आर्टिन-टिट समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 24: Line 24:
== सामान्य गुण ==
== सामान्य गुण ==


आर्टिन-टिट मोनोइड्स उनके विभाज्यता संबंधों की जांच के आधार पर [[गार्साइड तत्व]] के लिए पात्र हैं, और अच्छी तरह से समझ गए हैं:
आर्टिन-टिट्स मोनॉइड संवेद्य हैं और उनके विभाज्यता संबंधों की जांच पर आधारित [[गार्साइड तत्व]] के लिए पात्र हैं और उन्हें अच्छी तरह समझा गया है:


* आर्टिन-टिट मोनॉइड रद्द करने वाले होते हैं, और वे सबसे बड़े सामान्य विभाजक और सशर्त कम से कम सामान्य गुणक स्वीकार करते हैं (जब भी एक सामान्य गुणक होता है तो कम से कम सामान्य गुणक मौजूद होता है)
* आर्टिन-टिट्स मोनॉइड संवेद्य हैं, और उनके पास सर्वाधिक साझा गुणक और शर्तपूर्ण कम साझा गुणक (जबकि सामान्यतः एक साझा गुणक होता है जबकि साझा गुणक होता है) होता है।
* अगर <math>A^+</math> एक आर्टिन-स्तन मोनोइड है, और यदि <math>W</math> संबंधित कॉक्सेटर समूह है, एक (सेट-सैद्धांतिक) खंड है <math>\sigma</math> का <math>W</math> में <math>A^+</math>, और का हर तत्व <math>A^+</math> की छवि में तत्वों के अनुक्रम के रूप में एक विशिष्ट अपघटन को स्वीकार करता है <math>\sigma</math> (लालची सामान्य रूप)।
* अगर <math>A^+</math> एक आर्टिन-स्तन मोनोइड है, और यदि <math>W</math> संबंधित कॉक्सेटर समूह है, एक (सेट-सैद्धांतिक) खंड है <math>\sigma</math> का <math>W</math> में <math>A^+</math>, और का हर तत्व <math>A^+</math> की छवि में तत्वों के अनुक्रम के रूप में एक विशिष्ट अपघटन को स्वीकार करता है <math>\sigma</math> (लालची सामान्य रूप)।


सामान्य आर्टिन-स्तन समूहों के लिए बहुत कम परिणाम ज्ञात हैं। विशेष रूप से, सामान्य मामले में निम्नलिखित बुनियादी प्रश्न खुले रहते हैं:
सामान्य आर्टिन-टिट्स समूहों के लिए कुछ ही परिणाम ज्ञात हैं। विशेष रूप से, सामान्य मामले में निम्नलिखित मौलिक प्रश्न खुले हैं:


:– समूहों और [[संयुग्मन समस्या]]ओं के लिए शब्द समस्या को हल करना – जो कि निर्णायक होने का अनुमान है,
:– समूहों और [[संयुग्मन समस्या]]ओं के लिए शब्द समस्या को हल करना – जो कि निर्णायक होने का अनुमान है,
Line 35: Line 35:
:– मरोड़ का निर्धारण — जिसे तुच्छ माना जाता है,
:– मरोड़ का निर्धारण — जिसे तुच्छ माना जाता है,


:– केंद्र का निर्धारण — जो उस मामले में तुच्छ या मोनोजेनिक माना जाता है जब समूह एक प्रत्यक्ष उत्पाद नहीं है (irreducible मामला),
:– केंद्र का निर्धारण — जो उस मामले में तुच्छ या मोनोजेनिक माना जाता है जब समूह एक प्रत्यक्ष उत्पाद नहीं है (अलघुकरणीय मामला),


:– कोहोलॉजी का निर्धारण — विशेष रूप से हल करना <math>K(\pi, 1)</math> अनुमान, यानी, एक विश्वकोश परिसर खोजना जिसका [[मौलिक समूह]] माना समूह है।
:– कोहोलॉजी का निर्धारण — विशेष रूप से हल करना <math>K(\pi, 1)</math> अनुमान, यानी, एक विश्वकोश परिसर खोजना जिसका [[मौलिक समूह]] माना समूह है।


