अनिश्चितकालीन ऑर्थोगोनल समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Orthogonal group of an indefinite quadratic form}} | {{short description|Orthogonal group of an indefinite quadratic form}} | ||
गणित में अनिश्चित ऑर्थोगोनल समूह, {{nowrap|O(''p'', ''q'')}} सदिश स्थान वास्तविक सदिश स्थान के | गणित में अनिश्चित ऑर्थोगोनल समूह, {{nowrap|O(''p'', ''q'')}} सदिश स्थान वास्तविक सदिश स्थान के n-आयाम के सभी [[रैखिक परिवर्तन]] का झूठा समूह है जो अपरिवर्तनीय रूप से एक द्विघात रूप के हस्ताक्षर के [[सममित द्विरेखीय रूप]] को छोड़ देता है {{nowrap|(''p'', ''q'')}}, जहाँ {{nowrap|1=''n'' = ''p'' + ''q''}}. इसे स्यूडो-ऑर्थोगोनल समूह भी कहा जाता है<ref>{{harvnb|Popov|2001}}</ref> या सामान्यीकृत ऑर्थोगोनल समूह आयाम {{nowrap|''n''(''n'' − 1)/2}} है .<ref>{{harnvb|Hall|2015|loc=Section 1.2|p=8}}</ref> | ||
रूप का हस्ताक्षर समूह को समरूपता तक निर्धारित करता है; ''q'' के साथ ''p'' को विनिमय करना मीट्रिक को उसके ऋणात्मक से बदलने के समान है, और इसलिए वही समूह देता है। यदि या तो ''p'' या ''q'' शून्य के समान है, तो समूह सामान्य [[ऑर्थोगोनल समूह]] O(''n'') के लिए [[समाकृतिकता]] है। हम मानते हैं कि ''p'' और ''q'' दोनों सकारात्मक हैं। | |||
समूह {{nowrap|O(''p'', ''q'')}} वास्तविक से अधिक वेक्टर रिक्त स्थान के लिए परिभाषित किया गया है। जटिल स्थानों के लिए, सभी समूह{{nowrap|O(''p'', ''q''; '''C''')}} सामान्य ऑर्थोगोनल समूह {{nowrap|O(''p'' + ''q''; '''C''')}} के लिए आइसोमोर्फिक हैं, क्योंकि परिवर्तन <math>z_j \mapsto iz_j</math> एक रूप के हस्ताक्षर को बदलता है। यह अनिश्चितकालीन एकात्मक समूह {{nowrap|U(''p'', ''q'')}} के साथ भ्रमित नहीं होना चाहिए जो हस्ताक्षर {{nowrap|(''p'', ''q'')}} के एक अनुक्रमिक रूप को संरक्षित करता है। | |||
सम आयाम में {{nowrap|1=''n'' = 2''p''}}, {{nowrap|O(''p'', ''p'')}} को या विभाजित ऑर्थोगोनल समूह के रूप में जाना जाता है। | |||
सम आयाम में {{nowrap|1=''n'' = 2''p''}}, {{nowrap|O(''p'', ''p'')}} को | |||
==उदाहरण== | ==उदाहरण== | ||
मूल उदाहरण स्क्वीज़ मैपिंग है, जो समूह SO+(1, 1) का (पहचान घटक) रैखिक रूपांतरण है जो इकाई हाइपरबोला को संरक्षित करता है। वास्तव में, ये आव्यूह हैं <math>\left[\begin{smallmatrix} \cosh(\alpha) & \sinh(\alpha) \\ \sinh(\alpha) & \cosh(\alpha) \end{smallmatrix}\right],</math> , और अतिशयोक्तिपूर्ण घुमावों के रूप में व्याख्या की जा सकती है, जैसे कि समूह SO(2) को वृत्ताकार घुमावों के रूप में व्याख्या किया जा सकता है। | |||
मूल उदाहरण | |||
