डेटिंग नंबर: Difference between revisions

From Vigyanwiki
No edit summary
mNo edit summary
Line 1: Line 1:
[[साहचर्य|सांयोगिकी]] गणित में, '''डेटिंग संख्याएं''' [[पूर्णांक]] की एक [[त्रिकोणीय सरणी]] होती हैं, जो [[निश्चित बिंदु (गणित)]] की निर्दिष्ट संख्या के साथ सेट { 1, ..., ''n'' } के [[परिवर्तन|क्रमपरिवर्तन]] की गणना करती हैं: दूसरे शब्दों में, '''आंशिक विचलन'''। कुछ (लेखों के अनुसार, समस्या का नाम [[ त्यागी | एकरत्नी]] गेम के नाम पर रखा गया है।) ''n'' ≥ 0 और 0 ≤ ''k'' ≤ ''n' ''के लिए ', डेटिंग संख्या Dn, k { 1, ..., n } के क्रमपरिवर्तन की संख्या है जिनके ठीक k निश्चित बिंदु हैं।
[[साहचर्य|'''साहचर्य''']] गणित में, '''डेटिंग संख्याएं''' [[पूर्णांक]] की एक [[त्रिकोणीय सरणी]] होती हैं, जो [[निश्चित बिंदु (गणित)]] की निर्दिष्ट संख्या के साथ सेट { 1, ..., ''n'' } के [[परिवर्तन|क्रमपरिवर्तन]] की गणना करती हैं: दूसरे शब्दों में, '''आंशिक विचलन'''। कुछ (लेखों के अनुसार, समस्या का नाम [[ त्यागी | एकरत्नी]] गेम के नाम पर रखा गया है।) ''n'' ≥ 0 और 0 ≤ ''k'' ≤ ''n' ''के लिए ', डेटिंग संख्या Dn, k { 1, ..., n } के क्रमपरिवर्तन की संख्या है जिनके ठीक k निश्चित बिंदु हैं।


उदाहरण के लिए, यदि सात अलग-अलग लोगों को सात उपहार दिए जाते हैं, लेकिन केवल दो को ही सही उपहार मिलना तय है, तो डी<sub>7,&nbsp;2</sub>= 924 प्रकार से ऐसा हो सकता है। एक और प्रायः उद्धृत उदाहरण 7 जोड़ों के साथ एक नृत्य विद्यालय का है, जहां चाय-ब्रेक के बाद प्रतिभागियों को कहा जाता है कि वे क्रमविहीन तरीके से एक साथी को खोजने के लिए कहा जाता है, फिर एक बार डी<sub>7,&nbsp;2</sub>= 924 संभावनाएं हैं कि 2 पिछले जोड़े संयोग से फिर से मिलें।
उदाहरण के लिए, यदि सात अलग-अलग लोगों को सात उपहार दिए जाते हैं, लेकिन केवल दो को ही सही उपहार मिलना तय है, तो डी<sub>7,&nbsp;2</sub>= 924 प्रकार से ऐसा हो सकता है। एक और प्रायः उद्धृत उदाहरण 7 जोड़ों के साथ एक नृत्य विद्यालय का है, जहां चाय-ब्रेक के बाद प्रतिभागियों को कहा जाता है कि वे क्रमविहीन तरीके से एक साथी को खोजने के लिए कहा जाता है, फिर एक बार डी<sub>7,&nbsp;2</sub>= 924 संभावनाएं हैं कि 2 पिछले जोड़े संयोग से फिर से मिलें।

Revision as of 10:14, 3 April 2023

साहचर्य गणित में, डेटिंग संख्याएं पूर्णांक की एक त्रिकोणीय सरणी होती हैं, जो निश्चित बिंदु (गणित) की निर्दिष्ट संख्या के साथ सेट { 1, ..., n } के क्रमपरिवर्तन की गणना करती हैं: दूसरे शब्दों में, आंशिक विचलन। कुछ (लेखों के अनुसार, समस्या का नाम एकरत्नी गेम के नाम पर रखा गया है।) n ≥ 0 और 0 ≤ k ≤ n' के लिए ', डेटिंग संख्या Dn, k { 1, ..., n } के क्रमपरिवर्तन की संख्या है जिनके ठीक k निश्चित बिंदु हैं।