विशेष उप-परिवारों से जुड़े आंशिक परिणाम नीचे एकत्र किए गए हैं। कुछ ज्ञात सामान्य परिणामों में, कोई उल्लेख कर सकता है:
कुछ विशिष्ट उप-परिवारों को समेटने वाले आंशिक परिणाम नीचे एकत्र किए गए हैं। कुछ ज्ञात सामान्य परिणामों में से कुछ निम्नलिखित हैं:


* आर्टिन–स्तन समूह अनंत गणनीय हैं।
* आर्टिन–स्तन समूह अनंत गणनीय हैं।
* एक आर्टिन-स्तन समूह में <math>\langle S \mid R\rangle</math>, तत्वों के वर्गों को जोड़ने वाला एकमात्र संबंध <math>s, t</math> का <math>S</math> है <math>s^2t^2 = t^2s^2</math> अगर <math>st = ts</math> में है <math>R</math> (जॉन क्रिस्प और लुइस पेरिस <ref>{{citation | last1 = Crisp | first1 = John | last2 = Paris | first2 = Luis | title = The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group | journal = [[Inventiones Mathematicae]] | date = 2001 | volume = 145 | number = 1 | pages = 19–36 | mr = 1839284 | doi = 10.1007/s002220100138 | arxiv = math/0003133 | bibcode = 2001InMat.145...19C }}</ref>).
* एक आर्टिन-स्तन समूह में <math>\langle S \mid R\rangle</math>, तत्वों के वर्गों को जोड़ने वाला एकमात्र संबंध <math>s, t</math> का <math>S</math> है <math>s^2t^2 = t^2s^2</math> अगर <math>st = ts</math> में होता है <math>R</math> (जॉन क्रिस्प और लुइस पेरिस <ref>{{citation | last1 = Crisp | first1 = John | last2 = Paris | first2 = Luis | title = The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group | journal = [[Inventiones Mathematicae]] | date = 2001 | volume = 145 | number = 1 | pages = 19–36 | mr = 1839284 | doi = 10.1007/s002220100138 | arxiv = math/0003133 | bibcode = 2001InMat.145...19C }}</ref>).
* प्रत्येक आर्टिन-स्तन प्रस्तुति के लिए <math>\langle S \mid R\rangle</math>, आर्टिन-टाइट्स मोनोइड द्वारा प्रस्तुत किया गया <math>\langle S \mid R\rangle</math> द्वारा प्रस्तुत आर्टिन-टाइट्स समूह में एम्बेड करता है <math>\langle S \mid R\rangle</math> (पेरिस<ref>{{citation | last = Paris|first= Luis | title = Artin monoids inject in their groups | journal = [[Commentarii Mathematici Helvetici]] | date = 2002 | volume = 77 | number = 3 | pages = 609–637 | mr = 1933791 | doi = 10.1007/s00014-002-8353-z | doi-access = free }}</ref>).
* प्रत्येक आर्टिन-स्तन प्रस्तुति <math>\langle S \mid R\rangle</math> के लिए ,जिसे <math>\langle S \mid R\rangle</math> से प्रस्तुत किया गया है आर्टिन-टाइट्स मोनोइड <math>\langle S \mid R\rangle</math> में समावेश किया जाता है (पेरिस<ref>{{citation | last = Paris|first= Luis | title = Artin monoids inject in their groups | journal = [[Commentarii Mathematici Helvetici]] | date = 2002 | volume = 77 | number = 3 | pages = 609–637 | mr = 1933791 | doi = 10.1007/s00014-002-8353-z | doi-access = free }}</ref>).
* प्रत्येक (अंतिम रूप से उत्पन्न) आर्टिन-स्तन मोनोइड एक परिमित गार्साइड परिवार (मैथ्यू डायर और क्रिस्टोफ़ होहलवेग) को स्वीकार करता है<ref>{{citation | last1 = Dyer | first1 = Matthew | last2 = Hohlweg | first2 = Christophe | title = Small roots, low elements, and the weak order in Coxeter groups | journal = [[Advances in Mathematics]] | date = 2016 | volume = 301 | pages = 739–784 | mr = 1839284 | doi = 10.1016/j.aim.2016.06.022 | arxiv = 1505.02058 }}</ref>). नतीजतन, आर्टिन-टिट मोनोइड्स में सामान्य सही-गुणकों का अस्तित्व निर्णायक है, और बहुभिन्नताओं की कमी प्रभावी है।
* प्रत्येक (अंतिम रूप से उत्पन्न) आर्टिन-स्तन मोनोइड एक परिमित गार्साइड परिवार (मैथ्यू डायर और क्रिस्टोफ़ होहलवेग) को स्वीकार करता है<ref>{{citation | last1 = Dyer | first1 = Matthew | last2 = Hohlweg | first2 = Christophe | title = Small roots, low elements, and the weak order in Coxeter groups | journal = [[Advances in Mathematics]] | date = 2016 | volume = 301 | pages = 739–784 | mr = 1839284 | doi = 10.1016/j.aim.2016.06.022 | arxiv = 1505.02058 }}</ref>).इसके परिणामस्वरूप, आर्टिन-टिट्स मोनॉइड में सामान्य दाहिने-गुणक अस्तित्ववादी हैं, और बहुभिन्नांशों का संक्षेप मौजूद है।