भौतिकी में, [[लोरेंत्ज़ समूह]] {{nowrap|O(1,3)}} केंद्रीय महत्व का है, जो [[विद्युत]] चुंबकत्व और [[विशेष सापेक्षता]] के लिए सेटिंग है। (कुछ ग्रंथ उपयोग करते हैं {{nowrap|O(3,1)}} लोरेंत्ज़ समूह के लिए; | भौतिकी में, [[लोरेंत्ज़ समूह]] {{nowrap|O(1,3)}} केंद्रीय महत्व का है, जो [[विद्युत]] चुंबकत्व और [[विशेष सापेक्षता]] के लिए सेटिंग है। (कुछ ग्रंथ उपयोग करते हैं {{nowrap|O(3,1)}} लोरेंत्ज़ समूह के लिए; चूँकि , {{nowrap|O(1,3)}} [[क्वांटम क्षेत्र सिद्धांत]] में प्रचलित है क्योंकि [[डायराक समीकरण]] के ज्यामितीय गुण {{nowrap|O(1,3)}} अधिक प्राकृतिक हैं | ||
== | ==आव्यूह परिभाषा== | ||
मौलिक ऑर्थोगोनल समूह O(''n'') के रूप में, {{nowrap|O(''p'', ''q'')}} को आव्यूह के समूह के रूप में परिभाषित किया जा सकता है। दिए गए <math>(p+q)\times(p+q)</math>विकर्ण आव्यूह <math>g</math> पर विचार करें | |||
:<math>g = \mathrm{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{q}) .</math> | :<math>g = \mathrm{diag}(\underbrace{1,\ldots,1}_{p},\underbrace{-1,\ldots,-1}_{q}) .</math> | ||
फिर हम सूत्र द्वारा <math>[\cdot,\cdot]_{p,q}</math> पर एक सममित द्विरेखीय रूप <math>\mathbb R^{p+q}</math> परिभाषित कर सकते हैं | |||
:<math>[x,y]_{p,q}=\langle x,gy\rangle=x_1y_1+\cdots +x_py_p-x_{p+1}y_{p+1}-\cdots -x_{p+q}y_{p+q}</math>, | :<math>[x,y]_{p,q}=\langle x,gy\rangle=x_1y_1+\cdots +x_py_p-x_{p+1}y_{p+1}-\cdots -x_{p+q}y_{p+q}</math>, | ||
जहाँ <math>\langle\cdot,\cdot\rangle</math> , <math>\mathbb R^{p+q}</math>मानक आंतरिक उत्पाद है . | |||
हम | फिर हम <math>\mathrm{O}(p,q)</math> को <math>(p+q)\times(p+q)</math> मैट्रिसेस के समूह के रूप में परिभाषित करते हैं जो इस द्विरेखीय रूप को संरक्षित करते हैं:<ref>{{harvnb|Hall|2015}} Section 1.2.3</ref> | ||
:<math>\mathrm{O}(p,q)=\{A\in M_{p+q}(\mathbb R)|[Ax,Ay]_{p,q}=[x,y]_{p,q}\,\forall x,y\in\mathbb R^{p+q}\}</math>. | :<math>\mathrm{O}(p,q)=\{A\in M_{p+q}(\mathbb R)|[Ax,Ay]_{p,q}=[x,y]_{p,q}\,\forall x,y\in\mathbb R^{p+q}\}</math>. | ||
अधिक स्पष्ट रूप से, <math>\mathrm{O}(p,q)</math> | अधिक स्पष्ट रूप से, <math>\mathrm{O}(p,q)</math> में आव्यूह <math>A</math> ऐसे होते हैं कि<ref>{{harvnb|Hall|2015}} Chapter 1, Exercise 1</ref> | ||
:<math>gA^{\mathrm{tr}}g=A^{-1}</math>, | :<math>gA^{\mathrm{tr}}g=A^{-1}</math>, | ||
जहाँ <math>A^{\mathrm{tr}}</math>, <math>A</math> का स्थानान्तरण है . | |||
एक आइसोमॉर्फिक समूह प्राप्त करता है (वास्तव में, एक संयुग्मित उपसमूह {{nowrap|GL(''p'' + ''q'')}}) | एक आइसोमॉर्फिक समूह प्राप्त करता है (वास्तव में, एक संयुग्मित उपसमूह {{nowrap|GL(''p'' + ''q'')}}) ''g'' को किसी भी [[सममित मैट्रिक्स|सममित]] आव्यूह के साथ p सकारात्मक आइगेनवैल्यू और q ऋणात्मक वाले के साथ बदलकर इस आव्यूह को विकर्ण करने से इस समूह का मानक समूह {{nowrap|O(''p'', ''q'')}} के साथ संयोजन होता है | ||
===उपसमूह=== | ===उपसमूह=== | ||
