषित किया गया है। | जब हम स्मूथ मैनिफोल्ड श्रेणी (गणित) में होते हैं, तब G-टॉर्सर का प्रमुख बंडल होता है, जैसा कि ऊपर परिभाषित किया गया है। | ||
उदाहरण यदि G कॉम्पैक्ट लाई समूह (माना जाता है) है, तो वर्गीकरण | उदाहरण यदि G कॉम्पैक्ट लाई समूह (माना जाता है) है, तो वर्गीकरण समष्टि BG पर EG एक G-टॉर्सर है| | ||
== यह भी देखें == | == यह भी देखें == | ||
* सजातीय | * सजातीय समष्टि | ||
* समूह (गणित) | * समूह (गणित) | ||
Latest revision as of 16:45, 12 October 2023
गणित में, सिद्धांत सजातीय समष्टि[1] अथवा टोरसर, समूह (गणित) G के लिए सजातीय समष्टि X है जिसमें प्रत्येक बिंदु का स्टेबलाइज़र उपसमूह है। सामान्यतः समूह G के लिए सिद्धांत सजातीय समष्टि गैर-रिक्त समुच्चय X है जिस पर G स्वतंत्र और सकर्मक रूप से कार्य करता है (अर्थात्, किसी भी x के लिए, X में y, G में अद्वितीय g उपस्तिथ है जैसे कि x·g = y, जहाँ X पर G की (दाईं ओर) क्रिया को प्रदर्शित करता है।
समरूप परिभाषा अन्य श्रेणियों (गणित) में होती है| उदाहरण के लिए, जहां,
- G टोपोलॉजिकल समूह है, X टोपोलॉजिकल समष्टि है और क्रिया निरंतर (टोपोलॉजी) होती है।
- G समूह है, X स्मूथ मैनिफोल्ड है और क्रिया स्मूथ होती है|
- G बीजगणितीय समूह है, X बीजगणितीय प्रकार है और क्रिया नियमित होती है।
परिभाषा
यदि G गैर-अबेलियन समूह है, तो व्यक्ति को बाएं और दाएं टॉर्सर्स के मध्य अंतर क्रिया की दिशा के आधार पर करना चाहिए। इस लेख में, हम उत्तम कार्यों का उपयोग करेंगे।
परिभाषा को स्पष्ट रूप से अध्यन्न करने के लिए, X, G-टोरसर या G-सिद्धांत सजातीय समष्टि है यदि X रिक्त है और मानचित्र से सुसज्जित है, तो (उपयुक्त श्रेणी में) X × G → X जैसे कि
- x·1 = x
- x·(gh) = (x·g)·h
सभी x ∈ X और सभी g,h ∈ G के लिए मानचित्र X × G → X × X द्वारा दी गयी
ध्यान दें कि इसका अर्थ है कि X और G समरूप हैं (समूह के रूप में नहीं, प्रश्नगत श्रेणी में)। चूँकि यह आवश्यक बिंदु है, X में कोई मुख्य 'प्रमाण' बिंदु नहीं है। अर्थात्, X पूर्णतय: G के समरूप है इसके अतिरिक्त कि कौन सा बिंदु प्रमाण को भूल गया है। (इस अवधारणा का उपयोग प्रायः गणित में अधिक आंतरिक दृष्टिकोण को पारित करने की विधि के रूप में किया जाता है, जिसका शीर्षक 'थ्रो अवे द ओरिजिन' है।)
चूँकि X समूह नहीं है, इसलिए हम तत्वों का गुणन नहीं कर सकते हैं| यद्यपि, हम उनका भागफल ले सकते हैं। अर्थात् मानचित्र X × X → G, जो अद्वितीय तत्व g = x \ y ∈ G को (x, y) भेजता है जैसे कि y = x·g
चूँकि, उत्तम समूह क्रिया के साथ संक्रिया की संरचना, त्रिगुट संक्रिया X × (X × X) → X, उत्पन्न करती है, जो समूह गुणन के सामान्य रूप में कार्य करता है और जो प्रमुख सजातीय समष्टि को बीजगणितीय रूप से चिह्नित करने के लिए पर्याप्त है और इसके साथ जुड़े समूह को आंतरिक रूप से चिह्नित करता है| यदि इस त्रिगुट संक्रिया के परिणाम को निरूपित करते हैं, तो सर्वसमिका (गणित) निम्नलिखित है-
प्रमुख सजातीय समष्टि को परिभाषित करने के लिए पर्याप्त होगी| जबकि अतिरिक्त संपत्ति हैं-
उन समष्टिों को प्रमाणित करती है जो एबेलियन समूहों से जुड़े होते हैं। समूह को औपचारिक भागफल के रूप में परिभाषित किया जा सकता है तुल्यता संबंध के अधीन के रूप में हैं-