== आर्टिन-स्तन समूहों के विशेष वर्ग ==
== आर्टिन-स्तन समूहों के विशेष वर्ग ==


कॉक्सेटर मैट्रिक्स के गुणों के संदर्भ में आर्टिन समूहों के कई महत्वपूर्ण वर्गों को परिभाषित किया जा सकता है।
कई महत्वपूर्ण प्रकार के आर्टिन समूह को कॉक्सेटर मैट्रिक्स की गुणवत्ता के आधार पर परिभाषित किया जा सकता है।


=== गोलाकार प्रकार के आर्टिन-स्तन समूह ===
=== गोलाकार प्रकार के आर्टिन-स्तन समूह ===
Line 56: Line 56:
* गोलाकार प्रकार के एक शुद्ध आर्टिन-टिट समूह को परिमित [[हाइपरप्लेन व्यवस्था]] के पूरक के मौलिक समूह के रूप में महसूस किया जा सकता है <math>\Complex^n</math>.
* गोलाकार प्रकार के एक शुद्ध आर्टिन-टिट समूह को परिमित [[हाइपरप्लेन व्यवस्था]] के पूरक के मौलिक समूह के रूप में महसूस किया जा सकता है <math>\Complex^n</math>.
* गोलाकार प्रकार के आर्टिन-स्तन समूह [[द्विस्वचालित समूह]] हैं (रूथ चार्नी<ref>{{citation | authorlink = Ruth Charney | first = Ruth | last = Charney | title = Artin groups of finite type are biautomatic | journal = [[Mathematische Annalen]] | volume = 292 | year = 1992 | number = 4 | pages =  671–683 | doi = 10.1007/BF01444642 | mr = 1157320}}</ref>).
* गोलाकार प्रकार के आर्टिन-स्तन समूह [[द्विस्वचालित समूह]] हैं (रूथ चार्नी<ref>{{citation | authorlink = Ruth Charney | first = Ruth | last = Charney | title = Artin groups of finite type are biautomatic | journal = [[Mathematische Annalen]] | volume = 292 | year = 1992 | number = 4 | pages =  671–683 | doi = 10.1007/BF01444642 | mr = 1157320}}</ref>).
* आधुनिक शब्दावली में, एक आर्टिन-स्तन समूह <math>A</math> एक गार्साइड तत्व है, जिसका अर्थ है <math>A</math> संबद्ध मोनॉइड के लिए अंशों का एक समूह है <math>A^+</math> और वहाँ के प्रत्येक तत्व के लिए मौजूद है <math>A</math> एक अद्वितीय सामान्य रूप जिसमें तत्वों के (प्रतियों) का एक परिमित अनुक्रम होता है <math>W</math> और उनके व्युत्क्रम (सममित लालची सामान्य रूप)
* आधुनिक शब्दावली में, एक आर्टिन-स्तन समूह <math>A</math> एक गार्साइड तत्व है, जिसका अर्थ है कि <math>A</math> एक समूह है जो जुड़े हुए मोनॉइड <math>A^+</math> के लिए भिन्न का समूह है और प्रत्येक तत्व के लिए एक अद्वितीय सामान्य रूप है जो एक सीमित क्रम में होता है जो <math>W</math> के तत्वों के (प्रतिलिपि) और उनके प्रतिग्रहणों की सीमित सूची से बना है ("सममानी लालची सामान्य रूप")


