परिणामी: Difference between revisions
(Created page with "{{Short description|Mathematical concept in polynomial theory}} {{about|the resultant of two polynomials|the uses as an adjective|Resultant (disambiguation)}} गणित म...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical concept in polynomial theory}} | {{Short description|Mathematical concept in polynomial theory}} | ||
{{about|the resultant of two polynomials|the uses as an adjective|Resultant (disambiguation)}} | {{about|the resultant of two polynomials|the uses as an adjective|Resultant (disambiguation)}} | ||
गणित में, दो [[बहुपद]]ों का परिणाम उनके गुणांकों की | गणित में, दो [[बहुपद]]ों का परिणाम उनके गुणांकों की [[बहुपद अभिव्यक्ति]] है, जो शून्य के बराबर है अगर और केवल अगर बहुपदों में समारोह की सामान्य जड़ है (संभवतः क्षेत्र विस्तार में), या, समतुल्य, सामान्य कारक ( उनके गुणांक के क्षेत्र में)। कुछ पुराने ग्रन्थों में परिणामी को निर्मूलक भी कहा गया है।{{sfn|Salmon|1885|loc=lesson VIII, p. 66}} | ||
परिणामी का व्यापक रूप से [[संख्या सिद्धांत]] में उपयोग किया जाता है, या तो सीधे या विवेचक के माध्यम से, जो अनिवार्य रूप से | परिणामी का व्यापक रूप से [[संख्या सिद्धांत]] में उपयोग किया जाता है, या तो सीधे या विवेचक के माध्यम से, जो अनिवार्य रूप से बहुपद और उसके व्युत्पन्न का परिणाम है। परिमेय संख्या या बहुपद गुणांक वाले दो बहुपदों के परिणाम की कंप्यूटर पर कुशलता से गणना की जा सकती है। यह [[कंप्यूटर बीजगणित]] का बुनियादी उपकरण है, और अधिकांश कंप्यूटर बीजगणित प्रणालियों का अंतर्निहित कार्य है। इसका उपयोग, दूसरों के बीच, [[बेलनाकार बीजगणितीय अपघटन]], [[तर्कसंगत कार्य]]ों के [[प्रतीकात्मक एकीकरण]] और बहुपद # चर [[बहुपद समीकरण]]ों की संख्या द्वारा परिभाषित [[वक्र]]ों के चित्रण के लिए किया जाता है। | ||
एन वेरिएबल्स में एन [[सजातीय बहुपद]]ों का परिणाम (सामान्य परिणाम से इसे अलग करने के लिए 'बहुभिन्नरूपी परिणाम' या 'मैकाले का परिणाम' भी कहा जाता है) | एन वेरिएबल्स में एन [[सजातीय बहुपद]]ों का परिणाम (सामान्य परिणाम से इसे अलग करने के लिए 'बहुभिन्नरूपी परिणाम' या 'मैकाले का परिणाम' भी कहा जाता है) सामान्यीकरण है, जो सामान्य परिणाम के [[फ्रांसिस सोवर मैकाले द्वारा]] द्वारा पेश किया गया है।{{sfn|Macaulay|1902}} यह ग्रोबनर आधार के साथ है | ग्रोबनर आधार, [[उन्मूलन सिद्धांत]] के मुख्य उपकरणों में से है। | ||
== नोटेशन == | == नोटेशन == | ||
दो अविभाज्य बहुपदों का परिणाम {{math|''A''}} और {{math|''B''}} सामान्य रूप से निरूपित किया जाता है <math>\operatorname{res}(A,B)</math> या <math>\operatorname{Res}(A,B).</math> | दो अविभाज्य बहुपदों का परिणाम {{math|''A''}} और {{math|''B''}} सामान्य रूप से निरूपित किया जाता है <math>\operatorname{res}(A,B)</math> या <math>\operatorname{Res}(A,B).</math> | ||
परिणामी के कई अनुप्रयोगों में, बहुपद कई अनिर्धारकों पर निर्भर करते हैं और उनके | परिणामी के कई अनुप्रयोगों में, बहुपद कई अनिर्धारकों पर निर्भर करते हैं और उनके अनिर्धारक में अविभाजित बहुपद के रूप में माना जा सकता है, अन्य अनिर्धारक में गुणांक के रूप में बहुपद के साथ। इस मामले में, परिणामी को परिभाषित करने और गणना करने के लिए चुने गए अनिश्चित को सबस्क्रिप्ट के रूप में दर्शाया गया है: <math>\operatorname{res}_x(A,B)</math> या <math>\operatorname{Res}_x(A,B).</math> | ||
परिणामी की परिभाषा में बहुपदों की डिग्री का उपयोग किया जाता है। हालांकि, डिग्री का | परिणामी की परिभाषा में बहुपदों की डिग्री का उपयोग किया जाता है। हालांकि, डिग्री का बहुपद {{math|''d''}} उच्च डिग्री के बहुपद के रूप में भी माना जा सकता है जहां प्रमुख गुणांक शून्य हैं। यदि परिणामी के लिए ऐसी उच्च डिग्री का उपयोग किया जाता है, तो इसे आमतौर पर सबस्क्रिप्ट या सुपरस्क्रिप्ट के रूप में दर्शाया जाता है, जैसे <math>\operatorname{res}_{d,e}(A,B)</math> या <math>\operatorname{res}_x^{d,e}(A,B).</math> | ||
== परिभाषा == | == परिभाषा == | ||
[[क्षेत्र (गणित)]] या क्रमविनिमेय वलय पर दो अविभाजित बहुपदों के परिणाम को आमतौर पर उनके [[सिल्वेस्टर मैट्रिक्स]] के निर्धारक के रूप में परिभाषित किया जाता है। अधिक सटीक, चलो | |||
:<math>A=a_0x^d +a_1x^{d-1} + \cdots + a_d</math> | :<math>A=a_0x^d +a_1x^{d-1} + \cdots + a_d</math> | ||
और | और | ||
:<math>B=b_0x^e +b_1x^{e-1} + \cdots + b_e</math> | :<math>B=b_0x^e +b_1x^{e-1} + \cdots + b_e</math> | ||
डिग्री के शून्येतर बहुपद हों {{math|''d''}} और {{math|''e''}} क्रमश। आइए हम द्वारा निरूपित करें <math>\mathcal{P}_i</math> आयाम का सदिश स्थान (या मुक्त मॉड्यूल यदि गुणांक | डिग्री के शून्येतर बहुपद हों {{math|''d''}} और {{math|''e''}} क्रमश। आइए हम द्वारा निरूपित करें <math>\mathcal{P}_i</math> आयाम का सदिश स्थान (या मुक्त मॉड्यूल यदि गुणांक क्रमविनिमेय वलय से संबंधित हैं)। {{math|''i''}} जिनके तत्व डिग्री के बहुपद हैं सख्ती से कम {{math|''i''}}. वो नक्शा | ||
:<math>\varphi:\mathcal{P}_{e}\times \mathcal{P}_{d} \rightarrow \mathcal{P}_{d+e}</math> ऐसा है कि | :<math>\varphi:\mathcal{P}_{e}\times \mathcal{P}_{d} \rightarrow \mathcal{P}_{d+e}</math> ऐसा है कि | ||
:<math>\varphi(P,Q)=AP+BQ</math> | :<math>\varphi(P,Q)=AP+BQ</math> | ||
ही आयाम के दो स्थानों के बीच रेखीय नक्शा है। की शक्तियों के आधार पर {{math|''x''}} (अवरोही क्रम में सूचीबद्ध), यह नक्शा आयाम के वर्ग मैट्रिक्स द्वारा दर्शाया गया है {{math|''d'' + ''e''}}का सिल्वेस्टर मैट्रिक्स कहा जाता है {{math|''A''}} और {{math|''B''}} (कई लेखकों के लिए और सिल्वेस्टर मैट्रिक्स के लेख में, सिल्वेस्टर मैट्रिक्स को इस मैट्रिक्स के स्थानान्तरण के रूप में परिभाषित किया गया है; इस सम्मेलन का उपयोग यहां नहीं किया गया है, क्योंकि यह रेखीय मानचित्र के मैट्रिक्स को लिखने के लिए सामान्य सम्मेलन को तोड़ता है)। | |||
का परिणाम है {{math|''A''}} और {{math|''B''}} इस प्रकार निर्धारक है | का परिणाम है {{math|''A''}} और {{math|''B''}} इस प्रकार निर्धारक है | ||
Line 45: | Line 45: | ||
0 & a_3 & 0 & 0 & b_2 | 0 & a_3 & 0 & 0 & b_2 | ||
\end{vmatrix}.</math> | \end{vmatrix}.</math> | ||
यदि बहुपदों के गुणांक | यदि बहुपदों के गुणांक [[अभिन्न डोमेन]] से संबंधित हैं, तो | ||
:<math>\operatorname{res}(A, B) = a_0^e b_0^d \prod_{\begin{array}{c}1 \leq i \leq d\\ 1 \leq j \leq e\end{array}} (\lambda_i-\mu_j) = a_0^e \prod_{i=1}^d B(\lambda_i) = (-1)^{de} b_0^d \prod_{j=1}^e A(\mu_j),</math> | :<math>\operatorname{res}(A, B) = a_0^e b_0^d \prod_{\begin{array}{c}1 \leq i \leq d\\ 1 \leq j \leq e\end{array}} (\lambda_i-\mu_j) = a_0^e \prod_{i=1}^d B(\lambda_i) = (-1)^{de} b_0^d \prod_{j=1}^e A(\mu_j),</math> | ||
कहाँ <math>\lambda_1, \dots, \lambda_d</math> और <math>\mu_1,\dots,\mu_e</math> क्रमशः जड़ें हैं, उनकी बहुलताओं के साथ गिना जाता है {{mvar|A}} और {{mvar|B}} किसी भी बीजगणितीय रूप से बंद फ़ील्ड में अभिन्न डोमेन शामिल है। | कहाँ <math>\lambda_1, \dots, \lambda_d</math> और <math>\mu_1,\dots,\mu_e</math> क्रमशः जड़ें हैं, उनकी बहुलताओं के साथ गिना जाता है {{mvar|A}} और {{mvar|B}} किसी भी बीजगणितीय रूप से बंद फ़ील्ड में अभिन्न डोमेन शामिल है। | ||
Line 57: | Line 57: | ||
=== गुणों की विशेषता === | === गुणों की विशेषता === | ||
गुणांक वाले दो बहुपदों के परिणाम के लिए निम्नलिखित गुण मान्य हैं | गुणांक वाले दो बहुपदों के परिणाम के लिए निम्नलिखित गुण मान्य हैं | ||
क्रमविनिमेय अंगूठी {{math|''R''}}. अगर {{mvar|R}} क्षेत्र (गणित) या अधिक आम तौर पर अभिन्न डोमेन है, परिणामी दो बहुपदों के गुणांकों का अनूठा कार्य है जो इन गुणों को संतुष्ट करता है। | |||
* अगर {{mvar|R}} | * अगर {{mvar|R}} और अंगूठी का [[सबरिंग]] है {{mvar|S}}, तब <math>\operatorname{res}_R(A,B) = \operatorname{res}_S(A,B).</math> वह है {{mvar|A}} और {{mvar|B}} बहुपदों पर विचार करने पर परिणाम समान होता है {{mvar|R}} या {{mvar|S}}. | ||
*अगर {{math|1=''d'' = 0}} (यानी अगर <math>A=a_0</math> | *अगर {{math|1=''d'' = 0}} (यानी अगर <math>A=a_0</math> अशून्य स्थिरांक है) तब <math>\operatorname{res}(A,B) = a_0^e.</math> इसी प्रकार यदि {{math|1=''e'' = 0}}, तब <math>\operatorname{res}(A,B) = b_0^d.</math> | ||
* <math>\operatorname{res}(x+a_1, x+b_1) = b_1-a_1</math> | * <math>\operatorname{res}(x+a_1, x+b_1) = b_1-a_1</math> | ||
* <math>\operatorname{res}(B,A)=(-1)^{de} \operatorname{res}(A,B)</math> * <math>\operatorname{res}(AB,C) = \operatorname{res}(A,C)\operatorname{res}(B,C)</math> | * <math>\operatorname{res}(B,A)=(-1)^{de} \operatorname{res}(A,B)</math> * <math>\operatorname{res}(AB,C) = \operatorname{res}(A,C)\operatorname{res}(B,C)</math> | ||
Line 67: | Line 67: | ||
=== शून्य === | === शून्य === | ||
* अभिन्न डोमेन में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके पास सकारात्मक डिग्री के दो बहुपदों का सबसे बड़ा सामान्य विभाजक हो। | * अभिन्न डोमेन में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके पास सकारात्मक डिग्री के दो बहुपदों का सबसे बड़ा सामान्य विभाजक हो। | ||
* पूर्णांकीय प्रांत में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र में | * पूर्णांकीय प्रांत में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र में सामान्य जड़ हो। | ||
* | * बहुपद मौजूद है {{math|''P''}} डिग्री से कम {{math|''e''}} और बहुपद {{math|''Q''}} डिग्री से कम {{math|''d''}} ऐसा है कि <math> \operatorname{res}(A,B)=AP+BQ.</math> यह मनमाना क्रमविनिमेय वलय पर बहुपदों के लिए बेज़ाउट की पहचान का सामान्यीकरण है। दूसरे शब्दों में, दो बहुपदों का परिणाम इन बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) से संबंधित है। | ||
=== रिंग होमोमोर्फिज्म द्वारा इनवेरियन === | === रिंग होमोमोर्फिज्म द्वारा इनवेरियन === | ||
होने देना {{math|''A''}} और {{math|''B''}} संबंधित डिग्री के दो बहुपद बनें {{math|''d''}} और {{math|''e''}} कम्यूटेटिव रिंग में गुणांक के साथ {{math|''R''}}, और <math>\varphi\colon R\to S</math> की | होने देना {{math|''A''}} और {{math|''B''}} संबंधित डिग्री के दो बहुपद बनें {{math|''d''}} और {{math|''e''}} कम्यूटेटिव रिंग में गुणांक के साथ {{math|''R''}}, और <math>\varphi\colon R\to S</math> की अंगूठी समरूपता {{math|''R''}} दूसरे क्रमविनिमेय रिंग में {{math|''S''}}. को लागू करने <math>\varphi</math> बहुपद के गुणांकों का विस्तार होता है <math>\varphi</math> बहुपद के छल्ले के समरूपता के लिए <math>R[x]\to S[x]</math>, जिसे निरूपित भी किया जाता है <math>\varphi.</math> इस अंकन के साथ, हमारे पास है: | ||