- ,
- समूह उत्पाद के साथ, प्रमाण और व्युत्क्रम में परिभाषित, क्रमशः हैं-
- ,
- ,
जो निम्नलिखित समूह द्वारा क्रिया के रूप में हैं-
उदाहरण
गुणन की प्राकृतिक क्रिया के अधीन प्रत्येक समूह G को स्वयं बाएं या दाएं G-टोरसर के रूप में विचार किया जा सकता है।
अन्य उदाहरण एफ्फिन समष्टि की अवधारणा है, सदिश समष्टि V के अंतर्निहित एफ्फिन समष्टि A का विचार संक्षेप में यह कहा जा सकता है कि A, V के लिए प्रमुख सजातीय समष्टि है जो अनुवादों के योज्य समूह के रूप में कार्य करता है।
किसी भी नियमित पॉलीटॉप का ध्वज (ज्यामिति) समरूपता समूह के लिए टोरसर बनाता है।
सदिश समष्टि V दिए जाने पर हम G को सामान्य रैखिक समूह GL(V) और X को V के सभी (आदेशित) आधार (रैखिक बीजगणित) का समुच्चय मान सकते हैं। तब, X पर G इस प्रकार कार्य करता है जैसे कि यह V के सदिशों पर कार्य करता है और यह समूह क्रिया (गणित) का कार्य करता है क्योंकि किसी भी आधार को G के माध्यम से अन्य में रूपांतरित किया जा सकता है। आधार के प्रत्येक वेक्टर को उचित करने वाला रैखिक परिवर्तन, सामान्य रैखिक समूह GL(V) का तटस्थ तत्व होने के कारण V में सभी v को उत्तम करेगा, जिससे वास्तव में X प्रमुख सजातीय समष्टि हो सके। रेखीय बीजगणित पद्धति में आधार-निर्भरता का पालन करने का मार्ग X में x को ट्रैक करना है। इसी प्रकार, ऑर्थोनॉर्मल आधार का समष्टि (एन-फ्रेम्स के स्टीफेल मनीफोल्ड ) ऑर्थोगोनल समूह के लिए प्रमुख सजातीय समष्टि है।
श्रेणी सिद्धांत में, यदि दो वस्तुएँ X और Y समरूपी हैं, तो उनके मध्य की समरूपता, Iso(X,Y) है| ऑटोमोर्फिज़्म समूह Aut(X) के लिए X टॉर्सर बनाती है, और इसी प्रकार Aut(Y) के लिए टॉर्सर बनाती है| वस्तुओं के मध्य समरूपता का विकल्प समूहों को उत्पन्न करता है और इन दो समूहों के साथ टॉर्सर को प्रमाणित करता है जो टॉर्सर को समूह संरचना देता है (क्योंकि अब इसका आधार बिंदु है)।
अनुप्रयोग
सिद्धांत सजातीय समष्टि की अवधारणा प्रमुख बंडल का विशिष्ट विषय है| इसका अर्थ एकल बिंदु आधार का प्रमुख बंडल है। अन्य शब्दों में प्रमुख बंडलों के समष्टिीय सिद्धांत में कुछ मापदंडों के आधार पर प्रमुख सजातीय रिक्त समष्टि के सदस्य का है। बंडल के खंड द्वारा 'मूल' की आपूर्ति की जा सकती है| सामान्यतः ऐसे वर्गों को आधार पर समष्टिीय रूप से उपस्थित किया जाता है| बंडल समष्टिीय रूप से महत्त्वहीन होता है, जिससे समष्टिीय संरचना कार्टेशियन उत्पाद की हो सकती है। किन्तु खंड अधिकांशतः विश्व स्तर पर उपस्थित नहीं होते हैं। उदाहरण के लिए , डिफरेंशियल मैनिफोल्ड M में फ्रेम बंडल का प्रमुख बंडल होता है जो उसके स्पर्शरेखा बंडल से जुड़ा होता है। वैश्विक खंड तभी उपस्थित होगा जब M समानांतर हो, जिसका तात्पर्य दृढ़ सामयिक प्रतिबंधों से होता है।
संख्या सिद्धांत में, क्षेत्र K (और अधिक सामान्य एबेलियन प्रकार) पर परिभाषित अण्डाकार वक्र E के लिए प्रमुख सजातीय समष्टिों पर विचार करने का (सतही रूप से भिन्न) कारण है। जब ज्ञान हो गया तो बीजगणितीय समूहों के लिए अन्य उदाहरण एकत्रित किए गए| ऑर्थोगोनल समूहों के लिए द्विघात रूप, और प्रक्षेपी रैखिक समूहों के लिए सेवेरी-ब्राउर दो प्रकार के हैं।