=== समकोण आर्टिन समूह ===
=== समकोण आर्टिन समूह ===

Revision as of 21:07, 26 April 2023

समूह सिद्धांत के गणितीय क्षेत्र में, आर्टिन समूह, जिसे आर्टिन-टिट समूह या सामान्यीकृत ब्रैड समूह के रूप में भी जाना जाता है, एक समूह की सरल प्रस्तुति द्वारा परिभाषित अनंत असतत समूह (गणित) का एक परिवार है। वे कॉक्सेटर समूहों से निकटता से संबंधित हैं। अन्य लोगों के अलावा, मुक्त समूह, मुक्त एबेलियन समूह, चोटी समूह और समकोण वाले आर्टिन-स्तन समूह इसके उदाहरण हैं।

1920 से 1940 के दशक में ब्रैड समूहों पर अपने शुरुआती काम के कारण समूहों का नाम एमिल आर्टिन के नाम पर रखा गया है[1] और जैक्स स्तन जिन्होंने 1960 के दशक में समूहों के एक अधिक सामान्य वर्ग के सिद्धांत को विकसित किया।[2]


परिभाषा

आर्टिन-स्तन प्रस्तुति एक समूह प्रस्तुति है जिसमें रूप में लिखा जाता है, यहां जनरेटर का एक (आमतौर पर परिमित) सेट है और आर्टिन-टिट संबंधों का एक सेट है, अर्थात् प्रपत्र के संबंध विशिष्ट के लिए में , जहां दोनों पक्षों की समान लंबाई होती है, और अलग-अलग जनरेटर की प्रत्येक जोड़ी के लिए अधिकतम एक संबंध मौजूद होता है . एक आर्टिन-स्तन समूह एक ऐसा समूह है जो एक आर्टिन-स्तन प्रस्तुति को स्वीकार करता है। इसी तरह, एक आर्टिन-टिट मोनोइड एक मोनोइड है, जो एक मोनोइड के रूप में, एक आर्टिन-टिट प्रस्तुति को स्वीकार करता है।

वैकल्पिक रूप से, एक आर्टिन-स्तन समूह को जनरेटर के सेट द्वारा निर्दिष्ट किया जा सकता है और, प्रत्येक के लिए में , प्राकृतिक संख्या वह शब्दों की लंबाई है और ऐसा है कि जोड़ने वाला संबंध है और , यदि कोई। अधिवेशन द्वारा, एक डालता है जब कोई संबंध नहीं है . औपचारिक रूप से, यदि हम परिभाषित करते हैं के एक वैकल्पिक उत्पाद को निरूपित करने के लिए और लंबाई का , इसके साथ शुरुआत - ताकि , , आदि - आर्टिन-टिट संबंध रूप लेते हैं

पूर्णांक एक सममित मैट्रिक्स में व्यवस्थित किया जा सकता है, जिसे समूह के कॉक्सेटर मैट्रिक्स के रूप में जाना जाता है।