* अगर <math>\varphi</math> की उपाधियाँ सुरक्षित रखता है {{math|''A''}} और {{math|''B''}} (यानी अगर <math>\deg(\varphi(A)) = d</math> और <math>\deg(\varphi(B))= e</math>), तब | * अगर <math>\varphi</math> की उपाधियाँ सुरक्षित रखता है {{math|''A''}} और {{math|''B''}} (यानी अगर <math>\deg(\varphi(A)) = d</math> और <math>\deg(\varphi(B))= e</math>), तब | ||
::<math>\varphi(\operatorname{res}(A,B))=\operatorname{res}(\varphi(A), \varphi(B)).</math> | ::<math>\varphi(\operatorname{res}(A,B))=\operatorname{res}(\varphi(A), \varphi(B)).</math> | ||
Line 92: | Line 92: | ||
*अगर {{math|''a''}} और {{mvar|''b''}} अशून्य स्थिरांक हैं (अर्थात वे अनिश्चित से स्वतंत्र हैं {{math|''x''}}), और {{math|''A''}} और {{mvar|''B''}} ऊपर के रूप में हैं, तो | *अगर {{math|''a''}} और {{mvar|''b''}} अशून्य स्थिरांक हैं (अर्थात वे अनिश्चित से स्वतंत्र हैं {{math|''x''}}), और {{math|''A''}} और {{mvar|''B''}} ऊपर के रूप में हैं, तो | ||
::<math>\operatorname{res}(aA,bB) =a^eb^d\operatorname{res}(A,B). </math> | ::<math>\operatorname{res}(aA,bB) =a^eb^d\operatorname{res}(A,B). </math> | ||
*अगर {{math|''A''}} और {{mvar|''B''}} ऊपर के रूप में हैं, और {{mvar|C}} | *अगर {{math|''A''}} और {{mvar|''B''}} ऊपर के रूप में हैं, और {{mvar|C}} और बहुपद है जैसे कि की डिग्री {{math|''A'' – ''CB''}} है {{math|''{{delta}}''}}, तब | ||
::<math>\operatorname{res}(A-CB, B)=b_0^{\delta-d}\operatorname{res}(A,B). </math> *विशेष रूप से, यदि कोई हो {{mvar|B}} [[मोनिक बहुपद]] है, या {{math|deg ''C'' < deg ''A'' – deg ''B''}}, तब | ::<math>\operatorname{res}(A-CB, B)=b_0^{\delta-d}\operatorname{res}(A,B). </math> *विशेष रूप से, यदि कोई हो {{mvar|B}} [[मोनिक बहुपद]] है, या {{math|deg ''C'' < deg ''A'' – deg ''B''}}, तब | ||
::<math>\operatorname{res}(A-CB,B) = \operatorname{res}(A,B), </math> | ::<math>\operatorname{res}(A-CB,B) = \operatorname{res}(A,B), </math> | ||
:और अगर {{math|1=''f'' = deg ''C'' > deg ''A'' – deg ''B'' = ''d'' – ''e''}}, तब | :और अगर {{math|1=''f'' = deg ''C'' > deg ''A'' – deg ''B'' = ''d'' – ''e''}}, तब | ||
::<math>\operatorname{res}(A-CB, B)=b_0^{e+f-d}\operatorname{res}(A,B). </math> | ::<math>\operatorname{res}(A-CB, B)=b_0^{e+f-d}\operatorname{res}(A,B). </math> | ||
इन गुणों का अर्थ है कि [[बहुपदों के लिए यूक्लिडियन एल्गोरिथ्म]] में, और इसके सभी प्रकार (छद्म-शेष अनुक्रम), दो लगातार शेष (या छद्म-शेष) के परिणाम प्रारंभिक बहुपदों के [[परिणामी]] से भिन्न होते हैं, जो कि गणना करना आसान है . इसके विपरीत, यह किसी को प्रारंभिक बहुपदों के परिणाम को अंतिम शेष या छद्म शेष के मान से निकालने की अनुमति देता है। यह बहुपद महानतम सामान्य विभाजक का प्रारंभिक विचार है # छद्म-शेष के साथ उप-परिणामी अनुक्रम | शेषफल (बशर्ते परिणामी शून्य न हो)। यह एल्गोरिथम पूर्णांकों पर बहुपदों के लिए काम करता है या, अधिक सामान्यतः, | इन गुणों का अर्थ है कि [[बहुपदों के लिए यूक्लिडियन एल्गोरिथ्म]] में, और इसके सभी प्रकार (छद्म-शेष अनुक्रम), दो लगातार शेष (या छद्म-शेष) के परिणाम प्रारंभिक बहुपदों के [[परिणामी]] से भिन्न होते हैं, जो कि गणना करना आसान है . इसके विपरीत, यह किसी को प्रारंभिक बहुपदों के परिणाम को अंतिम शेष या छद्म शेष के मान से निकालने की अनुमति देता है। यह बहुपद महानतम सामान्य विभाजक का प्रारंभिक विचार है # छद्म-शेष के साथ उप-परिणामी अनुक्रम | शेषफल (बशर्ते परिणामी शून्य न हो)। यह एल्गोरिथम पूर्णांकों पर बहुपदों के लिए काम करता है या, अधिक सामान्यतः, अभिन्न डोमेन पर, सटीक विभाजनों के अलावा किसी भी विभाजन के बिना (अर्थात, अंशों को शामिल किए बिना)। उसमें शामिल है <math>O(de)</math> अंकगणितीय संचालन, जबकि मानक एल्गोरिदम के साथ सिल्वेस्टर मैट्रिक्स के निर्धारक की गणना की आवश्यकता होती है <math>O((d+e)^3)</math> अंकगणितीय आपरेशनस। | ||
=== सामान्य गुण === | === सामान्य गुण === | ||
Line 109: | Line 109: | ||
परिणामी <math>\operatorname{res}(A,B)</math> डिग्री के लिए अक्सर सामान्य परिणामी कहा जाता है {{math|''d''}} और {{math|''e''}}. इसके निम्नलिखित गुण हैं। | परिणामी <math>\operatorname{res}(A,B)</math> डिग्री के लिए अक्सर सामान्य परिणामी कहा जाता है {{math|''d''}} और {{math|''e''}}. इसके निम्नलिखित गुण हैं। | ||
*<math>\operatorname{res}(A,B)</math> | *<math>\operatorname{res}(A,B)</math> बिल्कुल अलघुकरणीय बहुपद है। | ||
*अगर <math>I</math> का आदर्श (रिंग थ्योरी) है <math>R[x]</math> द्वारा उत्पन्न {{math|''A''}} और {{math|''B''}}, तब <math>I\cap R</math> द्वारा उत्पन्न [[प्रमुख आदर्श]] है <math>\operatorname{res}(A,B)</math>. | *अगर <math>I</math> का आदर्श (रिंग थ्योरी) है <math>R[x]</math> द्वारा उत्पन्न {{math|''A''}} और {{math|''B''}}, तब <math>I\cap R</math> द्वारा उत्पन्न [[प्रमुख आदर्श]] है <math>\operatorname{res}(A,B)</math>. | ||
Line 121: | Line 121: | ||
=== उन्मूलन संपत्ति === | === उन्मूलन संपत्ति === | ||
होने देना <math>I=\langle A, B\rangle </math> दो बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) बनें {{math|''A''}} और {{math|''B''}} | होने देना <math>I=\langle A, B\rangle </math> दो बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) बनें {{math|''A''}} और {{math|''B''}} बहुपद अंगूठी में <math>R[x],</math> कहाँ <math>R=k[y_1,\ldots,y_n]</math> क्षेत्र पर स्वयं बहुपद वलय है। यदि कम से कम {{math|''A''}} और {{math|''B''}} में मोनिक बहुपद है {{mvar|x}}, तब: | ||
* <math>\operatorname{res}_x(A,B)\in I \cap R</math> | * <math>\operatorname{res}_x(A,B)\in I \cap R</math> | ||
* आदर्श <math>I\cap R</math> और <math>R\operatorname{res}_x(A,B)</math> | * आदर्श <math>I\cap R</math> और <math>R\operatorname{res}_x(A,B)</math> ही [[बीजगणितीय सेट]] को परिभाषित करें। वह {{math|''n''}}बीजगणितीय रूप से बंद क्षेत्र के तत्वों का टपल तत्वों का सामान्य शून्य है <math>I\cap R</math> अगर और केवल यह शून्य है <math>\operatorname{res}_x(A,B).</math> * आदर्श <math>I\cap R</math> मुख्य आदर्श के समान आदर्श का मूलांक है <math>R\operatorname{res}_x(A,B).</math> अर्थात्, प्रत्येक तत्व <math>I\cap R</math> का गुणज है <math>\operatorname{res}_x(A,B).</math> | ||
* के सभी [[अलघुकरणीय बहुपद]] <math>\operatorname{res}_x(A,B)</math> के हर तत्व को विभाजित करें <math>I\cap R.</math> | * के सभी [[अलघुकरणीय बहुपद]] <math>\operatorname{res}_x(A,B)</math> के हर तत्व को विभाजित करें <math>I\cap R.</math> | ||
पहला अभिकथन परिणामी का मूल गुण है। अन्य अभिकथन दूसरे के तत्काल परिणाम हैं, जिन्हें निम्नानुसार सिद्ध किया जा सकता है। | पहला अभिकथन परिणामी का मूल गुण है। अन्य अभिकथन दूसरे के तत्काल परिणाम हैं, जिन्हें निम्नानुसार सिद्ध किया जा सकता है। | ||
कम से कम | कम से कम के रूप में {{math|''A''}} और {{math|''B''}} मोनिक है, ए {{math|''n''}}टपल <math>(\beta_1,\ldots, \beta_n)</math> का शून्य है <math>\operatorname{res}_x(A,B)</math> अगर और केवल अगर मौजूद है <math>\alpha</math> ऐसा है कि <math>(\beta_1,\ldots, \beta_n, \alpha)</math> का सामान्य शून्य है {{math|''A''}} और {{math|''B''}}. ऐसा उभयनिष्ठ शून्य भी के सभी अवयवों का शून्य होता है <math>I\cap R.</math> इसके विपरीत यदि <math>(\beta_1,\ldots, \beta_n)</math> के तत्वों का सामान्य शून्य है <math>I\cap R,</math> यह परिणामी का शून्य है, और मौजूद है <math>\alpha</math> ऐसा है कि <math>(\beta_1,\ldots, \beta_n, \alpha)</math> का सामान्य शून्य है {{math|''A''}} और {{math|''B''}}. इसलिए <math>I\cap R</math> और <math>R\operatorname{res}_x(A,B)</math> बिल्कुल वही शून्य हैं। | ||
== संगणना == | == संगणना == | ||
सैद्धांतिक रूप से, परिणामी को जड़ों के अंतर के उत्पाद के रूप में व्यक्त करने वाले सूत्र का उपयोग करके गणना की जा सकती है। हालांकि, जैसा कि जड़ों की आम तौर पर गणना नहीं की जा सकती है, ऐसा एल्गोरिदम अक्षम और [[संख्यात्मक रूप से अस्थिर]] होगा। चूंकि परिणामी प्रत्येक बहुपद की जड़ों का | सैद्धांतिक रूप से, परिणामी को जड़ों के अंतर के उत्पाद के रूप में व्यक्त करने वाले सूत्र का उपयोग करके गणना की जा सकती है। हालांकि, जैसा कि जड़ों की आम तौर पर गणना नहीं की जा सकती है, ऐसा एल्गोरिदम अक्षम और [[संख्यात्मक रूप से अस्थिर]] होगा। चूंकि परिणामी प्रत्येक बहुपद की जड़ों का [[सममित बहुपद]] है, इसकी गणना सममित बहुपद के मौलिक प्रमेय का उपयोग करके भी की जा सकती है, लेकिन यह अत्यधिक अक्षम होगा। | ||
जैसा कि परिणामी सिल्वेस्टर मैट्रिक्स (और बेज़ाउट मैट्रिक्स) का निर्धारक है, इसकी गणना निर्धारकों की गणना के लिए किसी भी एल्गोरिथ्म का उपयोग करके की जा सकती है। इसकी जरूरत है <math>O(n^3)</math> अंकगणितीय आपरेशनस। जैसा कि एल्गोरिदम बेहतर जटिलता के साथ जाना जाता है (नीचे देखें), इस पद्धति का व्यवहार में उपयोग नहीं किया जाता है। | जैसा कि परिणामी सिल्वेस्टर मैट्रिक्स (और बेज़ाउट मैट्रिक्स) का निर्धारक है, इसकी गणना निर्धारकों की गणना के लिए किसी भी एल्गोरिथ्म का उपयोग करके की जा सकती है। इसकी जरूरत है <math>O(n^3)</math> अंकगणितीय आपरेशनस। जैसा कि एल्गोरिदम बेहतर जटिलता के साथ जाना जाता है (नीचे देखें), इस पद्धति का व्यवहार में उपयोग नहीं किया जाता है। | ||
यह इस प्रकार है {{slink||Invariance under change of polynomials}} कि | यह इस प्रकार है {{slink||Invariance under change of polynomials}} कि परिणामी की गणना बहुपद महानतम सामान्य भाजक#यूक्लिड के एल्गोरिथम से दृढ़ता से संबंधित है। इससे पता चलता है कि डिग्री के दो बहुपदों के परिणाम की गणना {{math|''d''}} और {{math|''e''}} में किया जा सकता है <math>O(de)</math> गुणांक के क्षेत्र में अंकगणितीय संचालन। | ||
हालाँकि, जब गुणांक पूर्णांक, परिमेय संख्या या बहुपद होते हैं, तो ये अंकगणितीय संचालन गुणांक के कई GCD संगणनाओं को लागू करते हैं जो समान क्रम के होते हैं और एल्गोरिथ्म को अक्षम बनाते हैं। | हालाँकि, जब गुणांक पूर्णांक, परिमेय संख्या या बहुपद होते हैं, तो ये अंकगणितीय संचालन गुणांक के कई GCD संगणनाओं को लागू करते हैं जो समान क्रम के होते हैं और एल्गोरिथ्म को अक्षम बनाते हैं। | ||