अंडाकार वक्र स्तिथि में डायोफैंटिन समीकरणों के लिए रुचि का कारण यह है कि K बीजगणितीय रूप से बंद नहीं हो सकता है। ऐसे वक्र C उपस्थित हो सकते हैं जिनके निकट K पर परिभाषित कोई बिंदु नहीं है, और जो E के लिए बड़े क्षेत्र पर समरूप बन जाते हैं| परिभाषा के अनुसार, K पर बिंदु है जो इसके अतिरिक्त कानून के लिए प्रमाण तत्व के रूप में कार्य करता है। इस स्तिथि के लिए हमें C को भिन्न करना चाहिए जिसमें जीनस (गणित) 1 है, अंडाकार वक्र E से जिसमें K-बिंदु है (या, दूसरे शब्दों में, डायोफैंटिन समीकरण प्रदान करता है जिसका समाधान K में है)। वक्र C, E के ऊपर टॉर्सर्स बन जाता है और इस स्तिथि में समृद्ध संरचना का सेट बनाता है, जहाँ K संख्या क्षेत्र (सेल्मर समूह का सिद्धांत) है। वास्तव में 'Q' के ऊपर विशिष्ट समतल घन वक्र C के निकट परिमेय बिंदु होने का कोई विशेष कारण नहीं है; मानक वीयरस्ट्रैस मॉडल सदैव करता है, अर्थात् अनंत पर बिंदु K के रूप में C के लिए K पर बिंदु की आवश्यकता होती है।
इस सिद्धांत को समष्टिीय विश्लेषण पर अत्यन्त ध्यान से विकसित किया गया है, जिससे टेट-शफारेविच समूह की परिभाषा को बढ़ावा मिला है। सामान्य रूप से टॉरसर सिद्धांत को लेने का दृष्टिकोण, बीजगणितीय रूप से बंद क्षेत्र पर सरल, और छोटे से क्षेत्र में 'नीचे' जाने का प्रयास करना वंश (श्रेणी सिद्धांत) का स्वरूप है। यह गैलोइस कोहोलॉजी के प्रश्नों की ओर ले जाता है, क्योंकि टॉर्स समूह कोहोलॉजी एच में कक्षाओं का प्रतिनिधित्व करते हैं|
अन्य उपयोग
प्रमुख सजातीय समष्टि की अवधारणा को निम्नानुसार वैश्वीकृत भी किया जा सकता है। यदि X को समष्टि (योजना (गणित)/कई गुना/स्थलीय समष्टि आदि) और G को X पर समूह माने, अर्थात, X पर समष्टि की श्रेणी (गणित) में समूह वस्तु है। तो इस स्तिथि में, X पर G-टॉर्सर E, (दाएं) G समूह एक्शन (गणित) के साथ X के ऊपर समष्टि E (उसी प्रकार का) है, जैसे कि आकृतिवाद
- द्वारा दी गयी
- उपयुक्त श्रेणी (गणित) में समाकृतिकता है, और जैसे E, X पर समष्टिीय रूप से महत्त्वहीन है, जिसमे, X पर E → X समष्टिीय रूप से खंड प्राप्त करता है। अर्थात, टॉर्सर्स की आइसोमोर्फिज्म कक्षाएं (X,G) सह-समरूपता समूह H1 में कक्षाओं के अनुरूप हैं|
जब हम स्मूथ मैनिफोल्ड श्रेणी (गणित) में होते हैं, तब G-टॉर्सर का प्रमुख बंडल होता है, जैसा कि ऊपर परिभाषित किया गया है।
उदाहरण यदि G कॉम्पैक्ट लाई समूह (माना जाता है) है, तो वर्गीकरण समष्टि BG पर EG एक G-टॉर्सर है|
यह भी देखें
- सजातीय समष्टि
- समूह (गणित)
टिप्पणियाँ
- ↑ S. Lang and J. Tate (1958). "एबेलियन किस्मों पर प्रमुख सजातीय स्थान". American Journal of Mathematics. 80 (3): 659–684. doi:10.2307/2372778.
अग्रिम पठन
- Garibaldi, Skip; Merkurjev, Alexander; Serre, Jean-Pierre (2003). Cohomological invariants in Galois cohomology. University Lecture Series. Vol. 28. Providence, RI: American Mathematical Society. ISBN 0-8218-3287-5. Zbl 1159.12311.
- Skorobogatov, A. (2001). Torsors and rational points. Cambridge Tracts in Mathematics. Vol. 144. Cambridge: Cambridge University Press. ISBN 0-521-80237-7. Zbl 0972.14015.
बाहरी संबंध
- Torsors made easy by John Baez