समूह {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} और | समूह {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} और {{nowrap|O(''p'', ''q'')}} के संबंधित उपसमूहों को बीजगणितीय रूप से वर्णित किया जा सकता है। [[ब्लॉक मैट्रिक्स|ब्लॉक]] आव्यूह के रूप में {{nowrap|O(''p'', ''q'')}} में एक आव्यूह L विभाजन: | ||
:<math>L = \begin{pmatrix} | :<math>L = \begin{pmatrix} | ||
A & B \\ | A & B \\ | ||
Line 40: | Line 37: | ||
\end{pmatrix} | \end{pmatrix} | ||
</math> | </math> | ||
जहां A, B, C, और D क्रमशः p×p, p×q, q×p, और q×q ब्लॉक हैं। यह दिखाया जा सकता है कि मेट्रिसेस का सेट {{nowrap|O(''p'', ''q'')}} जिसके ऊपरी-बाएँ p×p ब्लॉक A में सकारात्मक निर्धारक एक उपसमूह है। या, इसे दूसरे | जहां A, B, C, और D क्रमशः p×p, p×q, q×p, और q×q ब्लॉक हैं। यह दिखाया जा सकता है कि मेट्रिसेस का सेट {{nowrap|O(''p'', ''q'')}} जिसके ऊपरी-बाएँ p×p ब्लॉक A में सकारात्मक निर्धारक एक उपसमूह है। या, इसे दूसरे विधि से रखने के लिए, यदि | ||
:<math>L = \begin{pmatrix} | :<math>L = \begin{pmatrix} | ||
A & B \\ | A & B \\ | ||
Line 51: | Line 48: | ||
\end{pmatrix} | \end{pmatrix} | ||
</math> | </math> | ||
{{nowrap|O(''p'', ''q'')}} में हैं, तो | |||
:<math>(\sgn \det A)(\sgn \det W) = \sgn \det (AW+BY).</math> | :<math>(\sgn \det A)(\sgn \det W) = \sgn \det (AW+BY).</math> | ||
निचले-दाएँ q×q ब्लॉक के लिए समान परिणाम भी धारण करता है। उपसमूह {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} मेट्रिसेस एल जैसे होते हैं {{nowrap|det ''A''}} और {{nowrap|det ''D''}} दोनों सकारात्मक हैं।<ref name="lester">{{Cite journal |last=Lester |first=J. A. |title=ओ (पी, क्यू) के ऑर्थोक्रोनस उपसमूह|journal=Linear and Multilinear Algebra |volume=36 |issue=2 |pages=111–113 |date=1993 |doi=10.1080/03081089308818280 |zbl=0799.20041}}</ref><ref>{{harvnb|Shirokov|2012|loc=Section 7.1|pp=88–96}}</ref> | निचले-दाएँ q×q ब्लॉक के लिए समान परिणाम भी धारण करता है। उपसमूह {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} मेट्रिसेस एल जैसे होते हैं {{nowrap|det ''A''}} और {{nowrap|det ''D''}} दोनों सकारात्मक हैं।<ref name="lester">{{Cite journal |last=Lester |first=J. A. |title=ओ (पी, क्यू) के ऑर्थोक्रोनस उपसमूह|journal=Linear and Multilinear Algebra |volume=36 |issue=2 |pages=111–113 |date=1993 |doi=10.1080/03081089308818280 |zbl=0799.20041}}</ref><ref>{{harvnb|Shirokov|2012|loc=Section 7.1|pp=88–96}}</ref> | ||