इस समस्या को हल करने और गुणांक के किसी भी अंश और किसी भी GCD संगणना से बचने के लिए बहुपद महानतम सामान्य विभाजक#उपपरिणामी छद्म-शेष अनुक्रम|उपपरिणामस्वरूप छद्म-शेष अनुक्रम पेश किए गए थे। गुणकों पर रिंग होमोमोर्फिज्म के तहत परिणामी के अच्छे व्यवहार का उपयोग करके | इस समस्या को हल करने और गुणांक के किसी भी अंश और किसी भी GCD संगणना से बचने के लिए बहुपद महानतम सामान्य विभाजक#उपपरिणामी छद्म-शेष अनुक्रम|उपपरिणामस्वरूप छद्म-शेष अनुक्रम पेश किए गए थे। गुणकों पर रिंग होमोमोर्फिज्म के तहत परिणामी के अच्छे व्यवहार का उपयोग करके अधिक कुशल एल्गोरिथ्म प्राप्त किया जाता है: पूर्णांक गुणांक वाले दो बहुपदों के परिणाम की गणना करने के लिए, उनके परिणामी मॉडुलो की पर्याप्त रूप से कई [[अभाज्य संख्या]]ओं की गणना करता है और फिर चीनी के साथ परिणाम का पुनर्निर्माण करता है। शेष प्रमेय। | ||
पूर्णांकों और बहुपदों के [[तेजी से गुणन]] का उपयोग परिणामी और सबसे बड़े सामान्य विभाजक के लिए एल्गोरिदम की अनुमति देता है जिसमें बेहतर [[समय जटिलता]] होती है, जो गुणन की जटिलता के क्रम का होता है, इनपुट के आकार के लघुगणक से गुणा किया जाता है (<math>\log(s(d+e)),</math> कहाँ {{math|''s''}} इनपुट बहुपदों के अंकों की संख्या की | पूर्णांकों और बहुपदों के [[तेजी से गुणन]] का उपयोग परिणामी और सबसे बड़े सामान्य विभाजक के लिए एल्गोरिदम की अनुमति देता है जिसमें बेहतर [[समय जटिलता]] होती है, जो गुणन की जटिलता के क्रम का होता है, इनपुट के आकार के लघुगणक से गुणा किया जाता है (<math>\log(s(d+e)),</math> कहाँ {{math|''s''}} इनपुट बहुपदों के अंकों की संख्या की ऊपरी सीमा है)। | ||
== बहुपद प्रणालियों के लिए आवेदन == | == बहुपद प्रणालियों के लिए आवेदन == | ||
Line 153: | Line 153: | ||
Q(x,y)&=0, | Q(x,y)&=0, | ||
\end{align}</math> | \end{align}</math> | ||
कहाँ {{math|''P''}} और {{math|''Q''}} संबंधित [[कुल डिग्री]] के बहुपद हैं {{math|''d''}} और {{math|''e''}}. तब <math>R=\operatorname{res}_y^{d,e}(P,Q)</math> में बहुपद है {{math|''x''}}, जो डिग्री की [[सामान्य संपत्ति]] है {{math|''de''}} (गुणों द्वारा {{slink||Homogeneity}}). | कहाँ {{math|''P''}} और {{math|''Q''}} संबंधित [[कुल डिग्री]] के बहुपद हैं {{math|''d''}} और {{math|''e''}}. तब <math>R=\operatorname{res}_y^{d,e}(P,Q)</math> में बहुपद है {{math|''x''}}, जो डिग्री की [[सामान्य संपत्ति]] है {{math|''de''}} (गुणों द्वारा {{slink||Homogeneity}}). कीमत <math>\alpha</math> का {{math|''x''}} की जड़ है {{math|''R''}} अगर और केवल अगर या तो मौजूद हैं <math>\beta</math> बीजगणितीय रूप से बंद क्षेत्र में जिसमें गुणांक होते हैं, जैसे कि <math>P(\alpha,\beta)=Q(\alpha,\beta)=0</math>, या <math>\deg(P(\alpha,y)) <d </math> और <math>\deg(Q(\alpha,y)) <e </math> (इस मामले में, कोई ऐसा कहता है {{math|''P''}} और {{math|''Q''}} के लिए अनंत पर उभयनिष्ठ मूल है <math>x=\alpha</math>). | ||
इसलिए, सिस्टम के समाधान की जड़ों की गणना करके प्राप्त किए जाते हैं {{math|''R''}}, और प्रत्येक जड़ के लिए <math>\alpha,</math> की सामान्य जड़ (ओं) की गणना करना <math>P(\alpha,y),</math> <math>Q(\alpha,y),</math> और <math>\operatorname{res}_x(P,Q).</math> | इसलिए, सिस्टम के समाधान की जड़ों की गणना करके प्राप्त किए जाते हैं {{math|''R''}}, और प्रत्येक जड़ के लिए <math>\alpha,</math> की सामान्य जड़ (ओं) की गणना करना <math>P(\alpha,y),</math> <math>Q(\alpha,y),</math> और <math>\operatorname{res}_x(P,Q).</math> | ||
बेज़ाउट प्रमेय का परिणाम के मान से होता है <math>\deg\left(\operatorname{res}_y(P,Q)\right)\le de</math>, की डिग्री का उत्पाद {{math|''P''}} और {{math|''Q''}}. वास्तव में, चरों के रैखिक परिवर्तन के बाद, कोई यह मान सकता है कि, प्रत्येक रूट के लिए {{math|''x''}} परिणामी का, का बिल्कुल | बेज़ाउट प्रमेय का परिणाम के मान से होता है <math>\deg\left(\operatorname{res}_y(P,Q)\right)\le de</math>, की डिग्री का उत्पाद {{math|''P''}} और {{math|''Q''}}. वास्तव में, चरों के रैखिक परिवर्तन के बाद, कोई यह मान सकता है कि, प्रत्येक रूट के लिए {{math|''x''}} परिणामी का, का बिल्कुल मान है {{math|''y''}} ऐसा है कि {{math|(''x'', ''y'')}} का सामान्य शून्य है {{math|''P''}} और {{math|''Q''}}. इससे पता चलता है कि उभयनिष्ठ शून्यों की संख्या अधिक से अधिक परिणामी की डिग्री है, जो कि अधिक से अधिक डिग्री का गुणनफल है {{math|''P''}} और {{math|''Q''}}. कुछ तकनीकीताओं के साथ, इस प्रमाण को यह दिखाने के लिए बढ़ाया जा सकता है कि अनंत पर गुणा और शून्य की गिनती, शून्य की संख्या वास्तव में डिग्री का उत्पाद है। | ||
=== सामान्य मामला === | === सामान्य मामला === | ||
पहली नज़र में, ऐसा लगता है कि परिणामी समीकरणों की | पहली नज़र में, ऐसा लगता है कि परिणामी समीकरणों की सामान्य बहुपद प्रणाली पर लागू हो सकते हैं | ||
:<math>P_1(x_1, \ldots, x_n)=0</math> | :<math>P_1(x_1, \ldots, x_n)=0</math> | ||
:<math>\vdots</math> | :<math>\vdots</math> | ||
:<math>P_k(x_1, \ldots, x_n)=0</math> | :<math>P_k(x_1, \ldots, x_n)=0</math> | ||
हर जोड़ी के परिणाम की गणना करके <math>(P_i,P_j)</math> इसके संबंध में <math>x_n</math> | हर जोड़ी के परिणाम की गणना करके <math>(P_i,P_j)</math> इसके संबंध में <math>x_n</math> अज्ञात को खत्म करने के लिए, और प्रक्रिया को दोहराते हुए जब तक कि एकतरफा बहुपद न मिल जाए। दुर्भाग्य से, यह कई नकली समाधान पेश करता है, जिन्हें हटाना मुश्किल है। | ||
19वीं शताब्दी के अंत में शुरू की गई | 19वीं शताब्दी के अंत में शुरू की गई विधि इस प्रकार काम करती है: परिचय {{math|''k'' − 1}} नए अनिश्चित <math>U_2, \ldots, U_k</math> और गणना करें | ||
:<math>\operatorname{res}_{x_n}(P_1, U_2P_2 +\cdots +U_kP_k).</math> यह | :<math>\operatorname{res}_{x_n}(P_1, U_2P_2 +\cdots +U_kP_k).</math> यह बहुपद है <math>U_2, \ldots, U_k</math> जिनके गुणांक बहुपद हैं <math>x_1, \ldots, x_{n-1},</math> जिसके पास वह संपत्ति है <math>\alpha_1, \ldots, \alpha_{n-1}</math> इन बहुपद गुणांकों का सामान्य शून्य है, यदि और केवल यदि अविभाज्य बहुपद <math>P_i(\alpha_1, \ldots, \alpha_{n-1}, x_n)</math> सामान्य शून्य है, संभवतः अनंत पर इंगित करता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि अविभाजित बहुपद नहीं मिलते। | ||
सही एल्गोरिथम प्राप्त करने के लिए विधि में दो पूरक जोड़े जाने चाहिए। सबसे पहले, प्रत्येक चरण में, चर के रैखिक परिवर्तन की आवश्यकता हो सकती है ताकि अंतिम चर में बहुपदों की डिग्री उनकी कुल डिग्री के समान हो। दूसरे, यदि किसी भी चरण पर, परिणामी शून्य है, तो इसका अर्थ है कि बहुपदों का उभयनिष्ठ गुणनखंड है और समाधान दो घटकों में विभाजित हो जाता है: जहां उभयनिष्ठ गुणनखंड शून्य है, और दूसरा जो इस उभयनिष्ठ गुणनखंड को निकालकर प्राप्त किया जाता है जारी रखने से पहले कारक। | |||
यह एल्गोरिथम बहुत जटिल है और इसमें समय की जटिलता है। इसलिए, इसकी रुचि मुख्य रूप से ऐतिहासिक है। | यह एल्गोरिथम बहुत जटिल है और इसमें समय की जटिलता है। इसलिए, इसकी रुचि मुख्य रूप से ऐतिहासिक है। | ||
Line 175: | Line 175: | ||
===संख्या सिद्धांत=== | ===संख्या सिद्धांत=== | ||
बहुपद का विभेदक, जो संख्या सिद्धांत में मौलिक उपकरण है, बहुपद के परिणामी और उसके व्युत्पन्न के प्रमुख गुणांक द्वारा भागफल है। | |||
अगर <math>\alpha</math> और <math>\beta</math> [[बीजगणितीय संख्या]]एँ हैं जैसे कि <math>P(\alpha)=Q(\beta)=0</math>, तब <math>\gamma=\alpha+\beta</math> परिणामी की जड़ है <math>\operatorname{res}_x(P(x),Q(z-x)),</math> और <math>\tau = \alpha\beta</math> की जड़ है <math>\operatorname{res}_x(P(x),x^nQ(z/x))</math>, कहाँ <math>n</math> के बहुपद की घात है <math>Q(y)</math>. इस तथ्य के साथ संयुक्त <math>1/\beta</math> की जड़ है <math>y^nQ(1/y) = 0</math>, यह दर्शाता है कि बीजगणितीय संख्याओं का समुच्चय | अगर <math>\alpha</math> और <math>\beta</math> [[बीजगणितीय संख्या]]एँ हैं जैसे कि <math>P(\alpha)=Q(\beta)=0</math>, तब <math>\gamma=\alpha+\beta</math> परिणामी की जड़ है <math>\operatorname{res}_x(P(x),Q(z-x)),</math> और <math>\tau = \alpha\beta</math> की जड़ है <math>\operatorname{res}_x(P(x),x^nQ(z/x))</math>, कहाँ <math>n</math> के बहुपद की घात है <math>Q(y)</math>. इस तथ्य के साथ संयुक्त <math>1/\beta</math> की जड़ है <math>y^nQ(1/y) = 0</math>, यह दर्शाता है कि बीजगणितीय संख्याओं का समुच्चय क्षेत्र (गणित) है। | ||
होने देना <math>K(\alpha)</math> | होने देना <math>K(\alpha)</math> तत्व द्वारा उत्पन्न बीजगणितीय क्षेत्र विस्तार हो <math>\alpha,</math> जो है <math>P(x)</math> [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)]] के रूप में। का हर तत्व <math>\beta \in K(\alpha)</math> रूप में लिखा जा सकता है <math>\beta=Q(\alpha),</math> कहाँ <math>Q</math> बहुपद है। तब <math>\beta</math> की जड़ है <math>\operatorname{res}_x(P(x),z-Q(x)),</math> और यह परिणामी के न्यूनतम बहुपद की शक्ति है <math>\beta.</math> | ||
Line 185: | Line 185: | ||
बहुपदों के शून्य के रूप में परिभाषित दो [[समतल बीजगणितीय वक्र]] दिए गए हैं {{math|''P''(''x'', ''y'')}} और {{math|''Q''(''x'', ''y'')}}परिणामी उनके प्रतिच्छेदन की गणना की अनुमति देता है। अधिक सटीक, की जड़ें <math>\operatorname{res}_y(P,Q)</math> प्रतिच्छेदन बिंदु और सामान्य ऊर्ध्वाधर स्पर्शोन्मुख के एक्स-निर्देशांक हैं, और की जड़ें <math>\operatorname{res}_x(P,Q)</math> प्रतिच्छेदन बिंदु और सामान्य क्षैतिज स्पर्शोन्मुख के y-निर्देशांक हैं। | बहुपदों के शून्य के रूप में परिभाषित दो [[समतल बीजगणितीय वक्र]] दिए गए हैं {{math|''P''(''x'', ''y'')}} और {{math|''Q''(''x'', ''y'')}}परिणामी उनके प्रतिच्छेदन की गणना की अनुमति देता है। अधिक सटीक, की जड़ें <math>\operatorname{res}_y(P,Q)</math> प्रतिच्छेदन बिंदु और सामान्य ऊर्ध्वाधर स्पर्शोन्मुख के एक्स-निर्देशांक हैं, और की जड़ें <math>\operatorname{res}_x(P,Q)</math> प्रतिच्छेदन बिंदु और सामान्य क्षैतिज स्पर्शोन्मुख के y-निर्देशांक हैं। | ||
परिमेय वक्र को [[पैरामीट्रिक समीकरण]] द्वारा परिभाषित किया जा सकता है | |||
:<math> | :<math> | ||
x=\frac{P(t)}{R(t)},\qquad | x=\frac{P(t)}{R(t)},\qquad | ||
