रेखीय समीकरण: Difference between revisions
m (few minor changes) |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Equation that does not involve powers or products of variables}} | {{Short description|Equation that does not involve powers or products of variables}} | ||
[[File:Linear Function Graph.svg|thumb|300px|दो चरों में रैखिक समीकरणों के दो रेखांकन]] | [[File:Linear Function Graph.svg|thumb|300px|दो चरों में रैखिक समीकरणों के दो रेखांकन]] | ||
एक रेखीय समीकरण को <math>a_1x_1+\ldots+a_nx_n+b=0,</math> रूप मे प्रदर्शित किया जा सकता है, जहां <math>x_1,\ldots,x_n</math> चर (या अज्ञात) हैं तथा <math>b,a_1,\ldots,a_n</math> गुणांक हैं, जो प्रयाः वास्तविक संख्याएं होती हैं। गुणांकों को समीकरण के पैरामीटर (गणित में स्थिर राशी) के रूप में माना जा सकता है, और स्वेच्छाचारी (मनमाने) व्यंजक (अचर) हो सकते हैं। एक सार्थक समीकरण प्राप्त करने के लिए, सभी गुणांक <math>a_1, \ldots, a_n</math>का शून्य न होना आवश्यक है। | एक रेखीय समीकरण को <math>a_1x_1+\ldots+a_nx_n+b=0,</math> रूप मे प्रदर्शित किया जा सकता है, जहां <math>x_1,\ldots,x_n</math> चर (या अज्ञात) हैं तथा <math>b,a_1,\ldots,a_n</math> गुणांक हैं, जो प्रयाः वास्तविक संख्याएं होती हैं। गुणांकों को समीकरण के पैरामीटर (गणित में स्थिर राशी) के रूप में माना जा सकता है, और स्वेच्छाचारी (मनमाने) व्यंजक (अचर) हो सकते हैं। एक सार्थक समीकरण प्राप्त करने के लिए, सभी गुणांक <math>a_1, \ldots, a_n</math> का शून्य न होना आवश्यक है। | ||
वैकल्पिक रूप से, किसी | वैकल्पिक रूप से, किसी आधार पर एक रैखिक बहुपद को शून्य के बराबर करके एक रैखिक समीकरण प्राप्त किया जा सकता है, जिससे गुणांक लिया जाता है। | ||
इस तरह के समीकरण के समाधान वे मान होते हैं, जो अज्ञात के लिए प्रतिस्थापित होने पर समानता को सत्य बनाते हैं। | इस तरह के समीकरण के समाधान वे मान होते हैं, जो अज्ञात के लिए प्रतिस्थापित होने पर समानता को सत्य बनाते हैं। |
Revision as of 10:37, 6 July 2022
एक रेखीय समीकरण को रूप मे प्रदर्शित किया जा सकता है, जहां चर (या अज्ञात) हैं तथा गुणांक हैं, जो प्रयाः वास्तविक संख्याएं होती हैं। गुणांकों को समीकरण के पैरामीटर (गणित में स्थिर राशी) के रूप में माना जा सकता है, और स्वेच्छाचारी (मनमाने) व्यंजक (अचर) हो सकते हैं। एक सार्थक समीकरण प्राप्त करने के लिए, सभी गुणांक का शून्य न होना आवश्यक है।
वैकल्पिक रूप से, किसी आधार पर एक रैखिक बहुपद को शून्य के बराबर करके एक रैखिक समीकरण प्राप्त किया जा सकता है, जिससे गुणांक लिया जाता है।
इस तरह के समीकरण के समाधान वे मान होते हैं, जो अज्ञात के लिए प्रतिस्थापित होने पर समानता को सत्य बनाते हैं।
केवल एक चर के मामले में, ठीक एक समाधान है (बशर्ते कि ) अक्सर, रैखिक समीकरण शब्द इस विशेष मामले को परोक्ष रूप से संदर्भित करता है, जिसमें चर को समझदारी से अज्ञात कहा जाता है।
दो चरों के मामले में, प्रत्येक समाधान की व्याख्या यूक्लिडियन तल के एक बिंदु के कार्तीय निर्देशांक के रूप में की जा सकती है। एक रैखिक समीकरण के समाधान यूक्लिडियन तल में एक रेखा बनाते हैं, और, इसके विपरीत, प्रत्येक रेखा को दो चरों में एक रैखिक समीकरण के सभी समाधानों के समुच्चय के रूप में देखा जा सकता है। इस प्रकार के समीकरणों का वर्णन करने के लिए यह रैखिक शब्द का मूल है। अधिक सामान्यतः, में एक रैखिक समीकरण के समाधान n चर एक हाइपरप्लेन बनाते हैं (आयाम का एक उप-स्थान) n − 1) आयाम के यूक्लिडियन अंतरिक्ष में n.