{{nowrap|O(''p'', ''q'')}} में सभी आव्यूह L के लिए, A और D के निर्धारकों के पास <math display="inline">\frac{\det A}{\det D} = \det L</math> और <math>|\det A| = |\det D| \ge 1.</math> विशेष रूप से, उपसमूह {{nowrap|SO(''p'', ''q'')}} में मैट्रिसेस L होते हैं जैसे कि {{nowrap|det ''A''}} और {{nowrap|det ''D''}} का एक ही चिह्न होता है।<ref name="lester" /> | |||
==टोपोलॉजी== | ==टोपोलॉजी== | ||
यह मानते हुए कि p और q दोनों धनात्मक हैं, कोई भी समूह नहीं {{nowrap|O(''p'', ''q'')}} और न {{nowrap|SO(''p'', ''q'')}} जुड़े हुए स्थान हैं, जिनमें क्रमशः चार और दो घटक हैं। | यह मानते हुए कि p और q दोनों धनात्मक हैं, कोई भी समूह नहीं {{nowrap|O(''p'', ''q'')}} और न {{nowrap|SO(''p'', ''q'')}} जुड़े हुए स्थान हैं, जिनमें क्रमशः चार और दो घटक हैं। | ||
{{nowrap|1=''π''<sub>0</sub>(O(''p'', ''q'')) ≅ C<sub>2</sub> × C<sub>2</sub>}} [[क्लेन चार-समूह]] है, जिसमें प्रत्येक कारक है कि क्या कोई तत्व | {{nowrap|1=''π''<sub>0</sub>(O(''p'', ''q'')) ≅ C<sub>2</sub> × C<sub>2</sub>}} [[क्लेन चार-समूह]] है, जिसमें प्रत्येक कारक है कि क्या कोई तत्व p और q आयामी उप-स्थानों पर संबंधित अभिविन्यासों को संरक्षित करता है या विपरीत कर देता है, जिस पर प्रपत्र निश्चित है; ध्यान दें कि इनमें से केवल एक उप-स्थान पर अभिविन्यास को उलटने से पूरे स्थान पर अभिविन्यास विपरीत जाता है। विशेष ऑर्थोगोनल समूह में घटक {{nowrap|1=''π''<sub>0</sub>(SO(''p'', ''q'')) = {(1, 1), (−1, −1)}} होते हैं , जिनमें से प्रत्येक या तो दोनों अभिविन्यास को संरक्षित करता है या दोनों अभिविन्यास को विपरीत कर देता है, किसी भी स्थिति में समग्र अभिविन्यास को संरक्षित करता है।{{clarify|date=December 2020|reason=Usually, the word ''orientation'' refers to the sign on the [[volume form]], and the sign on that flips or not, depending on even or odd dimensions. This paragraph seems to be talking about two different ''parity transformations'' (or parity and time reversal) and ''not'' orientation. Also, it should be clarified whether these parity transformations are [[inner automorphism]]s or not. I think they are(?), but I'm not sure. Maybe they're only inner in some dimensions and not others? }} | ||
{{nowrap|O(''p'', ''q'')}} के पहचान घटक को अधिकांशतः {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} निरूपित किया जाता है और {{nowrap|SO(''p'', ''q'')}} में तत्वों के सेट के साथ पहचाना जा सकता है जो दोनों ओरिएंटेशन को संरक्षित करता है। यह संकेतन [[orthochronous Lorentz group|ऑर्थोक्रोनस लोरेंत्ज़ समूह]] के लिए संकेतन {{nowrap|O<sup>+</sup>(1, 3)}} से संबंधित है, जहां + पहले (अस्थायी) आयाम पर अभिविन्यास को संरक्षित करने के लिए संदर्भित करता है। | |||