अगर एक आर्टिन-स्तन समूह की एक आर्टिन-स्तन प्रस्तुति है , का भागफल संबंध जोड़कर प्राप्त किया प्रत्येक के लिए का एक कॉक्सेटर समूह है। इसके विपरीत यदि प्रतिबिंबों और संबंधों द्वारा प्रस्तुत एक कॉक्सेटर समूह है हटा दिए जाते हैं, इस प्रकार प्राप्त विस्तार एक आर्टिन-स्तन समूह है। उदाहरण के लिए, -स्ट्रैंड ब्रेड समूह के साथ संबंधित कॉक्सिटर समूह सभी प्रार्थनाओं के समानांतर समूह है जो निर्धारित करता के सभी सरणियों की परिवर्तन।

उदाहरण

  • पर आधारित मुक्त समूह है ; यहाँ सभी के लिए .
  • पर आधारित मुक्त एबेलियन समूह है ; यहाँ सभी के लिए .
  • चोटी समूह चालू है किस्में; यहाँ के लिए , और के लिए .

सामान्य गुण

आर्टिन-टिट्स मोनॉइड संवेद्य हैं और उनके विभाज्यता संबंधों की जांच पर आधारित गार्साइड तत्व के लिए पात्र हैं और उन्हें अच्छी तरह समझा गया है:

  • आर्टिन-टिट्स मोनॉइड संवेद्य हैं, और उनके पास सर्वाधिक साझा गुणक और शर्तपूर्ण कम साझा गुणक (जबकि सामान्यतः एक साझा गुणक होता है जबकि साझा गुणक होता है) होता है।
  • अगर एक आर्टिन-स्तन मोनोइड है, और यदि संबंधित कॉक्सेटर समूह है, एक (सेट-सैद्धांतिक) खंड है का में , और का हर तत्व की छवि में तत्वों के अनुक्रम के रूप में एक विशिष्ट अपघटन को स्वीकार करता है (लालची सामान्य रूप)।

सामान्य आर्टिन-टिट्स समूहों के लिए कुछ ही परिणाम ज्ञात हैं। विशेष रूप से, सामान्य मामले में निम्नलिखित मौलिक प्रश्न खुले हैं:

– समूहों और संयुग्मन समस्याओं के लिए शब्द समस्या को हल करना – जो कि निर्णायक होने का अनुमान है,
– मरोड़ का निर्धारण — जिसे तुच्छ माना जाता है,
– केंद्र का निर्धारण — जो उस मामले में तुच्छ या मोनोजेनिक माना जाता है जब समूह एक प्रत्यक्ष उत्पाद नहीं है (अलघुकरणीय मामला),
– कोहोलॉजी का निर्धारण — विशेष रूप से हल करना अनुमान, यानी, एक विश्वकोश परिसर खोजना जिसका मौलिक समूह माना समूह है।

कुछ विशिष्ट उप-परिवारों को समेटने वाले आंशिक परिणाम नीचे एकत्र किए गए हैं। कुछ ज्ञात सामान्य परिणामों में से कुछ निम्नलिखित हैं:

  • आर्टिन–स्तन समूह अनंत गणनीय हैं।
  • एक आर्टिन-स्तन समूह में , तत्वों के वर्गों को जोड़ने वाला एकमात्र संबंध का है अगर में होता है (जॉन क्रिस्प और लुइस पेरिस [3]).
  • प्रत्येक आर्टिन-स्तन प्रस्तुति के लिए ,जिसे से प्रस्तुत किया गया है आर्टिन-टाइट्स मोनोइड में समावेश किया जाता है (पेरिस[4]).
  • प्रत्येक (अंतिम रूप से उत्पन्न) आर्टिन-स्तन मोनोइड एक परिमित गार्साइड परिवार (मैथ्यू डायर और क्रिस्टोफ़ होहलवेग) को स्वीकार करता है[5]).इसके परिणामस्वरूप, आर्टिन-टिट्स मोनॉइड में सामान्य दाहिने-गुणक अस्तित्ववादी हैं, और बहुभिन्नांशों का संक्षेप मौजूद है।