y=\frac{Q(t)}{R(t)}, | y=\frac{Q(t)}{R(t)}, | ||
</math> | </math> | ||
कहाँ {{math|''P''}}, {{math|''Q''}} और {{math|''R''}} बहुपद हैं। वक्र का | कहाँ {{math|''P''}}, {{math|''Q''}} और {{math|''R''}} बहुपद हैं। वक्र का अन्तर्[[निहित समीकरण]] किसके द्वारा दिया जाता है | ||
:<math>\operatorname{res}_t(xR-P,yR-Q).</math> | :<math>\operatorname{res}_t(xR-P,yR-Q).</math> | ||
इस वक्र की डिग्री उच्चतम डिग्री है {{math|''P''}}, {{math|''Q''}} और {{math|''R''}}, जो परिणामी की कुल डिग्री के बराबर है। | इस वक्र की डिग्री उच्चतम डिग्री है {{math|''P''}}, {{math|''Q''}} और {{math|''R''}}, जो परिणामी की कुल डिग्री के बराबर है। | ||
=== प्रतीकात्मक एकीकरण === | === प्रतीकात्मक एकीकरण === | ||
प्रतीकात्मक एकीकरण में, | प्रतीकात्मक एकीकरण में, [[तर्कसंगत अंश]] के प्रतिपक्षी की गणना करने के लिए, [[आंशिक अंश अपघटन]] का उपयोग तर्कसंगत भाग में अभिन्न को विघटित करने के लिए किया जाता है, जो तर्कसंगत अंशों का योग होता है, जिनके प्रतिपक्षी तर्कसंगत अंश होते हैं, और लघुगणकीय भाग जो तर्कसंगत अंश का योग होता है रूप के अंश | ||
:<math>\frac{P(x)}{Q(x)},</math> | :<math>\frac{P(x)}{Q(x)},</math> | ||
कहाँ {{math|''Q''}} | कहाँ {{math|''Q''}} [[वर्ग मुक्त बहुपद]] है और {{math|''P''}} से कम कोटि का बहुपद है {{math|''Q''}}. इस तरह के समारोह के प्रतिपक्षी में आवश्यक रूप से [[लघुगणक]] और आम तौर पर बीजगणितीय संख्याएं शामिल होती हैं (की जड़ें {{math|''Q''}}). वास्तव में, प्रतिपक्षी है | ||
:<math>\int \frac{P(x)}{Q(x)}dx=\sum_{Q(\alpha)=0} \frac{P(\alpha)}{Q'(\alpha)}\log(x-\alpha),</math> | :<math>\int \frac{P(x)}{Q(x)}dx=\sum_{Q(\alpha)=0} \frac{P(\alpha)}{Q'(\alpha)}\log(x-\alpha),</math> | ||
जहां योग की सभी जटिल जड़ों पर चलता है {{math|''Q''}}. | जहां योग की सभी जटिल जड़ों पर चलता है {{math|''Q''}}. | ||
इस अभिव्यक्ति में शामिल [[बीजगणितीय संख्या]]ओं की संख्या आम तौर पर की डिग्री के बराबर होती है {{math|''Q''}}, लेकिन यह अक्सर होता है कि कम बीजगणितीय संख्याओं वाले व्यंजक की गणना की जा सकती है। डैनियल लाजार्ड-रिओबू-[[बैरी ट्रैगर]] विधि | इस अभिव्यक्ति में शामिल [[बीजगणितीय संख्या]]ओं की संख्या आम तौर पर की डिग्री के बराबर होती है {{math|''Q''}}, लेकिन यह अक्सर होता है कि कम बीजगणितीय संख्याओं वाले व्यंजक की गणना की जा सकती है। डैनियल लाजार्ड-रिओबू-[[बैरी ट्रैगर]] विधि अभिव्यक्ति उत्पन्न करती है, जहां बीजगणितीय संख्याओं की संख्या न्यूनतम होती है, बीजीय संख्याओं के साथ किसी भी गणना के बिना। | ||
होने देना | होने देना | ||
Line 209: | Line 209: | ||
=== कंप्यूटर बीजगणित === | === कंप्यूटर बीजगणित === | ||
सभी पूर्ववर्ती अनुप्रयोग, और कई अन्य, दिखाते हैं कि परिणामी कंप्यूटर बीजगणित में | सभी पूर्ववर्ती अनुप्रयोग, और कई अन्य, दिखाते हैं कि परिणामी कंप्यूटर बीजगणित में मौलिक उपकरण है। वास्तव में अधिकांश कंप्यूटर बीजगणित प्रणालियों में परिणामकों की गणना का कुशल कार्यान्वयन शामिल है। | ||
== सजातीय परिणाम == | == सजातीय परिणाम == | ||
Line 222: | Line 222: | ||
सजातीय परिणामी में अनिवार्य रूप से सामान्य परिणाम के समान गुण होते हैं, अनिवार्य रूप से दो अंतरों के साथ: बहुपद जड़ों के बजाय, प्रक्षेपी रेखा में शून्य पर विचार किया जाता है, और बहुपद की डिग्री रिंग होमोमोर्फिज्म के तहत नहीं बदल सकती है। | सजातीय परिणामी में अनिवार्य रूप से सामान्य परिणाम के समान गुण होते हैं, अनिवार्य रूप से दो अंतरों के साथ: बहुपद जड़ों के बजाय, प्रक्षेपी रेखा में शून्य पर विचार किया जाता है, और बहुपद की डिग्री रिंग होमोमोर्फिज्म के तहत नहीं बदल सकती है। | ||
वह है: | वह है: | ||
* | * अभिन्न डोमेन पर दो सजातीय बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र पर गैर-शून्य सामान्य शून्य होता है। | ||
* अगर {{math|''P''}} और {{math|''Q''}} क्रमविनिमेय वलय में गुणांक वाले दो द्विभाजित सजातीय बहुपद हैं {{math|''R''}}, और <math>\varphi\colon R\to S</math> की | * अगर {{math|''P''}} और {{math|''Q''}} क्रमविनिमेय वलय में गुणांक वाले दो द्विभाजित सजातीय बहुपद हैं {{math|''R''}}, और <math>\varphi\colon R\to S</math> की अंगूठी समरूपता {{math|''R''}} दूसरे क्रमविनिमेय रिंग में {{math|''S''}}, फिर बढ़ा रहा है <math>\varphi</math> बहुपदों पर {{math|''R''}}, वाले हैं | ||
::<math>\operatorname{Res}(\varphi(P), \varphi(Q)) = \varphi(\operatorname{Res}(P,Q)).</math> | ::<math>\operatorname{Res}(\varphi(P), \varphi(Q)) = \varphi(\operatorname{Res}(P,Q)).</math> | ||
* चर के किसी भी अनुमानित परिवर्तन के तहत शून्य होने के लिए | * चर के किसी भी अनुमानित परिवर्तन के तहत शून्य होने के लिए सजातीय परिणामी की संपत्ति अपरिवर्तनीय है। | ||
सामान्य परिणामी की कोई भी संपत्ति समान रूप से सजातीय परिणामी तक विस्तारित हो सकती है, और परिणामी संपत्ति सामान्य परिणामी की संबंधित संपत्ति की तुलना में या तो बहुत समान या सरल होती है। | सामान्य परिणामी की कोई भी संपत्ति समान रूप से सजातीय परिणामी तक विस्तारित हो सकती है, और परिणामी संपत्ति सामान्य परिणामी की संबंधित संपत्ति की तुलना में या तो बहुत समान या सरल होती है। | ||
Line 231: | Line 231: | ||
==मैकाले का परिणाम == | ==मैकाले का परिणाम == | ||
मैकाले का परिणामी, जिसका नाम फ्रांसिस सॉवरबी मैकाले के नाम पर रखा गया है, जिसे बहुभिन्नरूपी परिणामी, या बहुपद परिणामी भी कहा जाता है,<ref>{{Citation | last1=Cox | first1=David | last2=Little | first2=John | last3=O'Shea | first3=Donal | title=Using Algebraic Geometry | publisher=[[Springer Science+Business Media]] | isbn=978-0387207339 | year=2005}}, Chapter 3. Resultants</ref> सजातीय परिणाम का | मैकाले का परिणामी, जिसका नाम फ्रांसिस सॉवरबी मैकाले के नाम पर रखा गया है, जिसे बहुभिन्नरूपी परिणामी, या बहुपद परिणामी भी कहा जाता है,<ref>{{Citation | last1=Cox | first1=David | last2=Little | first2=John | last3=O'Shea | first3=Donal | title=Using Algebraic Geometry | publisher=[[Springer Science+Business Media]] | isbn=978-0387207339 | year=2005}}, Chapter 3. Resultants</ref> सजातीय परिणाम का सामान्यीकरण है {{math|''n''}} सजातीय बहुपद में {{math|''n''}} अनिश्चित (चर)। इनके गुणांकों में मैकाले का परिणामी बहुपद है {{math|''n''}} सजातीय बहुपद जो लुप्त हो जाते हैं यदि और केवल यदि बहुपदों का बीजगणितीय रूप से बंद क्षेत्र में सामान्य गैर-शून्य समाधान होता है जिसमें गुणांक होते हैं, या, समकक्ष, यदि {{math|''n''}} बहुपदों द्वारा परिभाषित हाइपर सतहों में सामान्य शून्य होता है {{math|''n'' –1}} आयामी प्रक्षेपण स्थान। ग्रोबनर आधार के साथ बहुभिन्नरूपी परिणामी | ग्रोबनर आधार, प्रभावी उन्मूलन सिद्धांत (कंप्यूटर पर उन्मूलन सिद्धांत) के मुख्य उपकरणों में से है। | ||
सजातीय परिणामी की तरह, मैकाले को [[निर्धारकों]] के साथ परिभाषित किया जा सकता है, और इस प्रकार रिंग होमोमोर्फिज़्म के तहत अच्छा व्यवहार करता है। हालाँकि, इसे | सजातीय परिणामी की तरह, मैकाले को [[निर्धारकों]] के साथ परिभाषित किया जा सकता है, और इस प्रकार रिंग होमोमोर्फिज़्म के तहत अच्छा व्यवहार करता है। हालाँकि, इसे निर्धारक द्वारा परिभाषित नहीं किया जा सकता है। यह इस प्रकार है कि पहले इसे [[सामान्य बहुपद]]ों पर परिभाषित करना आसान है। | ||
=== सामान्य सजातीय बहुपदों का परिणाम === | === सामान्य सजातीय बहुपदों का परिणाम === | ||
डिग्री का | डिग्री का सजातीय बहुपद {{math|''d''}} में {{math|''n''}} चर तक हो सकते हैं | ||
:<math>\binom{n+d-1}{n-1}=\frac{(n+d-1)!}{(n-1)!\,d!}</math> | :<math>\binom{n+d-1}{n-1}=\frac{(n+d-1)!}{(n-1)!\,d!}</math> | ||
गुणांक; इसे सामान्य कहा जाता है, यदि ये गुणांक अलग-अलग अनिश्चित हैं। | गुणांक; इसे सामान्य कहा जाता है, यदि ये गुणांक अलग-अलग अनिश्चित हैं। | ||
Line 250: | Line 250: | ||
जिसमें प्रत्येक <math>Q_i</math> डिग्री के सजातीय बहुपदों पर चलता है <math>D-d_i,</math> और [[कोडोमेन]] है {{math|''C''}}डिग्री के सजातीय बहुपदों का मॉड्यूल {{math|''D''}}. | जिसमें प्रत्येक <math>Q_i</math> डिग्री के सजातीय बहुपदों पर चलता है <math>D-d_i,</math> और [[कोडोमेन]] है {{math|''C''}}डिग्री के सजातीय बहुपदों का मॉड्यूल {{math|''D''}}. | ||
अगर {{math|1=''n'' = 2}}, मैकाले मैट्रिक्स [[स्क्वायर मैट्रिक्स]] है, और | अगर {{math|1=''n'' = 2}}, मैकाले मैट्रिक्स [[स्क्वायर मैट्रिक्स]] है, और वर्ग मैट्रिक्स है, लेकिन यह अब सत्य नहीं है {{math|''n'' > 2}}. इस प्रकार, निर्धारक पर विचार करने के बजाय, सभी अधिकतम लघु (रैखिक बीजगणित) पर विचार किया जाता है, जो वर्ग उपमात्रियों के निर्धारक होते हैं जिनकी मैकाले मैट्रिक्स के रूप में कई पंक्तियाँ होती हैं। मैकाले ने सिद्ध किया कि {{math|''C''}}-आदर्श इन प्रमुख नाबालिगों द्वारा उत्पन्न प्रमुख आदर्श है, जो इन नाबालिगों के सबसे बड़े सामान्य विभाजक द्वारा उत्पन्न होता है। जैसा कि पूर्णांक गुणांक वाले बहुपदों के साथ काम कर रहा है, यह सबसे बड़ा सामान्य विभाजक इसके चिह्न तक परिभाषित किया गया है। सामान्य मैकाले का परिणाम सबसे बड़ा सामान्य विभाजक है जो बन जाता है {{math|1}}, कब, प्रत्येक के लिए {{math|''i''}}, शून्य के सभी गुणांकों के लिए प्रतिस्थापित किया जाता है <math>P_i,</math> के गुणांक को छोड़कर <math>x_i^{d_i},</math> जिसके लिए प्रतिस्थापित किया गया है। | ||
====जेनेरिक मैकाले परिणामी के गुण ==== | ====जेनेरिक मैकाले परिणामी के गुण ==== | ||
*जेनेरिक मैकाले परिणामी | *जेनेरिक मैकाले परिणामी अलघुकरणीय बहुपद है। | ||
* यह डिग्री का सजातीय है <math>B/d_i</math> के गुणांक में <math>P_i,</math> कहाँ <math>B=d_1 \cdots d_n</math> बेज़ाउट प्रमेय है|बेज़ाउट बाउंड। | * यह डिग्री का सजातीय है <math>B/d_i</math> के गुणांक में <math>P_i,</math> कहाँ <math>B=d_1 \cdots d_n</math> बेज़ाउट प्रमेय है|बेज़ाउट बाउंड। | ||
*डिग्री के प्रत्येक एकपदी के परिणाम के साथ उत्पाद {{math|''D''}} में <math>x_1,\dots, x_n</math> के आदर्श के अंतर्गत आता है <math>C[x_1,\dots,x_n]</math> द्वारा उत्पन्न <math>P_1,\dots,P_n.</math> | *डिग्री के प्रत्येक एकपदी के परिणाम के साथ उत्पाद {{math|''D''}} में <math>x_1,\dots, x_n</math> के आदर्श के अंतर्गत आता है <math>C[x_1,\dots,x_n]</math> द्वारा उत्पन्न <math>P_1,\dots,P_n.</math> | ||
=== | === क्षेत्र पर बहुपदों का परिणाम === | ||