समूह {{nowrap|O(''p'', ''q'')}} भी [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] नहीं है, | समूह {{nowrap|O(''p'', ''q'')}} भी [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] नहीं है, किंतु इसमें कॉम्पैक्ट उपसमूहों O(p) और O(q) सम्मिलित हैं, जो उप-स्थानों पर काम करते हैं, जिस पर रूप निश्चित है। वास्तव में, {{nowrap|O(''p'') × O(''q'')}} का [[अधिकतम कॉम्पैक्ट उपसमूह]] है {{nowrap|O(''p'', ''q'')}}, जबकि {{nowrap|S(O(''p'') × O(''q''))}} , {{nowrap|SO(''p'', ''q'')}}का अधिकतम कॉम्पैक्ट उपसमूह है .वैसे ही, {{nowrap|SO(''p'') × SO(''q'')}} ,{{nowrap|SO<sup>+</sup>(''p'', ''q'')}} का अधिकतम कॉम्पैक्ट उपसमूह है .इस प्रकार, रिक्त स्थान (विशेष) ऑर्थोगोनल समूहों के उत्पादों के समान होमोटोपी हैं, जिनसे बीजगणित-टोपोलॉजिकल इनवेरिएंट की गणना की जा सकती है। (अधिकतम कॉम्पैक्ट उपसमूह या टोपोलॉजी देखें।) | ||
वैसे ही, {{nowrap|SO(''p'') × SO(''q'')}} | |||
इस प्रकार, रिक्त स्थान (विशेष) ऑर्थोगोनल समूहों के उत्पादों के | |||
विशेष रूप से, का [[मौलिक समूह]] {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} घटकों के मौलिक समूहों का उत्पाद है, {{nowrap|1=''π''<sub>1</sub>(SO<sup>+</sup>(''p'', ''q'')) = ''π''<sub>1</sub>(SO(''p'')) × ''π''<sub>1</sub>(SO(''q''))}}, और इसके द्वारा दिया गया है: | विशेष रूप से, का [[मौलिक समूह]] {{nowrap|SO<sup>+</sup>(''p'', ''q'')}} घटकों के मौलिक समूहों का उत्पाद है, {{nowrap|1=''π''<sub>1</sub>(SO<sup>+</sup>(''p'', ''q'')) = ''π''<sub>1</sub>(SO(''p'')) × ''π''<sub>1</sub>(SO(''q''))}}, और इसके द्वारा दिया गया है: | ||
Line 89: | Line 85: | ||
==ऑर्थोगोनल समूह विभाजित करें== | ==ऑर्थोगोनल समूह विभाजित करें== | ||
समान आयामों में, मध्य समूह {{nowrap|O(''n'', ''n'')}} विभाजित ऑर्थोगोनल समूह के रूप में जाना जाता है, और यह विशेष रुचि का है, क्योंकि यह स्ट्रिंग | समान आयामों में, मध्य समूह {{nowrap|O(''n'', ''n'')}} विभाजित ऑर्थोगोनल समूह के रूप में जाना जाता है, और यह विशेष रुचि का है, क्योंकि यह स्ट्रिंग सिद्धांत में [[टी-द्वैत]] परिवर्तनों के समूह के रूप में होता है, उदाहरण के लिए। यह जटिल लाइ बीजगणित so<sub>2''n''</sub> के अनुरूप [[विभाजित झूठ समूह|विभाजित लाई समूह]] है (लाई बीजगणित के विभाजित वास्तविक रूप का लाई समूह); अधिक स्पष्ट रूप से, पहचान घटक विभाजित लाई समूह है, क्योंकि गैर-पहचान घटकों को लाई बीजगणित से पुनर्निर्मित नहीं किया जा सकता है। इस अर्थ में यह निश्चित ओर्थोगोनल समूह {{nowrap|1=O(''n'') := O(''n'', 0) = O(0, ''n'')}} के विपरीत है , जो जटिल ले बीजगणित का कॉम्पैक्ट वास्तविक रूप है। | ||
मामला {{nowrap|(1, 1)}} [[ विभाजित-जटिल संख्या |विभाजित-जटिल संख्या]] | मामला {{nowrap|(1, 1)}} [[ विभाजित-जटिल संख्या |विभाजित-जटिल संख्या]] के [[गुणक समूह]] से मेल खाता है। | ||