आर्टिन-स्तन समूहों के विशेष वर्ग

कई महत्वपूर्ण प्रकार के आर्टिन समूह को कॉक्सेटर मैट्रिक्स की गुणवत्ता के आधार पर परिभाषित किया जा सकता है।

गोलाकार प्रकार के आर्टिन-स्तन समूह

  • एक आर्टिन-स्तन समूह को गोलाकार प्रकार का कहा जाता है यदि संबंधित कॉक्सेटर समूह परिमित है - वैकल्पिक शब्दावली "सीमित प्रकार का आर्टिन-टिट्स समूह" से बचा जाना चाहिए,क्‍योंकि इसकी अस्पष्टता के कारण: "सीमित प्रकार का समूह" सिर्फ एक ऐसा समूह है जो सीमित उत्पन्नन सेट को स्वीकार करता है। याद रखें कि पूर्ण वर्गीकरण जाना गया है, 'अविच्छेद्य प्रकार' अनंत श्रृंखला के रूप में चिह्नित है, जो असीमित श्रृंखला के रूप में चिह्नित है: , , , और छह असाधारण समूह , , , , , और .
  • गोलाकार आर्टिन-टिट समूह के मामले में, समूह मोनोइड के लिए अंशों का एक समूह है, जिससे अध्ययन बहुत आसान हो जाता है। गोलाकार आर्टिन-स्तन समूहों के लिए सकारात्मक रूप से प्रत्येक उपर्युक्त समस्या का समाधान किया जाता है: शब्द और संयुग्मन की समस्याएं निर्णायक हैं, उनका मरोड़ तुच्छ है, केंद्र अलिंदनीय मामले में मोनोजेनिक है, और समूह कोहोलॉजी निर्धारित है (पियरे डेलिग्ने, द्वारा) ज्यामितीय तरीके,[6] एगबर्ट ब्रीस्कोर्न और क्योजी साइट, संयोजी विधियों द्वारा [7]).
  • गोलाकार प्रकार के एक शुद्ध आर्टिन-टिट समूह को परिमित हाइपरप्लेन व्यवस्था के पूरक के मौलिक समूह के रूप में महसूस किया जा सकता है .
  • गोलाकार प्रकार के आर्टिन-स्तन समूह द्विस्वचालित समूह हैं (रूथ चार्नी[8]).
  • आधुनिक शब्दावली में, एक आर्टिन-स्तन समूह एक गार्साइड तत्व है, जिसका अर्थ है कि एक समूह है जो जुड़े हुए मोनॉइड के लिए भिन्न का समूह है और प्रत्येक तत्व के लिए एक अद्वितीय सामान्य रूप है जो एक सीमित क्रम में होता है जो के तत्वों के (प्रतिलिपि) और उनके प्रतिग्रहणों की सीमित सूची से बना है ("सममानी लालची सामान्य रूप")।