अब से, हम मानते हैं कि सजातीय बहुपद <math>P_1,\ldots,P_n</math> डिग्रियों का <math>d_1,\ldots,d_n</math> | अब से, हम मानते हैं कि सजातीय बहुपद <math>P_1,\ldots,P_n</math> डिग्रियों का <math>d_1,\ldots,d_n</math> क्षेत्र में उनके गुणांक हैं (गणित) {{math|''k''}}, अर्थात् वे इससे संबंधित हैं <math>k[x_1,\dots,x_n].</math> उनके परिणामी को के तत्व के रूप में परिभाषित किया गया है {{math|''k''}} के वास्तविक गुणांकों द्वारा अनिश्चित गुणांकों को सामान्य परिणामी में प्रतिस्थापित करके प्राप्त किया जाता है <math>P_i.</math> | ||
परिणामी की मुख्य संपत्ति यह है कि यह शून्य है अगर और केवल अगर <math>P_1,\ldots,P_n</math> के [[बीजगणितीय रूप से बंद विस्तार]] में | परिणामी की मुख्य संपत्ति यह है कि यह शून्य है अगर और केवल अगर <math>P_1,\ldots,P_n</math> के [[बीजगणितीय रूप से बंद विस्तार]] में शून्येतर सामान्य शून्य है {{math|''k''}}. | ||
केवल अगर इस प्रमेय का हिस्सा पूर्ववर्ती पैराग्राफ की अंतिम संपत्ति से निकलता है, और हिल्बर्ट के नलस्टेलेंसैट्ज#प्रोजेक्टिव नलस्टेलेंसैट्ज का | केवल अगर इस प्रमेय का हिस्सा पूर्ववर्ती पैराग्राफ की अंतिम संपत्ति से निकलता है, और हिल्बर्ट के नलस्टेलेंसैट्ज#प्रोजेक्टिव नलस्टेलेंसैट्ज का प्रभावी संस्करण है: यदि परिणामी गैर-शून्य है, तो | ||
:<math>\langle x_1,\ldots, x_n\rangle^D \subseteq \langle P_1,\ldots,P_n\rangle,</math> | :<math>\langle x_1,\ldots, x_n\rangle^D \subseteq \langle P_1,\ldots,P_n\rangle,</math> | ||
कहाँ <math>D=d_1+\cdots +d_n-n+1</math> मैकाले डिग्री है, और <math>\langle x_1,\ldots, x_n\rangle</math> अधिकतम सजातीय आदर्श है। इसका अर्थ यह है कि <math>P_1,\ldots,P_n</math> अद्वितीय सामान्य शून्य के अलावा कोई अन्य सामान्य शून्य नहीं है, {{math|(0, ..., 0)}}, का <math>x_1,\ldots,x_n.</math> | कहाँ <math>D=d_1+\cdots +d_n-n+1</math> मैकाले डिग्री है, और <math>\langle x_1,\ldots, x_n\rangle</math> अधिकतम सजातीय आदर्श है। इसका अर्थ यह है कि <math>P_1,\ldots,P_n</math> अद्वितीय सामान्य शून्य के अलावा कोई अन्य सामान्य शून्य नहीं है, {{math|(0, ..., 0)}}, का <math>x_1,\ldots,x_n.</math> | ||
Line 268: | Line 268: | ||
=== संगणनीयता === | === संगणनीयता === | ||
चूंकि परिणामी की गणना निर्धारकों और बहुपद महानतम सामान्य विभाजकों की गणना करने के लिए कम हो सकती है, परिणामों की गणना के लिए चरणों की | चूंकि परिणामी की गणना निर्धारकों और बहुपद महानतम सामान्य विभाजकों की गणना करने के लिए कम हो सकती है, परिणामों की गणना के लिए चरणों की सीमित संख्या में एल्गोरिदम हैं। | ||
हालाँकि, सामान्य परिणामी बहुत उच्च डिग्री का बहुपद है (घातांक में {{math|''n''}}) बड़ी संख्या में अनिश्चितताओं पर निर्भर करता है। यह इस प्रकार है, बहुत छोटे को छोड़कर {{math|''n''}} और इनपुट बहुपदों की बहुत छोटी डिग्री, सामान्य परिणाम व्यवहार में, आधुनिक कंप्यूटरों के साथ भी गणना करना असंभव है। इसके अलावा, सामान्य परिणामी के [[एकपद]]्स की संख्या इतनी अधिक है, कि, यदि यह गणना योग्य होगा, तो परिणाम को उपलब्ध स्मृति उपकरणों पर संग्रहीत नहीं किया जा सकता है, यहां तक कि छोटे मूल्यों के लिए भी {{math|''n''}} और इनपुट बहुपदों की डिग्री। | हालाँकि, सामान्य परिणामी बहुत उच्च डिग्री का बहुपद है (घातांक में {{math|''n''}}) बड़ी संख्या में अनिश्चितताओं पर निर्भर करता है। यह इस प्रकार है, बहुत छोटे को छोड़कर {{math|''n''}} और इनपुट बहुपदों की बहुत छोटी डिग्री, सामान्य परिणाम व्यवहार में, आधुनिक कंप्यूटरों के साथ भी गणना करना असंभव है। इसके अलावा, सामान्य परिणामी के [[एकपद]]्स की संख्या इतनी अधिक है, कि, यदि यह गणना योग्य होगा, तो परिणाम को उपलब्ध स्मृति उपकरणों पर संग्रहीत नहीं किया जा सकता है, यहां तक कि छोटे मूल्यों के लिए भी {{math|''n''}} और इनपुट बहुपदों की डिग्री। | ||
इसलिए, परिणामी की गणना करना केवल उन बहुपदों के लिए समझ में आता है जिनके गुणांक | इसलिए, परिणामी की गणना करना केवल उन बहुपदों के लिए समझ में आता है जिनके गुणांक क्षेत्र से संबंधित हैं या क्षेत्र में कुछ अनिश्चित में बहुपद हैं। | ||
क्षेत्र में गुणांक वाले इनपुट बहुपदों के मामले में, परिणामी का सटीक मूल्य शायद ही कभी महत्वपूर्ण होता है, केवल इसकी समानता (या नहीं) शून्य मायने रखती है। जैसा कि परिणामी शून्य है यदि और केवल यदि मैकाले मैट्रिक्स की रैंक इसकी पंक्तियों की संख्या से कम है, तो यह समानता शून्य हो सकती है, जिसे मैकाले मैट्रिक्स में गॉसियन विलोपन लागू करके परीक्षण किया जा सकता है। यह समय जटिलता प्रदान करता है <math>d^{O(n)},</math> कहाँ {{math|''d''}} इनपुट बहुपद की अधिकतम डिग्री है। | |||
और मामला जहां परिणामी की गणना उपयोगी जानकारी प्रदान कर सकती है, जब इनपुट बहुपद के गुणांक कम संख्या में बहुपद होते हैं, जिन्हें अक्सर पैरामीटर कहा जाता है। इस मामले में, परिणामी, यदि शून्य नहीं है, तो पैरामीटर स्थान में [[ऊनविम पृष्ठ]] को परिभाषित करता है। बिंदु इस हाइपर सतह से संबंधित है, अगर और केवल अगर के मान हैं <math>x_1, \ldots,x_n</math> जो, बिंदु के निर्देशांक के साथ इनपुट बहुपदों का शून्य है। दूसरे शब्दों में, परिणामी के उन्मूलन सिद्धांत का परिणाम है <math>x_1, \ldots,x_n</math> इनपुट बहुपदों से। | |||
=== यू-परिणामस्वरूप | === यू-परिणामस्वरूप === | ||
मैकाले का परिणामी | मैकाले का परिणामी विधि प्रदान करता है, जिसे मैकाले द्वारा यू-परिणाम कहा जाता है, बहुपद समीकरणों की प्रणालियों को हल करने के लिए। | ||
दिया गया {{math|''n'' − 1}} सजातीय बहुपद <math>P_1, \ldots, P_{n-1},</math> डिग्रियों का <math>d_1, \ldots, d_{n-1},</math> में {{math|''n''}} अनिश्चित <math>x_1, \ldots, x_n,</math> | दिया गया {{math|''n'' − 1}} सजातीय बहुपद <math>P_1, \ldots, P_{n-1},</math> डिग्रियों का <math>d_1, \ldots, d_{n-1},</math> में {{math|''n''}} अनिश्चित <math>x_1, \ldots, x_n,</math> मैदान के ऊपर {{math|''k''}}, उनका 'यू'-परिणाम का परिणाम है {{math|''n''}} बहुआयामी पद <math>P_1, \ldots, P_{n-1}, P_n,</math> कहाँ | ||
:<math>P_n=u_1x_1 +\cdots +u_nx_n</math> | :<math>P_n=u_1x_1 +\cdots +u_nx_n</math> | ||
सामान्य रेखीय रूप है जिसके गुणांक नए अनिश्चित हैं <math>u_1, \ldots, u_n.</math> नोटेशन <math>u_i</math> या <math>U_i</math> इन सामान्य गुणांकों के लिए पारंपरिक है, और यू-परिणामी शब्द का मूल है। | सामान्य रेखीय रूप है जिसके गुणांक नए अनिश्चित हैं <math>u_1, \ldots, u_n.</math> नोटेशन <math>u_i</math> या <math>U_i</math> इन सामान्य गुणांकों के लिए पारंपरिक है, और यू-परिणामी शब्द का मूल है। | ||
यू-परिणामी में | यू-परिणामी में सजातीय बहुपद है <math>k[u_1, \ldots, u_n].</math> यह शून्य है अगर और केवल अगर सामान्य शून्य <math>P_1, \ldots, P_{n-1}</math> बीजगणितीय विविधता के सकारात्मक आयाम का [[प्रक्षेपी बीजगणितीय सेट]] बनाएं (अर्थात, बीजगणितीय रूप से बंद विस्तार पर असीम रूप से कई प्रक्षेपी शून्य हैं {{math|''k''}}). यदि U-परिणामी शून्य नहीं है, तो इसकी डिग्री बेज़ाउट प्रमेय है|बेज़ाउट बाउंड <math>d_1\cdots d_{n-1}.</math> | ||
U-परिणामस्वरूप बीजगणितीय रूप से बंद विस्तार पर गुणनखण्ड करता है {{math|''k''}} रैखिक रूपों के | U-परिणामस्वरूप बीजगणितीय रूप से बंद विस्तार पर गुणनखण्ड करता है {{math|''k''}} रैखिक रूपों के उत्पाद में। अगर <math>\alpha_1u_1+\ldots+\alpha_nu_n</math> ऐसा रैखिक कारक है, तब <math>\alpha_1, \ldots, \alpha_n</math> के सामान्य शून्य के [[सजातीय निर्देशांक]] हैं <math>P_1, \ldots, P_{n-1}.</math> इसके अलावा, प्रत्येक सामान्य शून्य इन रैखिक कारकों में से से प्राप्त किया जा सकता है, और कारक के रूप में बहुलता, प्रतिच्छेदन बहुलता के बराबर है <math>P_i</math> इस शून्य पर। दूसरे शब्दों में, यू-परिणामस्वरूप बेज़ाउट प्रमेय का पूर्णतः स्पष्ट संस्करण प्रदान करता है। | ||
==== अधिक बहुपदों और अभिकलन का विस्तार ==== | ==== अधिक बहुपदों और अभिकलन का विस्तार ==== | ||
मैकाले द्वारा परिभाषित यू-परिणाम को समीकरणों की प्रणाली में सजातीय बहुपदों की संख्या की आवश्यकता होती है <math>n-1</math>, कहाँ <math>n</math> अनिश्चित की संख्या है। 1981 में, डैनियल लाजार्ड ने इस धारणा को उस मामले तक बढ़ाया जहां बहुपदों की संख्या भिन्न हो सकती है <math>n-1</math>, और परिणामी गणना | मैकाले द्वारा परिभाषित यू-परिणाम को समीकरणों की प्रणाली में सजातीय बहुपदों की संख्या की आवश्यकता होती है <math>n-1</math>, कहाँ <math>n</math> अनिश्चित की संख्या है। 1981 में, डैनियल लाजार्ड ने इस धारणा को उस मामले तक बढ़ाया जहां बहुपदों की संख्या भिन्न हो सकती है <math>n-1</math>, और परिणामी गणना विशेष गॉसियन उन्मूलन प्रक्रिया के माध्यम से प्रतीकात्मक निर्धारक संगणना के बाद की जा सकती है। | ||
होने देना <math>P_1, \ldots, P_k</math> सजातीय बहुपद हो <math>x_1, \ldots, x_n,</math> डिग्रियों का <math>d_1, \ldots, d_k,</math> | होने देना <math>P_1, \ldots, P_k</math> सजातीय बहुपद हो <math>x_1, \ldots, x_n,</math> डिग्रियों का <math>d_1, \ldots, d_k,</math> मैदान के ऊपर {{math|''k''}}. सामान्यता के नुकसान के बिना, कोई ऐसा मान सकता है <math>d_1\ge d_2\ge \cdots \ge d_k.</math> सेटिंग <math>d_i=1</math> के लिए {{math|''i'' > ''k''}}, मैकाले बाध्य है <math>D=d_1+\cdots + d_n-n+1.</math> | ||
होने देना <math>u_1, \ldots, u_n</math> नए अनिश्चित बनें और परिभाषित करें <math>P_{k+1}=u_1x_1+\cdots +u_nx_n.</math> इस मामले में, मैकॉले मैट्रिक्स को मोनोमियल्स के आधार पर मैट्रिक्स के रूप में परिभाषित किया गया है <math>x_1, \ldots, x_n,</math> रैखिक मानचित्र का | होने देना <math>u_1, \ldots, u_n</math> नए अनिश्चित बनें और परिभाषित करें <math>P_{k+1}=u_1x_1+\cdots +u_nx_n.</math> इस मामले में, मैकॉले मैट्रिक्स को मोनोमियल्स के आधार पर मैट्रिक्स के रूप में परिभाषित किया गया है <math>x_1, \ldots, x_n,</math> रैखिक मानचित्र का | ||
:<math>(Q_1, \ldots, Q_{k+1}) \mapsto P_1Q_1+\cdots+P_{k+1}Q_{k+1},</math> | :<math>(Q_1, \ldots, Q_{k+1}) \mapsto P_1Q_1+\cdots+P_{k+1}Q_{k+1},</math> | ||
कहाँ, प्रत्येक के लिए {{math|''i''}}, <math>Q_i</math> शून्य और डिग्री के सजातीय बहुपदों से मिलकर रैखिक स्थान पर चलता है <math>D-d_i</math>. | कहाँ, प्रत्येक के लिए {{math|''i''}}, <math>Q_i</math> शून्य और डिग्री के सजातीय बहुपदों से मिलकर रैखिक स्थान पर चलता है <math>D-d_i</math>. | ||