लाई प्रकार के एक समूह होने के स्थितिमें - जिससे , लाई बीजगणित से बीजगणितीय समूह का निर्माण - विभाजित ऑर्थोगोनल समूह चेवेली समूह हैं, जबकि गैर-विभाजित ऑर्थोगोनल समूहों को थोड़ा अधिक जटिल निर्माण की आवश्यकता होती है, और [[स्टाइनबर्ग समूह (झूठ सिद्धांत)|स्टाइनबर्ग समूह (लाई सिद्धांत)]] हैं ). | |||
स्प्लिट ऑर्थोगोनल समूहों का उपयोग गैर-बीजगणितीय रूप से बंद क्षेत्रों पर [[सामान्यीकृत ध्वज विविधता]] के निर्माण के लिए किया जाता है। | स्प्लिट ऑर्थोगोनल समूहों का उपयोग गैर-बीजगणितीय रूप से बंद क्षेत्रों पर [[सामान्यीकृत ध्वज विविधता]] के निर्माण के लिए किया जाता है। |
Revision as of 11:56, 3 May 2023
गणित में अनिश्चित ऑर्थोगोनल समूह, O(p, q) सदिश स्थान वास्तविक सदिश स्थान के n-आयाम के सभी रैखिक परिवर्तन का झूठा समूह है जो अपरिवर्तनीय रूप से एक द्विघात रूप के हस्ताक्षर के सममित द्विरेखीय रूप को छोड़ देता है (p, q), जहाँ n = p + q. इसे स्यूडो-ऑर्थोगोनल समूह भी कहा जाता है[1] या सामान्यीकृत ऑर्थोगोनल समूह आयाम n(n − 1)/2 है .[2]
रूप का हस्ताक्षर समूह को समरूपता तक निर्धारित करता है; q के साथ p को विनिमय करना मीट्रिक को उसके ऋणात्मक से बदलने के समान है, और इसलिए वही समूह देता है। यदि या तो p या q शून्य के समान है, तो समूह सामान्य ऑर्थोगोनल समूह O(n) के लिए समाकृतिकता है। हम मानते हैं कि p और q दोनों सकारात्मक हैं।
समूह O(p, q) वास्तविक से अधिक वेक्टर रिक्त स्थान के लिए परिभाषित किया गया है। जटिल स्थानों के लिए, सभी समूहO(p, q; C) सामान्य ऑर्थोगोनल समूह O(p + q; C) के लिए आइसोमोर्फिक हैं, क्योंकि परिवर्तन एक रूप के हस्ताक्षर को बदलता है। यह अनिश्चितकालीन एकात्मक समूह U(p, q) के साथ भ्रमित नहीं होना चाहिए जो हस्ताक्षर (p, q) के एक अनुक्रमिक रूप को संरक्षित करता है।
सम आयाम में n = 2p, O(p, p) को या विभाजित ऑर्थोगोनल समूह के रूप में जाना जाता है।
उदाहरण
मूल उदाहरण स्क्वीज़ मैपिंग है, जो समूह SO+(1, 1) का (पहचान घटक) रैखिक रूपांतरण है जो इकाई हाइपरबोला को संरक्षित करता है। वास्तव में, ये आव्यूह हैं , और अतिशयोक्तिपूर्ण घुमावों के रूप में व्याख्या की जा सकती है, जैसे कि समूह SO(2) को वृत्ताकार घुमावों के रूप में व्याख्या किया जा सकता है।
भौतिकी में, लोरेंत्ज़ समूह O(1,3) केंद्रीय महत्व का है, जो विद्युत चुंबकत्व और विशेष सापेक्षता के लिए सेटिंग है। (कुछ ग्रंथ उपयोग करते हैं O(3,1) लोरेंत्ज़ समूह के लिए; चूँकि , O(1,3) क्वांटम क्षेत्र सिद्धांत में प्रचलित है क्योंकि डायराक समीकरण के ज्यामितीय गुण O(1,3) अधिक प्राकृतिक हैं
आव्यूह परिभाषा
मौलिक ऑर्थोगोनल समूह O(n) के रूप में, O(p, q) को आव्यूह के समूह के रूप में परिभाषित किया जा सकता है। दिए गए विकर्ण आव्यूह पर विचार करें
फिर हम सूत्र द्वारा पर एक सममित द्विरेखीय रूप परिभाषित कर सकते हैं
- ,
जहाँ , मानक आंतरिक उत्पाद है .
फिर हम को मैट्रिसेस के समूह के रूप में परिभाषित करते हैं जो इस द्विरेखीय रूप को संरक्षित करते हैं:[3]
- .
