बोल्ट्जमैन संबंध: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 41: | Line 41: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 09/06/2023]] | [[Category:Created On 09/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:44, 16 October 2023
प्लाज़्मा (भौतिकी) में, बोल्ट्जमैन संबंध समतापीय आवेशित कण द्रव की संख्या घनत्व का वर्णन करता हैं। जब द्रव पर कार्य करने वाले थर्मल और इलेक्ट्रोस्टैटिक बल यांत्रिक संतुलन तक पहुँच जाते हैं।
कई स्थितियों में, प्लाज्मा के इलेक्ट्रॉन घनत्व को उनके छोटे द्रव्यमान और उच्च गतिशीलता के कारण बोल्ट्जमैन संबंध के अनुसार व्यवहार करने के लिए माना जाता है।[1]
समीकरण
यदि दो पास के स्थानों पर स्थानीय इलेक्ट्रोस्टैटिक क्षमता φ1 और φ2 है तो इलेक्ट्रॉनों के लिए बोल्ट्जमान संबंध रूप लेता हैं।[2]
जहाँ ne इलेक्ट्रॉन संख्या घनत्व है, Te प्लाज्मा का तापमान है और kB बोल्ट्जमैन स्थिरांक है।
व्युत्पत्ति
चुंबकीय क्षेत्र की अनुपस्थिति में प्लाज्मा भौतिकी के दो-तरल मॉडल के संवेग द्रव समीकरण का उपयोग करके इलेक्ट्रॉनों के लिए बोल्ट्जमैन संबंध की सरल व्युत्पत्ति प्राप्त की जा सकती है। जब इलेक्ट्रॉन गतिशील संतुलन तक पहुँचते हैं, तो संवेग समीकरणों की जड़त्वीय और टकराव का नियम शून्य होता हैं, और समीकरण में केवल दबाव और विद्युत शब्द ही शेष रह जाते हैं। इज़ोटेर्माल प्रवाह के लिए, दबाव बल रूप लेता हैं।
जबकि विद्युत शब्द हैं।
- .
एकीकरण ऊपर दी गई अभिव्यक्ति की ओर ले जाता है।
प्लाज्मा भौतिकी की कई समस्याओं में, पॉइसन समीकरण के आधार पर विद्युत क्षमता की गणना करना उपयोगी नहीं हैं। क्योंकि इलेक्ट्रॉन और आयन घनत्व प्राथमिकता ज्ञात नहीं हैं, और यदि वे थे, तो प्लाज्मा (भौतिकी) प्लाज्मा क्षमता के कारण शुद्ध आवेश घनत्व दो बड़ी मात्राओं, इलेक्ट्रॉन और आयन आवेश घनत्वों का छोटा अंतर है। यदि इलेक्ट्रॉन घनत्व ज्ञात है और धारणाएँ पर्याप्त रूप से सही हैं, तो विद्युत क्षमता की गणना केवल बोल्ट्जमैन संबंध से की जा सकती है।
गलत स्थितियाँ
उदाहरण के लिए, बोल्ट्जमैन संबंध में विसंगतियां हो सकती हैं | जब दोलन इतनी तेजी से होते हैं कि इलेक्ट्रॉनों को नया संतुलन नहीं मिल पाता है (उदाहरण के लिए प्लाज्मा दोलन को देखें) या जब इलेक्ट्रॉनों को चुंबकीय क्षेत्र द्वारा गति करने से रोका जाता है (उदाहरण के लिए निम्न संकर दोलन देखें)।
यह भी देखें
संदर्भ
- Wesson, John; et al. (2004). Tokamaks. Oxford University Press. ISBN 978-0-19-850922-6.
- ↑ Chen, Francis F. (2006). प्लाज्मा भौतिकी और नियंत्रित संलयन का परिचय (2nd ed.). Springer. p. 75. ISBN 978-0-306-41332-2.
- ↑ Inan, Umran S. (2011). इंजीनियरों और वैज्ञानिकों के लिए प्लाज्मा भौतिकी के सिद्धांत. Marek Gołkowski. Cambridge: Cambridge University Press. ISBN 978-0-511-91683-0. OCLC 700691127.