समकोण आर्टिन समूह

  • एक आर्टिन-टिट्स समूह को समकोण कहा जाता है अगर कोआक्सेटर मैट्रिक्स के सभी संख्याओं का या तो होता है या अनंत , र्थात सभी संबंध आपस में आपसी सम्बन्ध होते हैं . (स्वतंत्र) आंशिक आपसी संबंध समूह, ग्राफ समूह, ट्रेस समूह, अर्ध-स्वतंत्र समूह या स्थानीय स्वतंत्र समूह भी सामान्य नाम हैं।
  • इस श्रेणी के आर्टिन-टिट्स समूहों के लिए एक विभिन्न लेबलिंग योजना आमतौर पर प्रयुक्त होती है। किसी भी ग्राफ (असतत गणित) पर शीर्षों को लेबल किया गया को एक मैट्रिक्स परिभाषित करता है , जिसके लिए होता है यदि शिखर और ग्राफ , में एक एज से जुड़े हों, और होता है अन्यथा।
  • समकोण वाले आर्टिन-टिट समूहों के वर्ग में परिमित रैंक के मुक्त समूह शामिल हैं, जो बिना किनारों वाले ग्राफ के अनुरूप हैं, और पूर्ण रूप से उत्पन्न मुक्त एबेलियन समूह, एक पूर्ण ग्राफ के अनुरूप हैं। रैंक r के प्रत्येक समकोण आर्टिन समूह को रैंक के समकोण आर्टिन समूह के HNN विस्तार के रूप में बनाया जा सकता है , चरम मामलों के रूप में समूहों के मुफ्त उत्पाद और प्रत्यक्ष उत्पाद के साथ। इस निर्माण के एक सामान्यीकरण को समूहों का ग्राफ कहा जाता है। एक समकोण आर्टिन समूह इस उत्पाद का एक विशेष मामला है, जिसमें ग्राफ-उत्पाद के प्रत्येक शीर्ष/ऑपरेंड रैंक एक (अनंत चक्रीय समूह) का एक मुक्त समूह है।
  • समकोण आर्टिन-स्तन समूह की शब्द और संयुग्मन समस्याएं निर्णायक हैं, पूर्व रैखिक समय में, समूह मरोड़ मुक्त है, और एक स्पष्ट सेलुलर परिमित है (जॉन क्रिस्प, एड्डी गोडेल और बर्ट वाइस्ट[9]).
  • प्रत्येक समकोण आर्टिन–स्तन समूह एक परिमित-आयामी CAT(0) घन परिसर, इसके साल्वेट्टी परिसर पर स्वतंत्र रूप से और सहसंबद्ध रूप से कार्य करता है। एक आवेदन के रूप में, समूहों के दिए गए परिमित गुणों के साथ समूहों का निर्माण करने के लिए समकोण आर्टिन समूहों और उनके साल्वेट्टी परिसरों का उपयोग कर सकते हैं (म्लादेन बेस्टविना और नोएल ब्रेडी [10]) यह भी देखें (इयान लेरी [11]).

बड़े प्रकार के आर्टिन-स्तन समूह

  • आर्टिन-स्तन समूह (और एक कॉक्सेटर समूह) बड़े प्रकार का होता है अगर सभी जनरेटर के लिए है, जहां ; यह अतिरिक्त-बड़े प्रकार का होता है अगर सभी जनरेटर के लिए जहां .
  • अतिरिक्त-बड़े प्रकार के आर्टिन-स्तन समूह छोटे रद्दीकरण सिद्धांत के लिए पात्र हैं। एक अनुप्रयोग के रूप में, अतिरिक्त-बड़े प्रकार के आर्टिन-स्तन समूह मरोड़ (बीजगणित) -मुक्त हैं और समाधान विधि समस्या सम्भव है (केनेथ एपल और पॉल शूप[12]).
  • अतिरिक्त-बड़े प्रकार के आर्टिन-स्तन समूह द्विस्वचालित होते हैं (डेविड पीफर[13]).
  • बड़े प्रकार के आर्टिन समूह नियमित जियोडेसिक्स (डेरेक होल्ट और सारा रीस) के साथ शॉर्टलेक्स स्वचालित होते हैं[14]).

अन्य प्रकार

अर्टिन-टिट्स समूहों के कई अन्य परिवारों की पहचान की गई है और उनके अध्ययन किए गए हैं। यहां हम उनमें से दो का उल्लेख करते हैं।