अधिक स्पष्ट रूप से, में आव्यूह ऐसे होते हैं कि[4]
- ,
जहाँ , का स्थानान्तरण है .
एक आइसोमॉर्फिक समूह प्राप्त करता है (वास्तव में, एक संयुग्मित उपसमूह GL(p + q)) g को किसी भी सममित आव्यूह के साथ p सकारात्मक आइगेनवैल्यू और q ऋणात्मक वाले के साथ बदलकर इस आव्यूह को विकर्ण करने से इस समूह का मानक समूह O(p, q) के साथ संयोजन होता है
उपसमूह
समूह SO+(p, q) और O(p, q) के संबंधित उपसमूहों को बीजगणितीय रूप से वर्णित किया जा सकता है। ब्लॉक आव्यूह के रूप में O(p, q) में एक आव्यूह L विभाजन:
जहां A, B, C, और D क्रमशः p×p, p×q, q×p, और q×q ब्लॉक हैं। यह दिखाया जा सकता है कि मेट्रिसेस का सेट O(p, q) जिसके ऊपरी-बाएँ p×p ब्लॉक A में सकारात्मक निर्धारक एक उपसमूह है। या, इसे दूसरे विधि से रखने के लिए, यदि
O(p, q) में हैं, तो
निचले-दाएँ q×q ब्लॉक के लिए समान परिणाम भी धारण करता है। उपसमूह SO+(p, q) मेट्रिसेस एल जैसे होते हैं det A और det D दोनों सकारात्मक हैं।[5][6]
O(p, q) में सभी आव्यूह L के लिए, A और D के निर्धारकों के पास और विशेष रूप से, उपसमूह SO(p, q) में मैट्रिसेस L होते हैं जैसे कि det A और det D का एक ही चिह्न होता है।[5]
टोपोलॉजी
यह मानते हुए कि p और q दोनों धनात्मक हैं, कोई भी समूह नहीं O(p, q) और न SO(p, q) जुड़े हुए स्थान हैं, जिनमें क्रमशः चार और दो घटक हैं। π0(O(p, q)) ≅ C2 × C2 क्लेन चार-समूह है, जिसमें प्रत्येक कारक है कि क्या कोई तत्व p और q आयामी उप-स्थानों पर संबंधित अभिविन्यासों को संरक्षित करता है या विपरीत कर देता है, जिस पर प्रपत्र निश्चित है; ध्यान दें कि इनमें से केवल एक उप-स्थान पर अभिविन्यास को उलटने से पूरे स्थान पर अभिविन्यास विपरीत जाता है। विशेष ऑर्थोगोनल समूह में घटक π0(SO(p, q)) = {(1, 1), (−1, −1) होते हैं , जिनमें से प्रत्येक या तो दोनों अभिविन्यास को संरक्षित करता है या दोनों अभिविन्यास को विपरीत कर देता है, किसी भी स्थिति में समग्र अभिविन्यास को संरक्षित करता है।[clarification needed]
O(p, q) के पहचान घटक को अधिकांशतः SO+(p, q) निरूपित किया जाता है और SO(p, q) में तत्वों के सेट के साथ पहचाना जा सकता है जो दोनों ओरिएंटेशन को संरक्षित करता है। यह संकेतन ऑर्थोक्रोनस लोरेंत्ज़ समूह के लिए संकेतन O+(1, 3) से संबंधित है, जहां + पहले (अस्थायी) आयाम पर अभिविन्यास को संरक्षित करने के लिए संदर्भित करता है।
समूह O(p, q) भी कॉम्पैक्ट जगह नहीं है, किंतु इसमें कॉम्पैक्ट उपसमूहों O(p) और O(q) सम्मिलित हैं, जो उप-स्थानों पर काम करते हैं, जिस पर रूप निश्चित है। वास्तव में, O(p) × O(q) का अधिकतम कॉम्पैक्ट उपसमूह है O(p, q), जबकि S(O(p) × O(q)) , SO(p, q)का अधिकतम कॉम्पैक्ट उपसमूह है .वैसे ही, SO(p) × SO(q) ,SO+(p, q) का अधिकतम कॉम्पैक्ट उपसमूह है .इस प्रकार, रिक्त स्थान (विशेष) ऑर्थोगोनल समूहों के उत्पादों के समान होमोटोपी हैं, जिनसे बीजगणित-टोपोलॉजिकल इनवेरिएंट की गणना की जा सकती है। (अधिकतम कॉम्पैक्ट उपसमूह या टोपोलॉजी देखें।)