गाऊसी विलोपन के | गाऊसी विलोपन के प्रकार द्वारा मैकाले मैट्रिक्स को कम करने पर, रैखिक रूपों का वर्ग मैट्रिक्स प्राप्त होता है <math>u_1, \ldots, u_n.</math> इस मैट्रिक्स का निर्धारक U- परिणामी है। मूल यू-परिणाम के साथ, यह शून्य है अगर और केवल अगर <math>P_1, \ldots, P_k</math> असीमित रूप से कई आम प्रोजेक्टिव शून्य हैं (यानी प्रोजेक्टिव बीजगणितीय सेट द्वारा परिभाषित किया गया है <math>P_1, \ldots, P_k</math> के [[बीजगणितीय समापन]] पर अपरिमित रूप से कई बिंदु हैं {{math|''k''}}). फिर से मूल यू-परिणाम के साथ, जब यह यू-परिणाम शून्य नहीं होता है, तो यह किसी भी बीजगणितीय रूप से बंद विस्तार पर रैखिक कारकों में कारक होता है {{math|''k''}}. इन रैखिक कारकों के गुणांक सामान्य शून्य के सजातीय निर्देशांक हैं <math>P_1, \ldots, P_k,</math> और सामान्य शून्य की बहुलता संगत रैखिक कारक की बहुलता के बराबर होती है। | ||
मैकाले मैट्रिक्स की पंक्तियों की संख्या से कम है <math>(ed)^n,</math> कहाँ {{math|1=''e'' ~ 2.7182}} सामान्य [[ई (गणितीय स्थिरांक)]] है, और {{math|''d''}} की डिग्री का अंकगणितीय माध्य है <math>P_i.</math> यह इस प्रकार है कि प्रोजेक्टिव शून्य की सीमित संख्या के साथ बहुपद समीकरणों की | मैकाले मैट्रिक्स की पंक्तियों की संख्या से कम है <math>(ed)^n,</math> कहाँ {{math|1=''e'' ~ 2.7182}} सामान्य [[ई (गणितीय स्थिरांक)]] है, और {{math|''d''}} की डिग्री का अंकगणितीय माध्य है <math>P_i.</math> यह इस प्रकार है कि प्रोजेक्टिव शून्य की सीमित संख्या के साथ बहुपद समीकरणों की प्रणाली के सभी समाधान समय जटिलता में निर्धारित किए जा सकते हैं <math>d^{O(n)}.</math> हालांकि यह सीमा बड़ी है, यह निम्नलिखित अर्थों में लगभग इष्टतम है: यदि सभी इनपुट डिग्री समान हैं, तो प्रक्रिया की समय जटिलता समाधान की अपेक्षित संख्या (बेज़ाउट प्रमेय) में बहुपद है। यह गणना व्यावहारिक रूप से व्यवहार्य हो सकती है जब {{math|''n''}}, {{math|''k''}} और {{math|''d''}} बड़े नहीं हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 18:08, 15 February 2023
गणित में, दो बहुपदों का परिणाम उनके गुणांकों की बहुपद अभिव्यक्ति है, जो शून्य के बराबर है अगर और केवल अगर बहुपदों में समारोह की सामान्य जड़ है (संभवतः क्षेत्र विस्तार में), या, समतुल्य, सामान्य कारक ( उनके गुणांक के क्षेत्र में)। कुछ पुराने ग्रन्थों में परिणामी को निर्मूलक भी कहा गया है।[1] परिणामी का व्यापक रूप से संख्या सिद्धांत में उपयोग किया जाता है, या तो सीधे या विवेचक के माध्यम से, जो अनिवार्य रूप से बहुपद और उसके व्युत्पन्न का परिणाम है। परिमेय संख्या या बहुपद गुणांक वाले दो बहुपदों के परिणाम की कंप्यूटर पर कुशलता से गणना की जा सकती है। यह कंप्यूटर बीजगणित का बुनियादी उपकरण है, और अधिकांश कंप्यूटर बीजगणित प्रणालियों का अंतर्निहित कार्य है। इसका उपयोग, दूसरों के बीच, बेलनाकार बीजगणितीय अपघटन, तर्कसंगत कार्यों के प्रतीकात्मक एकीकरण और बहुपद # चर बहुपद समीकरणों की संख्या द्वारा परिभाषित वक्रों के चित्रण के लिए किया जाता है।
एन वेरिएबल्स में एन सजातीय बहुपदों का परिणाम (सामान्य परिणाम से इसे अलग करने के लिए 'बहुभिन्नरूपी परिणाम' या 'मैकाले का परिणाम' भी कहा जाता है) सामान्यीकरण है, जो सामान्य परिणाम के फ्रांसिस सोवर मैकाले द्वारा द्वारा पेश किया गया है।[2] यह ग्रोबनर आधार के साथ है | ग्रोबनर आधार, उन्मूलन सिद्धांत के मुख्य उपकरणों में से है।
नोटेशन
दो अविभाज्य बहुपदों का परिणाम A और B सामान्य रूप से निरूपित किया जाता है या परिणामी के कई अनुप्रयोगों में, बहुपद कई अनिर्धारकों पर निर्भर करते हैं और उनके अनिर्धारक में अविभाजित बहुपद के रूप में माना जा सकता है, अन्य अनिर्धारक में गुणांक के रूप में बहुपद के साथ। इस मामले में, परिणामी को परिभाषित करने और गणना करने के लिए चुने गए अनिश्चित को सबस्क्रिप्ट के रूप में दर्शाया गया है: या परिणामी की परिभाषा में बहुपदों की डिग्री का उपयोग किया जाता है। हालांकि, डिग्री का बहुपद d उच्च डिग्री के बहुपद के रूप में भी माना जा सकता है जहां प्रमुख गुणांक शून्य हैं। यदि परिणामी के लिए ऐसी उच्च डिग्री का उपयोग किया जाता है, तो इसे आमतौर पर सबस्क्रिप्ट या सुपरस्क्रिप्ट के रूप में दर्शाया जाता है, जैसे या
परिभाषा
क्षेत्र (गणित) या क्रमविनिमेय वलय पर दो अविभाजित बहुपदों के परिणाम को आमतौर पर उनके सिल्वेस्टर मैट्रिक्स के निर्धारक के रूप में परिभाषित किया जाता है। अधिक सटीक, चलो
और
डिग्री के शून्येतर बहुपद हों d और e क्रमश। आइए हम द्वारा निरूपित करें आयाम का सदिश स्थान (या मुक्त मॉड्यूल यदि गुणांक क्रमविनिमेय वलय से संबंधित हैं)। i जिनके तत्व डिग्री के बहुपद हैं सख्ती से कम i. वो नक्शा
- ऐसा है कि
ही आयाम के दो स्थानों के बीच रेखीय नक्शा है। की शक्तियों के आधार पर x (अवरोही क्रम में सूचीबद्ध), यह नक्शा आयाम के वर्ग मैट्रिक्स द्वारा दर्शाया गया है d + eका सिल्वेस्टर मैट्रिक्स कहा जाता है A और B (कई लेखकों के लिए और सिल्वेस्टर मैट्रिक्स के लेख में, सिल्वेस्टर मैट्रिक्स को इस मैट्रिक्स के स्थानान्तरण के रूप में परिभाषित किया गया है; इस सम्मेलन का उपयोग यहां नहीं किया गया है, क्योंकि यह रेखीय मानचित्र के मैट्रिक्स को लिखने के लिए सामान्य सम्मेलन को तोड़ता है)।
का परिणाम है A और B इस प्रकार निर्धारक है
जो है e के कॉलम ai और d के कॉलम bj (तथ्य यह है कि का पहला स्तंभ aका और का पहला स्तंभ है bकी लंबाई समान है, अर्थात d = e, यहाँ केवल निर्धारक के प्रदर्शन को सरल बनाने के लिए है)। उदाहरण के लिए, लेना d = 3 और e = 2 हम पाते हैं
यदि बहुपदों के गुणांक अभिन्न डोमेन से संबंधित हैं, तो
कहाँ और क्रमशः जड़ें हैं, उनकी बहुलताओं के साथ गिना जाता है A और B किसी भी बीजगणितीय रूप से बंद फ़ील्ड में अभिन्न डोमेन शामिल है। यह नीचे दिखाई देने वाले परिणामी के लक्षण वर्णन गुणों का सीधा परिणाम है। पूर्णांक गुणांक के सामान्य मामले में, बीजगणितीय रूप से बंद क्षेत्र को आम तौर पर जटिल संख्याओं के क्षेत्र के रूप में चुना जाता है।
गुण
इस खंड और इसके उपखंडों में, A और B में दो बहुपद हैं x संबंधित डिग्री के d और e, और उनके परिणामी को निरूपित किया जाता है
गुणों की विशेषता
गुणांक वाले दो बहुपदों के परिणाम के लिए निम्नलिखित गुण मान्य हैं क्रमविनिमेय अंगूठी R. अगर R क्षेत्र (गणित) या अधिक आम तौर पर अभिन्न डोमेन है, परिणामी दो बहुपदों के गुणांकों का अनूठा कार्य है जो इन गुणों को संतुष्ट करता है।
- अगर R और अंगूठी का सबरिंग है S, तब वह है A और B बहुपदों पर विचार करने पर परिणाम समान होता है R या S.
- अगर d = 0 (यानी अगर अशून्य स्थिरांक है) तब इसी प्रकार यदि e = 0, तब
- *
शून्य
- अभिन्न डोमेन में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके पास सकारात्मक डिग्री के दो बहुपदों का सबसे बड़ा सामान्य विभाजक हो।
- पूर्णांकीय प्रांत में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र में सामान्य जड़ हो।
- बहुपद मौजूद है P डिग्री से कम e और बहुपद Q डिग्री से कम d ऐसा है कि यह मनमाना क्रमविनिमेय वलय पर बहुपदों के लिए बेज़ाउट की पहचान का सामान्यीकरण है। दूसरे शब्दों में, दो बहुपदों का परिणाम इन बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) से संबंधित है।
रिंग होमोमोर्फिज्म द्वारा इनवेरियन
होने देना A और B संबंधित डिग्री के दो बहुपद बनें d और e कम्यूटेटिव रिंग में गुणांक के साथ R, और की अंगूठी समरूपता R दूसरे क्रमविनिमेय रिंग में S. को लागू करने बहुपद के गुणांकों का विस्तार होता है बहुपद के छल्ले के समरूपता के लिए , जिसे निरूपित भी किया जाता है इस अंकन के साथ, हमारे पास है:
- अगर की उपाधियाँ सुरक्षित रखता है A और B (यानी अगर और ), तब
- अगर और तब
- अगर और और के अग्रणी गुणांक A है तब
- अगर और और के अग्रणी गुणांक B है तब
निर्धारक के रूप में परिणामी की परिभाषा से इन गुणों को आसानी से घटाया जा सकता है। वे मुख्य रूप से दो स्थितियों में उपयोग किए जाते हैं। पूर्णांक गुणांक वाले बहुपदों के परिणाम की गणना करने के लिए, यह आम तौर पर मॉड्यूलर अंकगणितीय कई प्राइम्स की गणना करने और चीनी शेष प्रमेय के साथ वांछित परिणाम प्राप्त करने के लिए तेज़ होता है। कब R अन्य अनिश्चित में बहुपद की अंगूठी है, और S कुछ या सभी अनिश्चित संख्यात्मक मानों की विशेषज्ञता के द्वारा प्राप्त की गई अंगूठी है R, इन गुणों को इस तरह से बहाल किया जा सकता है जैसे कि विशेषज्ञता द्वारा डिग्री को संरक्षित किया जाता है, दो बहुपदों के विशेषज्ञता का परिणाम परिणामी का विशेषज्ञता है। यह संपत्ति मौलिक है, उदाहरण के लिए, बेलनाकार बीजगणितीय अपघटन के लिए।
चर के परिवर्तन के तहत व्युत्क्रम
- अगर और के पारस्परिक बहुपद हैं A और B, क्रमशः, फिर
इसका मतलब यह है कि परिणामी शून्य होने का गुण चर के रैखिक और प्रक्षेपी परिवर्तनों के तहत अपरिवर्तनीय है।
बहुपदों के परिवर्तन के तहत व्युत्क्रम
- अगर a और b अशून्य स्थिरांक हैं (अर्थात वे अनिश्चित से स्वतंत्र हैं x), और A और B ऊपर के रूप में हैं, तो
- अगर A और B ऊपर के रूप में हैं, और C और बहुपद है जैसे कि की डिग्री A – CB है δ, तब
- *विशेष रूप से, यदि कोई हो B मोनिक बहुपद है, या deg C < deg A – deg B, तब
- और अगर f = deg C > deg A – deg B = d – e, तब
इन गुणों का अर्थ है कि बहुपदों के लिए यूक्लिडियन एल्गोरिथ्म में, और इसके सभी प्रकार (छद्म-शेष अनुक्रम), दो लगातार शेष (या छद्म-शेष) के परिणाम प्रारंभिक बहुपदों के परिणामी से भिन्न होते हैं, जो कि गणना करना आसान है . इसके विपरीत, यह किसी को प्रारंभिक बहुपदों के परिणाम को अंतिम शेष या छद्म शेष के मान से निकालने की अनुमति देता है। यह बहुपद महानतम सामान्य विभाजक का प्रारंभिक विचार है # छद्म-शेष के साथ उप-परिणामी अनुक्रम | शेषफल (बशर्ते परिणामी शून्य न हो)। यह एल्गोरिथम पूर्णांकों पर बहुपदों के लिए काम करता है या, अधिक सामान्यतः, अभिन्न डोमेन पर, सटीक विभाजनों के अलावा किसी भी विभाजन के बिना (अर्थात, अंशों को शामिल किए बिना)। उसमें शामिल है अंकगणितीय संचालन, जबकि मानक एल्गोरिदम के साथ सिल्वेस्टर मैट्रिक्स के निर्धारक की गणना की आवश्यकता होती है अंकगणितीय आपरेशनस।
सामान्य गुण
इस भाग में, हम दो बहुपदों पर विचार करते हैं
और
किसका d + e + 2 गुणांक विशिष्ट अनिश्चित (चर) हैं। होने देना
इन निर्धारकों द्वारा परिभाषित पूर्णांकों पर बहुपद वलय हो। परिणामी डिग्री के लिए अक्सर सामान्य परिणामी कहा जाता है d और e. इसके निम्नलिखित गुण हैं।
- बिल्कुल अलघुकरणीय बहुपद है।
- अगर का आदर्श (रिंग थ्योरी) है द्वारा उत्पन्न A और B, तब द्वारा उत्पन्न प्रमुख आदर्श है .
एकरूपता
डिग्री के लिए सामान्य परिणाम d और e विभिन्न तरीकों से सजातीय बहुपद है। ज्यादा ठीक:
- यह डिग्री का सजातीय है e में
- यह डिग्री का सजातीय है d में
- यह डिग्री का सजातीय है d + e सभी चर में और
- अगर और वजन दिया जाता है i (यानी, प्रत्येक गुणांक का वजन प्राथमिक सममित बहुपद के रूप में इसकी डिग्री है), तो यह अर्ध-सजातीय बहुपद है | कुल वजन का अर्ध-सजातीय de.