रैखिक समीकरण अक्सर सभी गणित और भौतिकी और इंजीनियरिंग में उनके अनुप्रयोगों में होते हैं, आंशिक रूप से क्योंकि गैर-रैखिक सिस्टम अक्सर रैखिक समीकरणों द्वारा अनुमानित होते हैं।
यह लेख वास्तविक संख्याओं के क्षेत्र से गुणांक वाले एकल समीकरण के मामले पर विचार करता है, जिसके लिए वास्तविक समाधान का अध्ययन किया जाता है। इसकी सभी सामग्री जटिल समाधानों पर लागू होती है, और अधिक सामान्यतः, किसी भी क्षेत्र में गुणांक और समाधान वाले रैखिक समीकरणों के लिए। एक साथ कई रैखिक समीकरणों के मामले में, रैखिक समीकरणों की प्रणाली देखें।
एक चर
एक चर में एक रैखिक समीकरण x रूप का है कहाँ पे a तथा b वास्तविक संख्याएं हैं और .
की जड़ .
दो चर
दो चरों में एक रैखिक समीकरण x तथा y रूप का है कहाँ पे a, b तथा c वास्तविक संख्याएँ ऐसी होती हैं कि . [1]
इसके असीम रूप से कई संभावित समाधान हैं।
रैखिक कार्य
यदि b ≠ 0, समीकरण
एकल चर में एक रैखिक समीकरण है y के प्रत्येक मूल्य के लिए x. इसलिए इसका एक अनूठा समाधान है y, जो द्वारा दिया गया है
यह एक फ़ंक्शन को परिभाषित करता है। इस फ़ंक्शन का ग्राफ ढलान वाली एक रेखा है और y-अवरोध|yसंवाद वे फलन जिनका ग्राफ एक रेखा है, आमतौर पर कलन के संदर्भ में रैखिक फलन कहलाते हैं। हालांकि, रैखिक बीजगणित में, एक रैखिक फ़ंक्शन एक ऐसा फ़ंक्शन होता है जो योग को सारांश की छवियों के योग के लिए मैप करता है। तो, इस परिभाषा के लिए, उपरोक्त फ़ंक्शन केवल तभी रैखिक होता है जब c = 0, वह तब होता है जब रेखा मूल बिंदु से होकर गुजरती है। भ्रम से बचने के लिए, जिन कार्यों का ग्राफ एक मनमानी रेखा है, उन्हें अक्सर एफ़िन फ़ंक्शन कहा जाता है।
ज्यामितीय व्याख्या
पर x = a [[File:y is b.svg|thumb|समीकरण की क्षैतिज रेखा y इसके प्रतिच्छेदन का समन्वय करें {mvar|y}}-अक्ष)। इस स्थिति में इसका रैखिक समीकरण लिखा जा सकता है
यदि, इसके अलावा, रेखा क्षैतिज नहीं है, तो इसे इसके ढलान और इसके द्वारा परिभाषित किया जा सकता है xसंवाद x0. इस स्थिति में, इसका समीकरण लिखा जा सकता है
या, समान रूप से,
ये रूप एक गैर-ऊर्ध्वाधर रेखा को एक फ़ंक्शन के ग्राफ के रूप में मानने की आदत पर निर्भर करते हैं।[2]समीकरण द्वारा दी गई रेखा के लिए
इन रूपों को संबंधों से आसानी से निकाला जा सकता है
बिंदु-ढलान रूप या बिंदु-ढाल रूप
एक गैर-ऊर्ध्वाधर रेखा को इसके ढलान द्वारा परिभाषित किया जा सकता है m, और निर्देशांक रेखा के किसी भी बिंदु पर। इस स्थिति में, रेखा का एक रैखिक समीकरण है
या
यह समीकरण भी लिखा जा सकता है
इस बात पर बल देने के लिए कि किन्हीं दो बिंदुओं के निर्देशांकों से एक रेखा की ढलान की गणना की जा सकती है।
अवरोधन रूप
एक रेखा जो एक अक्ष के समानांतर नहीं है और मूल बिंदु से नहीं गुजरती है, कुल्हाड़ियों को दो अलग-अलग बिंदुओं में काटती है। अवरोधन मान x0 तथा {गणित|य0}} इन दो बिंदुओं में से शून्येतर हैं, और रेखा का एक समीकरण है[3]: (यह सत्यापित करना आसान है कि इस समीकरण द्वारा परिभाषित रेखा में है x0 तथा {गणित|य0}} अवरोधन मान के रूप में)।
दो सूत्री रूप
दो अलग-अलग बिंदुओं को देखते हुए (x1, यू1) तथा {गणित|(x2, यू2)}}, उनसे होकर गुजरने वाली ठीक एक रेखा है। इस रेखा के रैखिक समीकरण को लिखने के कई तरीके हैं।
यदि x1 एक्स2, रेखा का ढलान है इस प्रकार, एक बिंदु-ढलान रूप है[3]: हरों को साफ़ करने से, समीकरण प्राप्त होता है
जो तब भी मान्य है जब x1 = एक्स2 (इसे सत्यापित करने के लिए, यह सत्यापित करना पर्याप्त है कि दिए गए दो बिंदु समीकरण को संतुष्ट करते हैं)।