विशेष रूप से, का मौलिक समूह SO+(p, q) घटकों के मौलिक समूहों का उत्पाद है, π1(SO+(p, q)) = π1(SO(p)) × π1(SO(q)), और इसके द्वारा दिया गया है:
π1(SO+(p, q)) p = 1 p = 2 p ≥ 3 q = 1 C1 Z C2 q = 2 Z Z × Z Z × C2
q ≥ 3 C2 C2 × Z C2 × C2
ऑर्थोगोनल समूह विभाजित करें
समान आयामों में, मध्य समूह O(n, n) विभाजित ऑर्थोगोनल समूह के रूप में जाना जाता है, और यह विशेष रुचि का है, क्योंकि यह स्ट्रिंग सिद्धांत में टी-द्वैत परिवर्तनों के समूह के रूप में होता है, उदाहरण के लिए। यह जटिल लाइ बीजगणित so2n के अनुरूप विभाजित लाई समूह है (लाई बीजगणित के विभाजित वास्तविक रूप का लाई समूह); अधिक स्पष्ट रूप से, पहचान घटक विभाजित लाई समूह है, क्योंकि गैर-पहचान घटकों को लाई बीजगणित से पुनर्निर्मित नहीं किया जा सकता है। इस अर्थ में यह निश्चित ओर्थोगोनल समूह O(n) := O(n, 0) = O(0, n) के विपरीत है , जो जटिल ले बीजगणित का कॉम्पैक्ट वास्तविक रूप है।
मामला (1, 1) विभाजित-जटिल संख्या के गुणक समूह से मेल खाता है।
लाई प्रकार के एक समूह होने के स्थितिमें - जिससे , लाई बीजगणित से बीजगणितीय समूह का निर्माण - विभाजित ऑर्थोगोनल समूह चेवेली समूह हैं, जबकि गैर-विभाजित ऑर्थोगोनल समूहों को थोड़ा अधिक जटिल निर्माण की आवश्यकता होती है, और स्टाइनबर्ग समूह (लाई सिद्धांत) हैं ).
स्प्लिट ऑर्थोगोनल समूहों का उपयोग गैर-बीजगणितीय रूप से बंद क्षेत्रों पर सामान्यीकृत ध्वज विविधता के निर्माण के लिए किया जाता है।
This section needs expansion. You can help by adding to it. (March 2011) |
यह भी देखें
- ऑर्थोगोनल समूह
- लोरेंत्ज़ समूह
- पोंकारे समूह
- सममित द्विरेखीय रूप
संदर्भ
- Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666
- Anthony Knapp, Lie Groups Beyond an Introduction, Second Edition, Progress in Mathematics, vol. 140, Birkhäuser, Boston, 2002. ISBN 0-8176-4259-5 – see page 372 for a description of the indefinite orthogonal group
- Popov, V. L. (2001) [1994], "Orthogonal group", Encyclopedia of Mathematics, EMS Press
- Shirokov, D. S. (2012). Lectures on Clifford algebras and spinors Лекции по алгебрам клиффорда и спинорам (PDF) (in русский). doi:10.4213/book1373. Zbl 1291.15063.
- Joseph A. Wolf, Spaces of constant curvature, (1967) page. 335.
- ↑ Popov 2001
- ↑ Hall 2015, p. 8, Section 1.2
- ↑ Hall 2015 Section 1.2.3
- ↑ Hall 2015 Chapter 1, Exercise 1
- ↑ 5.0 5.1 Lester, J. A. (1993). "ओ (पी, क्यू) के ऑर्थोक्रोनस उपसमूह". Linear and Multilinear Algebra. 36 (2): 111–113. doi:10.1080/03081089308818280. Zbl 0799.20041.
- ↑ Shirokov 2012, pp. 88–96, Section 7.1