- अगर P और Q संबंधित डिग्री के सजातीय बहुभिन्नरूपी बहुपद हैं d और e, फिर डिग्री में उनका परिणाम d और e अनिश्चित के संबंध में x, निरूपित में § Notation, डिग्री का सजातीय है de अन्य अनिश्चित में।
उन्मूलन संपत्ति
होने देना दो बहुपदों द्वारा उत्पन्न आदर्श (रिंग थ्योरी) बनें A और B बहुपद अंगूठी में कहाँ क्षेत्र पर स्वयं बहुपद वलय है। यदि कम से कम A और B में मोनिक बहुपद है x, तब:
- आदर्श और ही बीजगणितीय सेट को परिभाषित करें। वह nबीजगणितीय रूप से बंद क्षेत्र के तत्वों का टपल तत्वों का सामान्य शून्य है अगर और केवल यह शून्य है * आदर्श मुख्य आदर्श के समान आदर्श का मूलांक है अर्थात्, प्रत्येक तत्व का गुणज है
- के सभी अलघुकरणीय बहुपद के हर तत्व को विभाजित करें
पहला अभिकथन परिणामी का मूल गुण है। अन्य अभिकथन दूसरे के तत्काल परिणाम हैं, जिन्हें निम्नानुसार सिद्ध किया जा सकता है।
कम से कम के रूप में A और B मोनिक है, ए nटपल का शून्य है अगर और केवल अगर मौजूद है ऐसा है कि का सामान्य शून्य है A और B. ऐसा उभयनिष्ठ शून्य भी के सभी अवयवों का शून्य होता है इसके विपरीत यदि के तत्वों का सामान्य शून्य है यह परिणामी का शून्य है, और मौजूद है ऐसा है कि का सामान्य शून्य है A और B. इसलिए और बिल्कुल वही शून्य हैं।
संगणना
सैद्धांतिक रूप से, परिणामी को जड़ों के अंतर के उत्पाद के रूप में व्यक्त करने वाले सूत्र का उपयोग करके गणना की जा सकती है। हालांकि, जैसा कि जड़ों की आम तौर पर गणना नहीं की जा सकती है, ऐसा एल्गोरिदम अक्षम और संख्यात्मक रूप से अस्थिर होगा। चूंकि परिणामी प्रत्येक बहुपद की जड़ों का सममित बहुपद है, इसकी गणना सममित बहुपद के मौलिक प्रमेय का उपयोग करके भी की जा सकती है, लेकिन यह अत्यधिक अक्षम होगा।
जैसा कि परिणामी सिल्वेस्टर मैट्रिक्स (और बेज़ाउट मैट्रिक्स) का निर्धारक है, इसकी गणना निर्धारकों की गणना के लिए किसी भी एल्गोरिथ्म का उपयोग करके की जा सकती है। इसकी जरूरत है अंकगणितीय आपरेशनस। जैसा कि एल्गोरिदम बेहतर जटिलता के साथ जाना जाता है (नीचे देखें), इस पद्धति का व्यवहार में उपयोग नहीं किया जाता है।
यह इस प्रकार है § Invariance under change of polynomials कि परिणामी की गणना बहुपद महानतम सामान्य भाजक#यूक्लिड के एल्गोरिथम से दृढ़ता से संबंधित है। इससे पता चलता है कि डिग्री के दो बहुपदों के परिणाम की गणना d और e में किया जा सकता है गुणांक के क्षेत्र में अंकगणितीय संचालन।
हालाँकि, जब गुणांक पूर्णांक, परिमेय संख्या या बहुपद होते हैं, तो ये अंकगणितीय संचालन गुणांक के कई GCD संगणनाओं को लागू करते हैं जो समान क्रम के होते हैं और एल्गोरिथ्म को अक्षम बनाते हैं। इस समस्या को हल करने और गुणांक के किसी भी अंश और किसी भी GCD संगणना से बचने के लिए बहुपद महानतम सामान्य विभाजक#उपपरिणामी छद्म-शेष अनुक्रम|उपपरिणामस्वरूप छद्म-शेष अनुक्रम पेश किए गए थे। गुणकों पर रिंग होमोमोर्फिज्म के तहत परिणामी के अच्छे व्यवहार का उपयोग करके अधिक कुशल एल्गोरिथ्म प्राप्त किया जाता है: पूर्णांक गुणांक वाले दो बहुपदों के परिणाम की गणना करने के लिए, उनके परिणामी मॉडुलो की पर्याप्त रूप से कई अभाज्य संख्याओं की गणना करता है और फिर चीनी के साथ परिणाम का पुनर्निर्माण करता है। शेष प्रमेय।
पूर्णांकों और बहुपदों के तेजी से गुणन का उपयोग परिणामी और सबसे बड़े सामान्य विभाजक के लिए एल्गोरिदम की अनुमति देता है जिसमें बेहतर समय जटिलता होती है, जो गुणन की जटिलता के क्रम का होता है, इनपुट के आकार के लघुगणक से गुणा किया जाता है ( कहाँ s इनपुट बहुपदों के अंकों की संख्या की ऊपरी सीमा है)।
बहुपद प्रणालियों के लिए आवेदन
परिणामी बहुपद समीकरणों की प्रणालियों को हल करने के लिए पेश किए गए थे और सबसे पुराना प्रमाण प्रदान करते हैं कि ऐसी प्रणालियों को हल करने के लिए कलन विधि मौजूद हैं। ये मुख्य रूप से दो अज्ञात में दो समीकरणों की प्रणालियों के लिए अभिप्रेत हैं, लेकिन सामान्य प्रणालियों को हल करने की भी अनुमति देते हैं।
दो अज्ञात में दो समीकरणों का मामला
दो बहुपद समीकरणों की प्रणाली पर विचार करें
कहाँ P और Q संबंधित कुल डिग्री के बहुपद हैं d और e. तब में बहुपद है x, जो डिग्री की सामान्य संपत्ति है de (गुणों द्वारा § Homogeneity). कीमत का x की जड़ है R अगर और केवल अगर या तो मौजूद हैं बीजगणितीय रूप से बंद क्षेत्र में जिसमें गुणांक होते हैं, जैसे कि , या और (इस मामले में, कोई ऐसा कहता है P और Q के लिए अनंत पर उभयनिष्ठ मूल है ).
इसलिए, सिस्टम के समाधान की जड़ों की गणना करके प्राप्त किए जाते हैं R, और प्रत्येक जड़ के लिए की सामान्य जड़ (ओं) की गणना करना और बेज़ाउट प्रमेय का परिणाम के मान से होता है , की डिग्री का उत्पाद P और Q. वास्तव में, चरों के रैखिक परिवर्तन के बाद, कोई यह मान सकता है कि, प्रत्येक रूट के लिए x परिणामी का, का बिल्कुल मान है y ऐसा है कि (x, y) का सामान्य शून्य है P और Q. इससे पता चलता है कि उभयनिष्ठ शून्यों की संख्या अधिक से अधिक परिणामी की डिग्री है, जो कि अधिक से अधिक डिग्री का गुणनफल है P और Q. कुछ तकनीकीताओं के साथ, इस प्रमाण को यह दिखाने के लिए बढ़ाया जा सकता है कि अनंत पर गुणा और शून्य की गिनती, शून्य की संख्या वास्तव में डिग्री का उत्पाद है।
सामान्य मामला
पहली नज़र में, ऐसा लगता है कि परिणामी समीकरणों की सामान्य बहुपद प्रणाली पर लागू हो सकते हैं
हर जोड़ी के परिणाम की गणना करके इसके संबंध में अज्ञात को खत्म करने के लिए, और प्रक्रिया को दोहराते हुए जब तक कि एकतरफा बहुपद न मिल जाए। दुर्भाग्य से, यह कई नकली समाधान पेश करता है, जिन्हें हटाना मुश्किल है।
19वीं शताब्दी के अंत में शुरू की गई विधि इस प्रकार काम करती है: परिचय k − 1 नए अनिश्चित और गणना करें
- यह बहुपद है जिनके गुणांक बहुपद हैं जिसके पास वह संपत्ति है इन बहुपद गुणांकों का सामान्य शून्य है, यदि और केवल यदि अविभाज्य बहुपद सामान्य शून्य है, संभवतः अनंत पर इंगित करता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि अविभाजित बहुपद नहीं मिलते।
सही एल्गोरिथम प्राप्त करने के लिए विधि में दो पूरक जोड़े जाने चाहिए। सबसे पहले, प्रत्येक चरण में, चर के रैखिक परिवर्तन की आवश्यकता हो सकती है ताकि अंतिम चर में बहुपदों की डिग्री उनकी कुल डिग्री के समान हो। दूसरे, यदि किसी भी चरण पर, परिणामी शून्य है, तो इसका अर्थ है कि बहुपदों का उभयनिष्ठ गुणनखंड है और समाधान दो घटकों में विभाजित हो जाता है: जहां उभयनिष्ठ गुणनखंड शून्य है, और दूसरा जो इस उभयनिष्ठ गुणनखंड को निकालकर प्राप्त किया जाता है जारी रखने से पहले कारक।
यह एल्गोरिथम बहुत जटिल है और इसमें समय की जटिलता है। इसलिए, इसकी रुचि मुख्य रूप से ऐतिहासिक है।
अन्य अनुप्रयोग
संख्या सिद्धांत
बहुपद का विभेदक, जो संख्या सिद्धांत में मौलिक उपकरण है, बहुपद के परिणामी और उसके व्युत्पन्न के प्रमुख गुणांक द्वारा भागफल है।
अगर और बीजगणितीय संख्याएँ हैं जैसे कि , तब परिणामी की जड़ है और की जड़ है , कहाँ के बहुपद की घात है . इस तथ्य के साथ संयुक्त की जड़ है , यह दर्शाता है कि बीजगणितीय संख्याओं का समुच्चय क्षेत्र (गणित) है।
होने देना तत्व द्वारा उत्पन्न बीजगणितीय क्षेत्र विस्तार हो जो है न्यूनतम बहुपद (क्षेत्र सिद्धांत) के रूप में। का हर तत्व रूप में लिखा जा सकता है कहाँ बहुपद है। तब की जड़ है और यह परिणामी के न्यूनतम बहुपद की शक्ति है
बीजगणितीय ज्यामिति
बहुपदों के शून्य के रूप में परिभाषित दो समतल बीजगणितीय वक्र दिए गए हैं P(x, y) और Q(x, y)परिणामी उनके प्रतिच्छेदन की गणना की अनुमति देता है। अधिक सटीक, की जड़ें प्रतिच्छेदन बिंदु और सामान्य ऊर्ध्वाधर स्पर्शोन्मुख के एक्स-निर्देशांक हैं, और की जड़ें प्रतिच्छेदन बिंदु और सामान्य क्षैतिज स्पर्शोन्मुख के y-निर्देशांक हैं।
परिमेय वक्र को पैरामीट्रिक समीकरण द्वारा परिभाषित किया जा सकता है
कहाँ P, Q और R बहुपद हैं। वक्र का अन्तर्निहित समीकरण किसके द्वारा दिया जाता है
इस वक्र की डिग्री उच्चतम डिग्री है P, Q और R, जो परिणामी की कुल डिग्री के बराबर है।
प्रतीकात्मक एकीकरण
प्रतीकात्मक एकीकरण में, तर्कसंगत अंश के प्रतिपक्षी की गणना करने के लिए, आंशिक अंश अपघटन का उपयोग तर्कसंगत भाग में अभिन्न को विघटित करने के लिए किया जाता है, जो तर्कसंगत अंशों का योग होता है, जिनके प्रतिपक्षी तर्कसंगत अंश होते हैं, और लघुगणकीय भाग जो तर्कसंगत अंश का योग होता है रूप के अंश
कहाँ Q वर्ग मुक्त बहुपद है और P से कम कोटि का बहुपद है Q. इस तरह के समारोह के प्रतिपक्षी में आवश्यक रूप से लघुगणक और आम तौर पर बीजगणितीय संख्याएं शामिल होती हैं (की जड़ें Q). वास्तव में, प्रतिपक्षी है
जहां योग की सभी जटिल जड़ों पर चलता है Q.
इस अभिव्यक्ति में शामिल बीजगणितीय संख्याओं की संख्या आम तौर पर की डिग्री के बराबर होती है Q, लेकिन यह अक्सर होता है कि कम बीजगणितीय संख्याओं वाले व्यंजक की गणना की जा सकती है। डैनियल लाजार्ड-रिओबू-बैरी ट्रैगर विधि अभिव्यक्ति उत्पन्न करती है, जहां बीजगणितीय संख्याओं की संख्या न्यूनतम होती है, बीजीय संख्याओं के साथ किसी भी गणना के बिना।
होने देना
- परिणामी का वर्ग-मुक्त गुणनखंड हो जो दाईं ओर दिखाई देता है। Trager ने साबित कर दिया कि प्रतिपक्षी है
जहां आंतरिक योग की जड़ों पर चलते हैं (अगर योग शून्य है, खाली योग होने के नाते), और डिग्री का बहुपद है i में x. Lazard-Rioboo योगदान इसका प्रमाण है डिग्री का बहुपद सबसे बड़ा सामान्य विभाजक#उपपरिणाम है i का और इस प्रकार यह मुफ्त में प्राप्त किया जाता है यदि परिणामी की गणना बहुपद महानतम सामान्य विभाजक#उपपरिणाम छद्म-शेष अनुक्रम|उपपरिणाम छद्म-शेष अनुक्रम द्वारा की जाती है।
कंप्यूटर बीजगणित
सभी पूर्ववर्ती अनुप्रयोग, और कई अन्य, दिखाते हैं कि परिणामी कंप्यूटर बीजगणित में मौलिक उपकरण है। वास्तव में अधिकांश कंप्यूटर बीजगणित प्रणालियों में परिणामकों की गणना का कुशल कार्यान्वयन शामिल है।
सजातीय परिणाम
परिणामी को दो अनिश्चित बहुपदों में दो सजातीय बहुपदों के लिए भी परिभाषित किया गया है। दो सजातीय बहुपद दिए गए हैं P(x, y) और Q(x, y) संबंधित कुल डिग्रियों का p और q, उनका सजातीय परिणाम रैखिक मानचित्र के मोनोमियल आधार पर मैट्रिक्स का निर्धारक है
कहाँ A डिग्री के द्विभाजित सजातीय बहुपदों पर चलता है q − 1, और B डिग्री के सजातीय बहुपदों पर चलता है p − 1. दूसरे शब्दों में, का सजातीय परिणाम P और Q का परिणाम है
P(x, 1) और Q(x, 1) जब उन्हें डिग्री के बहुपद के रूप में माना जाता है p और q (उनकी डिग्री x उनकी कुल डिग्री से कम हो सकता है):
(Res के कैपिटलाइज़ेशन का उपयोग यहाँ दो परिणामों को अलग करने के लिए किया गया है, हालाँकि संक्षिप्त नाम के कैपिटलाइज़ेशन के लिए कोई मानक नियम नहीं है)।
सजातीय परिणामी में अनिवार्य रूप से सामान्य परिणाम के समान गुण होते हैं, अनिवार्य रूप से दो अंतरों के साथ: बहुपद जड़ों के बजाय, प्रक्षेपी रेखा में शून्य पर विचार किया जाता है, और बहुपद की डिग्री रिंग होमोमोर्फिज्म के तहत नहीं बदल सकती है। वह है:
- अभिन्न डोमेन पर दो सजातीय बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र पर गैर-शून्य सामान्य शून्य होता है।
- अगर P और Q क्रमविनिमेय वलय में गुणांक वाले दो द्विभाजित सजातीय बहुपद हैं R, और की अंगूठी समरूपता R दूसरे क्रमविनिमेय रिंग में S, फिर बढ़ा रहा है बहुपदों पर R, वाले हैं
- चर के किसी भी अनुमानित परिवर्तन के तहत शून्य होने के लिए सजातीय परिणामी की संपत्ति अपरिवर्तनीय है।
सामान्य परिणामी की कोई भी संपत्ति समान रूप से सजातीय परिणामी तक विस्तारित हो सकती है, और परिणामी संपत्ति सामान्य परिणामी की संबंधित संपत्ति की तुलना में या तो बहुत समान या सरल होती है।
मैकाले का परिणाम
मैकाले का परिणामी, जिसका नाम फ्रांसिस सॉवरबी मैकाले के नाम पर रखा गया है, जिसे बहुभिन्नरूपी परिणामी, या बहुपद परिणामी भी कहा जाता है,[3] सजातीय परिणाम का सामान्यीकरण है n सजातीय बहुपद में n अनिश्चित (चर)। इनके गुणांकों में मैकाले का परिणामी बहुपद है n सजातीय बहुपद जो लुप्त हो जाते हैं यदि और केवल यदि बहुपदों का बीजगणितीय रूप से बंद क्षेत्र में सामान्य गैर-शून्य समाधान होता है जिसमें गुणांक होते हैं, या, समकक्ष, यदि n बहुपदों द्वारा परिभाषित हाइपर सतहों में सामान्य शून्य होता है n –1 आयामी प्रक्षेपण स्थान। ग्रोबनर आधार के साथ बहुभिन्नरूपी परिणामी | ग्रोबनर आधार, प्रभावी उन्मूलन सिद्धांत (कंप्यूटर पर उन्मूलन सिद्धांत) के मुख्य उपकरणों में से है।
सजातीय परिणामी की तरह, मैकाले को निर्धारकों के साथ परिभाषित किया जा सकता है, और इस प्रकार रिंग होमोमोर्फिज़्म के तहत अच्छा व्यवहार करता है। हालाँकि, इसे निर्धारक द्वारा परिभाषित नहीं किया जा सकता है। यह इस प्रकार है कि पहले इसे सामान्य बहुपदों पर परिभाषित करना आसान है।
सामान्य सजातीय बहुपदों का परिणाम
डिग्री का सजातीय बहुपद d में n चर तक हो सकते हैं
गुणांक; इसे सामान्य कहा जाता है, यदि ये गुणांक अलग-अलग अनिश्चित हैं।
होने देना होना n में सामान्य सजातीय बहुपद n संबंधित कुल डिग्री के अनिश्चित साथ में, वे शामिल होते हैं
अनिश्चित गुणांक। होने देना C इन सभी में पूर्णांकों पर बहुपद वलय हो अनिश्चित गुणांक। बहुपद इस प्रकार से हैं और उनका परिणामी (अभी भी परिभाषित किया जाना है) संबंधित है C.