उदाहरण के लिए, यदि सात अलग-अलग लोगों को सात उपहार दिए जाते हैं, लेकिन केवल दो को ही सही उपहार मिलना तय है, तो डी7, 2= 924 प्रकार से ऐसा हो सकता है। एक और प्रायः उद्धृत उदाहरण 7 जोड़ों के साथ एक नृत्य विद्यालय का है, जहां चाय-ब्रेक के बाद प्रतिभागियों को कहा जाता है कि वे क्रमविहीन तरीके से एक साथी को खोजने के लिए कहा जाता है, फिर एक बार डी7, 2= 924 संभावनाएं हैं कि 2 पिछले जोड़े संयोग से फिर से मिलें।

संख्यात्मक मान

यहाँ इस सरणी का आरंभ है (sequence A008290 in the OEIS):


 k
n 
0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 1 0 1
3 2 3 0 1
4 9 8 6 0 1
5 44 45 20 10 0 1
6 265 264 135 40 15 0 1
7 1854 1855 924 315 70 21 0 1
8 14833 14832 7420 2464 630 112 28 0 1

सूत्र

K = 0 पंक्ति में संख्याएँ अव्यवस्थाओं की गणना करती हैं। इस प्रकार

गैर-नकारात्मक n के लिए। यह पता चला है कि

जहाँ अनुपात को सम n के लिए पूर्णांकित किया जाता है और विषम n के लिए नीचे की ओर पूर्णांकित किया जाता है। n ≥ 1 के लिए, यह निकटतम पूर्णांक देता है।

अधिक समान्यतः, किसी , के लिए हमारे पास है

सबूत आसान है जब कोई जानता है कि विचलन को कैसे गणना करना है: n में से k निश्चित बिंदुओं को चुनें; फिर अन्य n − k बिंदुओं का विचलन चुनें।

संख्या Dn,0/(n!) घात श्रेणी ez/(1 − z); इसलिए,

d nm के लिए एक स्पष्ट सूत्र निम्नानुसार व्युत्पन्न किया जा सकता है:

इसका तुरंत तात्पर्य है

N बड़े के लिए, m निश्चित।

संभाव्यता वितरण

"संख्यात्मक मान" में तालिका के लिए प्रत्येक पंक्ति में प्रविष्टियों का योग { 1, ..., n } के क्रमचय की कुल संख्या है, और इसलिए n ! है। यदि कोई nवीं पंक्ति की सभी प्रविष्टियों को n! से विभाजित करता है, तो उसे { 1 , ..., n } के समान रूप से वितरित यादृच्छिक क्रमपरिवर्तन के निश्चित बिंदुओं की संख्या का संभाव्यता वितरण प्राप्त होता है। संभावना है कि निश्चित बिंदुओं की संख्या 'k' है

n ≥ 1 के लिए, निश्चित बिंदुओं की अपेक्षित मान संख्या 1 है (एक तथ्य जो अपेक्षा की रैखिकता से अनुसरण करता है)।

अधिक समान्यतः, i ≤ n के लिए, इस संभाव्यता वितरण का iवां क्षण (गणित) अपेक्षित मान 1 के साथ प्वासों वितरण का iवां क्षण है।[1] i > n के लिए, iवां क्षण उस प्वासों वितरण से छोटा होता है। विशेष रूप से, i ≤ n के लिए, iवां क्षण iवां बेल संख्या है, यानी आकार i के सेट के विभाजन की संख्या।

संभाव्यता वितरण को सीमित करना

जैसे-जैसे अनुमत सेट का आकार बढ़ता है, हमें प्राप्त होता है

यह केवल संभावना है कि अपेक्षित मान 1 वाला पॉइसन-वितरित यादृच्छिक चर k के बराबर है। दूसरे शब्दों में, जैसे-जैसे n बढ़ता है, आकार n के एक सेट के यादृच्छिक क्रमचय के निश्चित बिंदुओं की संख्या का प्रायिकता वितरण अपेक्षित मान 1 के साथ पॉइसन वितरण तक पहुंचता है।

यह भी देखें

  • ओबरवॉल्फ समस्या, एक अलग गणितीय समस्या जिसमें टेबल पर भोजन करने वालों की व्यवस्था समिलित है
  • Probleme des ménages, इसी तरह की एक समस्या जिसमें आंशिक अव्यवस्था समिलित है

संदर्भ

  1. Jim Pitman, "Some Probabilistic Aspects of Set Partitions", American Mathematical Monthly, volume 104, number 3, March 1997, pages 201–209.
  • Riordan, John, An Introduction to Combinatorial Analysis, New York, Wiley, 1958, pages 57, 58, and 65.
  • Weisstein, Eric W. "Partial Derangements". MathWorld.