यह रूप दिए गए दो बिंदुओं में सममित नहीं है, लेकिन स्थिर पदों को फिर से समूहित करके एक सममित रूप प्राप्त किया जा सकता है:
(दो बिंदुओं के आदान-प्रदान से समीकरण के बाईं ओर का चिन्ह बदल जाता है)।
निर्धारक रूप
एक रेखा के समीकरण के दो-बिंदु रूप को केवल एक सारणिक के रूप में व्यक्त किया जा सकता है। उसके लिए दो सामान्य तरीके हैं।
समीकरण समीकरण में सारणिक के विस्तार का परिणाम है
समीकरण समीकरण में निर्धारक अपनी पहली पंक्ति के संबंध में विस्तार करके प्राप्त किया जा सकता है
बहुत ही सरल और स्मरक होने के अलावा, इस रूप में एक हाइपरप्लेन के अधिक सामान्य समीकरण का एक विशेष मामला होने का लाभ होता है। n आयाम की जगह में अंक n – 1. ये समीकरण प्रक्षेप्य स्थान में बिंदुओं की रैखिक निर्भरता की स्थिति पर निर्भर करते हैं।
दो से अधिक चर
दो से अधिक चरों वाले एक रैखिक समीकरण को हमेशा के रूप में माना जा सकता है
गुणांक b, अक्सर निरूपित a0 को स्थिर पद कहा जाता है (कभी-कभी पुरानी किताबों में निरपेक्ष पद[4][5]) संदर्भ के आधार पर, गुणांक शब्द को के लिए आरक्षित किया जा सकता है ai साथ {गणित|i> 0}}।
व्यवहार करते समय चर, इसका उपयोग करना आम है तथा अनुक्रमित चर के बजाय।
ऐसे समीकरण का एक हल है a n-टुपल्स जैसे कि टपल के प्रत्येक तत्व को संबंधित चर के लिए प्रतिस्थापित करना समीकरण को एक वास्तविक समानता में बदल देता है।
एक समीकरण के अर्थपूर्ण होने के लिए, कम से कम एक चर का गुणांक गैर-शून्य होना चाहिए। वास्तव में, यदि प्रत्येक चर का एक शून्य गुणांक है, तो, जैसा कि एक चर के लिए उल्लेख किया गया है, समीकरण या तो असंगत है (के लिए .) b ≠ 0) कोई समाधान नहीं होने के कारण, या सभी n-टुपल्स समाधान हैं।
{mvar|n}}-tuples जो एक रैखिक समीकरण के समाधान हैं n चर an . के बिंदुओं के कार्तीय निर्देशांक हैं {गणित|(n − 1)}}-विमीय हाइपरप्लेन in an n-डायमेंशनल यूक्लिडियन स्पेस (या एफाइन स्पेस अगर गुणांक कॉम्प्लेक्स नंबर हैं या किसी फील्ड से संबंधित हैं)। तीन चर के मामले में, यह हाइपरप्लेन एक विमान है।
यदि के साथ एक रैखिक समीकरण दिया जाता है {गणित|एj ≠ 0}}, तो समीकरण को हल किया जा सकता है xj, उपज
यदि गुणांक वास्तविक संख्याएं हैं, तो यह एक वास्तविक-मूल्यवान फ़ंक्शन को परिभाषित करता है n वास्तविक चर।
यह भी देखें
- एक वलय पर रैखिक समीकरण
- बीजीय समीकरण
- रैखिक असमानता
- अरेखीय समीकरण
टिप्पणियाँ
- ↑ Barnett, Ziegler & Byleen 2008, pg. 15
- ↑ Larson & Hostetler 2007, p. 25
- ↑ 3.0 3.1 Wilson & Tracey 1925, pp. 52-53
- ↑ Charles Hiram Chapman (1892). An Elementary Course in Theory of Equations. J. Wiley & sons. p. 17. पृष्ठ 17 का उद्धरण
- ↑ David Martin Sensenig (1890). Numbers Universalized: An Advanced Algebra. American Book Company. p. 113. पृष्ठ 113 का उद्धरण
संदर्भ
- Barnett, R.A.; Ziegler, M.R.; Byleen, K.E. (2008), College Mathematics for Business, Economics, Life Sciences and the Social Sciences (11th ed.), Upper Saddle River, N.J.: Pearson, ISBN 978-0-13-157225-6
- Larson, Ron; Hostetler, Robert (2007), Precalculus:A Concise Course, Houghton Mifflin, ISBN 978-0-618-62719-6
- Wilson, W.A.; Tracey, J.I. (1925), Analytic Geometry (revised ed.), D.C. Heath
बाहरी संबंध
- "Linear equation", Encyclopedia of Mathematics, EMS Press, 2001 [1994]