मैकाले की डिग्री पूर्णांक है जो मैकाले के सिद्धांत में मौलिक है। परिणामी को परिभाषित करने के लिए, कोई मैकाले मैट्रिक्स पर विचार करता है, जो कि के मोनोमियल आधार पर मैट्रिक्स है C-रैखिक नक्शा
जिसमें प्रत्येक डिग्री के सजातीय बहुपदों पर चलता है और कोडोमेन है Cडिग्री के सजातीय बहुपदों का मॉड्यूल D.
अगर n = 2, मैकाले मैट्रिक्स स्क्वायर मैट्रिक्स है, और वर्ग मैट्रिक्स है, लेकिन यह अब सत्य नहीं है n > 2. इस प्रकार, निर्धारक पर विचार करने के बजाय, सभी अधिकतम लघु (रैखिक बीजगणित) पर विचार किया जाता है, जो वर्ग उपमात्रियों के निर्धारक होते हैं जिनकी मैकाले मैट्रिक्स के रूप में कई पंक्तियाँ होती हैं। मैकाले ने सिद्ध किया कि C-आदर्श इन प्रमुख नाबालिगों द्वारा उत्पन्न प्रमुख आदर्श है, जो इन नाबालिगों के सबसे बड़े सामान्य विभाजक द्वारा उत्पन्न होता है। जैसा कि पूर्णांक गुणांक वाले बहुपदों के साथ काम कर रहा है, यह सबसे बड़ा सामान्य विभाजक इसके चिह्न तक परिभाषित किया गया है। सामान्य मैकाले का परिणाम सबसे बड़ा सामान्य विभाजक है जो बन जाता है 1, कब, प्रत्येक के लिए i, शून्य के सभी गुणांकों के लिए प्रतिस्थापित किया जाता है के गुणांक को छोड़कर जिसके लिए प्रतिस्थापित किया गया है।
जेनेरिक मैकाले परिणामी के गुण
- जेनेरिक मैकाले परिणामी अलघुकरणीय बहुपद है।
- यह डिग्री का सजातीय है के गुणांक में कहाँ बेज़ाउट प्रमेय है|बेज़ाउट बाउंड।
- डिग्री के प्रत्येक एकपदी के परिणाम के साथ उत्पाद D में के आदर्श के अंतर्गत आता है द्वारा उत्पन्न
क्षेत्र पर बहुपदों का परिणाम
अब से, हम मानते हैं कि सजातीय बहुपद डिग्रियों का क्षेत्र में उनके गुणांक हैं (गणित) k, अर्थात् वे इससे संबंधित हैं उनके परिणामी को के तत्व के रूप में परिभाषित किया गया है k के वास्तविक गुणांकों द्वारा अनिश्चित गुणांकों को सामान्य परिणामी में प्रतिस्थापित करके प्राप्त किया जाता है परिणामी की मुख्य संपत्ति यह है कि यह शून्य है अगर और केवल अगर के बीजगणितीय रूप से बंद विस्तार में शून्येतर सामान्य शून्य है k.
केवल अगर इस प्रमेय का हिस्सा पूर्ववर्ती पैराग्राफ की अंतिम संपत्ति से निकलता है, और हिल्बर्ट के नलस्टेलेंसैट्ज#प्रोजेक्टिव नलस्टेलेंसैट्ज का प्रभावी संस्करण है: यदि परिणामी गैर-शून्य है, तो
कहाँ मैकाले डिग्री है, और अधिकतम सजातीय आदर्श है। इसका अर्थ यह है कि अद्वितीय सामान्य शून्य के अलावा कोई अन्य सामान्य शून्य नहीं है, (0, ..., 0), का
संगणनीयता
चूंकि परिणामी की गणना निर्धारकों और बहुपद महानतम सामान्य विभाजकों की गणना करने के लिए कम हो सकती है, परिणामों की गणना के लिए चरणों की सीमित संख्या में एल्गोरिदम हैं।
हालाँकि, सामान्य परिणामी बहुत उच्च डिग्री का बहुपद है (घातांक में n) बड़ी संख्या में अनिश्चितताओं पर निर्भर करता है। यह इस प्रकार है, बहुत छोटे को छोड़कर n और इनपुट बहुपदों की बहुत छोटी डिग्री, सामान्य परिणाम व्यवहार में, आधुनिक कंप्यूटरों के साथ भी गणना करना असंभव है। इसके अलावा, सामान्य परिणामी के एकपद्स की संख्या इतनी अधिक है, कि, यदि यह गणना योग्य होगा, तो परिणाम को उपलब्ध स्मृति उपकरणों पर संग्रहीत नहीं किया जा सकता है, यहां तक कि छोटे मूल्यों के लिए भी n और इनपुट बहुपदों की डिग्री।
इसलिए, परिणामी की गणना करना केवल उन बहुपदों के लिए समझ में आता है जिनके गुणांक क्षेत्र से संबंधित हैं या क्षेत्र में कुछ अनिश्चित में बहुपद हैं।
क्षेत्र में गुणांक वाले इनपुट बहुपदों के मामले में, परिणामी का सटीक मूल्य शायद ही कभी महत्वपूर्ण होता है, केवल इसकी समानता (या नहीं) शून्य मायने रखती है। जैसा कि परिणामी शून्य है यदि और केवल यदि मैकाले मैट्रिक्स की रैंक इसकी पंक्तियों की संख्या से कम है, तो यह समानता शून्य हो सकती है, जिसे मैकाले मैट्रिक्स में गॉसियन विलोपन लागू करके परीक्षण किया जा सकता है। यह समय जटिलता प्रदान करता है कहाँ d इनपुट बहुपद की अधिकतम डिग्री है।
और मामला जहां परिणामी की गणना उपयोगी जानकारी प्रदान कर सकती है, जब इनपुट बहुपद के गुणांक कम संख्या में बहुपद होते हैं, जिन्हें अक्सर पैरामीटर कहा जाता है। इस मामले में, परिणामी, यदि शून्य नहीं है, तो पैरामीटर स्थान में ऊनविम पृष्ठ को परिभाषित करता है। बिंदु इस हाइपर सतह से संबंधित है, अगर और केवल अगर के मान हैं जो, बिंदु के निर्देशांक के साथ इनपुट बहुपदों का शून्य है। दूसरे शब्दों में, परिणामी के उन्मूलन सिद्धांत का परिणाम है इनपुट बहुपदों से।
यू-परिणामस्वरूप
मैकाले का परिणामी विधि प्रदान करता है, जिसे मैकाले द्वारा यू-परिणाम कहा जाता है, बहुपद समीकरणों की प्रणालियों को हल करने के लिए।
दिया गया n − 1 सजातीय बहुपद डिग्रियों का में n अनिश्चित मैदान के ऊपर k, उनका 'यू'-परिणाम का परिणाम है n बहुआयामी पद कहाँ
सामान्य रेखीय रूप है जिसके गुणांक नए अनिश्चित हैं नोटेशन या इन सामान्य गुणांकों के लिए पारंपरिक है, और यू-परिणामी शब्द का मूल है।
यू-परिणामी में सजातीय बहुपद है यह शून्य है अगर और केवल अगर सामान्य शून्य बीजगणितीय विविधता के सकारात्मक आयाम का प्रक्षेपी बीजगणितीय सेट बनाएं (अर्थात, बीजगणितीय रूप से बंद विस्तार पर असीम रूप से कई प्रक्षेपी शून्य हैं k). यदि U-परिणामी शून्य नहीं है, तो इसकी डिग्री बेज़ाउट प्रमेय है|बेज़ाउट बाउंड U-परिणामस्वरूप बीजगणितीय रूप से बंद विस्तार पर गुणनखण्ड करता है k रैखिक रूपों के उत्पाद में। अगर ऐसा रैखिक कारक है, तब के सामान्य शून्य के सजातीय निर्देशांक हैं इसके अलावा, प्रत्येक सामान्य शून्य इन रैखिक कारकों में से से प्राप्त किया जा सकता है, और कारक के रूप में बहुलता, प्रतिच्छेदन बहुलता के बराबर है इस शून्य पर। दूसरे शब्दों में, यू-परिणामस्वरूप बेज़ाउट प्रमेय का पूर्णतः स्पष्ट संस्करण प्रदान करता है।
अधिक बहुपदों और अभिकलन का विस्तार
मैकाले द्वारा परिभाषित यू-परिणाम को समीकरणों की प्रणाली में सजातीय बहुपदों की संख्या की आवश्यकता होती है , कहाँ अनिश्चित की संख्या है। 1981 में, डैनियल लाजार्ड ने इस धारणा को उस मामले तक बढ़ाया जहां बहुपदों की संख्या भिन्न हो सकती है , और परिणामी गणना विशेष गॉसियन उन्मूलन प्रक्रिया के माध्यम से प्रतीकात्मक निर्धारक संगणना के बाद की जा सकती है।
होने देना सजातीय बहुपद हो डिग्रियों का मैदान के ऊपर k. सामान्यता के नुकसान के बिना, कोई ऐसा मान सकता है सेटिंग के लिए i > k, मैकाले बाध्य है होने देना नए अनिश्चित बनें और परिभाषित करें इस मामले में, मैकॉले मैट्रिक्स को मोनोमियल्स के आधार पर मैट्रिक्स के रूप में परिभाषित किया गया है रैखिक मानचित्र का
कहाँ, प्रत्येक के लिए i, शून्य और डिग्री के सजातीय बहुपदों से मिलकर रैखिक स्थान पर चलता है .
गाऊसी विलोपन के प्रकार द्वारा मैकाले मैट्रिक्स को कम करने पर, रैखिक रूपों का वर्ग मैट्रिक्स प्राप्त होता है इस मैट्रिक्स का निर्धारक U- परिणामी है। मूल यू-परिणाम के साथ, यह शून्य है अगर और केवल अगर असीमित रूप से कई आम प्रोजेक्टिव शून्य हैं (यानी प्रोजेक्टिव बीजगणितीय सेट द्वारा परिभाषित किया गया है के बीजगणितीय समापन पर अपरिमित रूप से कई बिंदु हैं k). फिर से मूल यू-परिणाम के साथ, जब यह यू-परिणाम शून्य नहीं होता है, तो यह किसी भी बीजगणितीय रूप से बंद विस्तार पर रैखिक कारकों में कारक होता है k. इन रैखिक कारकों के गुणांक सामान्य शून्य के सजातीय निर्देशांक हैं और सामान्य शून्य की बहुलता संगत रैखिक कारक की बहुलता के बराबर होती है।
मैकाले मैट्रिक्स की पंक्तियों की संख्या से कम है कहाँ e ~ 2.7182 सामान्य ई (गणितीय स्थिरांक) है, और d की डिग्री का अंकगणितीय माध्य है यह इस प्रकार है कि प्रोजेक्टिव शून्य की सीमित संख्या के साथ बहुपद समीकरणों की प्रणाली के सभी समाधान समय जटिलता में निर्धारित किए जा सकते हैं हालांकि यह सीमा बड़ी है, यह निम्नलिखित अर्थों में लगभग इष्टतम है: यदि सभी इनपुट डिग्री समान हैं, तो प्रक्रिया की समय जटिलता समाधान की अपेक्षित संख्या (बेज़ाउट प्रमेय) में बहुपद है। यह गणना व्यावहारिक रूप से व्यवहार्य हो सकती है जब n, k और d बड़े नहीं हैं।
यह भी देखें
- उन्मूलन सिद्धांत
- सब्रेसल्टेंट
- अरैखिक बीजगणित
टिप्पणियाँ
- ↑ Salmon 1885, lesson VIII, p. 66.
- ↑ Macaulay 1902.
- ↑ Cox, David; Little, John; O'Shea, Donal (2005), Using Algebraic Geometry, Springer Science+Business Media, ISBN 978-0387207339, Chapter 3. Resultants
संदर्भ
- Gelfand, I. M.; Kapranov, M.M.; Zelevinsky, A.V. (1994), Discriminants, resultants, and multidimensional determinants, Boston: Birkhäuser, ISBN 978-0-8176-3660-9
- Macaulay, F. S. (1902), "Some Formulæ in Elimination", Proc. London Math. Soc., 35: 3–27, doi:10.1112/plms/s1-35.1.3
- Macaulay, F. S. (1916), The Algebraic Theory of Modular Systems, The Cornell Library of Historical Mathematical Monographs, Cambridge University Press, ISBN 978-1275570412
- Salmon, George (1885) [1859], Lessons introductory to the modern higher algebra (4th ed.), Dublin, Hodges, Figgis, and Co., ISBN 978-0-8284-0150-0