  • आर्टिन-स्तन समूह प्रकार कहलाता है ("फ़्लैग कॉम्प्लेक्स"), यदि हर ऐसे उपसमूह के लिए, जहां का उपसमूह है जिसके लिए सभी के लिए, समूह गोलाकार प्रकार का होता है। इस तरह के समूह कैट (0) क्यूबिकल कॉम्प्लेक्स पर सहसंबद्ध रूप से कार्य करते हैं, और इसके परिणामस्वरूप, उनके तत्वों के लिए एक तार्किक सामान्य रूप ढूंढ़ना संभव है और शब्द समस्या का एक समाधान निकाला जा सकता है (जो अल्टोबेली और चार्नी [15]). वैकल्पिक सामान्य रूप स्थानीय आकरण द्वारा प्रदान किया जाता है, जो किसी गोलाकार मामले में एक गोलाकार भिन्न मामले में एक अभेद्य भिन्न द्वारा विस्तृत अभिव्यक्ति प्रदान करता है (डेहॉर्नॉय[16]).
  • आर्टिन-स्तन समूह का आफ़िन प्रकार कहलाता है यदि संबंधित कॉक्सेटर समूह आफ़िन है। ये चार अनंत परिवारों के विस्तृत डिंकिन आरेखिक चित्रों के समरूप हैं: के लिए , , के लिए , और के लिए , और और पांच छटपटानी प्रकारों के विस्तृत डिंकिन आरेखिक चित्रों के समरूप हैं: , , , , और . आफ़िन आर्टिन-स्तन समूह यूक्लिडियन प्रकार के होते हैं: संबंधित कॉक्सेटर समूह एक यूक्लिडियन स्थान पर ज्यामितिय रूप से कार्य करता है। इसके परिणामस्वरूप, इनका केंद्र शून्य होता है, और उनकी शब्द समस्या हल की जा सकती है (जॉन मैककैमंड और रॉबर्ट सल्वे [17]). 2019 में, इसका एक प्रमाण सभी संबद्ध आर्टिन-स्तन समूहों (मारियो साल्वेट्टी और जियोवन्नी पाओलिनी) के लिए अनुमान की घोषणा की गई थी[18]).

यह भी देखें

संदर्भ

  1. Artin, Emil (1947). "ब्रैड्स का सिद्धांत". Annals of Mathematics. 48 (1): 101–126. doi:10.2307/1969218. JSTOR 1969218. S2CID 30514042.
  2. Tits, Jacques (1966), "Normalisateurs de tores. I. Groupes de Coxeter étendus", Journal of Algebra, 4: 96–116, doi:10.1016/0021-8693(66)90053-6, MR 0206117
  3. Crisp, John; Paris, Luis (2001), "The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group", Inventiones Mathematicae, 145 (1): 19–36, arXiv:math/0003133, Bibcode:2001InMat.145...19C, doi:10.1007/s002220100138, MR 1839284
  4. Paris, Luis (2002), "Artin monoids inject in their groups", Commentarii Mathematici Helvetici, 77 (3): 609–637, doi:10.1007/s00014-002-8353-z, MR 1933791
  5. Dyer, Matthew; Hohlweg, Christophe (2016), "Small roots, low elements, and the weak order in Coxeter groups", Advances in Mathematics, 301: 739–784, arXiv:1505.02058, doi:10.1016/j.aim.2016.06.022, MR 1839284
  6. Deligne, Pierre (1972), "Les immeubles des groupes de tresses généralisés", Inventiones Mathematicae, 17: 273–302, Bibcode:1972InMat..17..273D, doi:10.1007/BF01406236, MR 0422673
  7. Brieskorn, Egbert; Saito, Kyoji (1972), "Artin-Gruppen und Coxeter-Gruppen", Inventiones Mathematicae, 17 (4): 245–271, Bibcode:1972InMat..17..245B, doi:10.1007/BF01406235, MR 0323910
  8. Charney, Ruth (1992), "Artin groups of finite type are biautomatic", Mathematische Annalen, 292 (4): 671–683, doi:10.1007/BF01444642, MR 1157320
  9. Crisp, John; Godelle, Eddy; Wiest, Bert (2009), "The conjugacy problem in subgroups of right-angled Artin groups", Journal of Topology, 2 (3): 442–460, doi:10.1112/jtopol/jtp018, MR 2546582
  10. Bestvina, Mladen; Brady, Noel (1997), "Morse theory and finiteness properties of groups", Inventiones Mathematicae, 129 (3): 445–470, Bibcode:1997InMat.129..445B, doi:10.1007/s002220050168, MR 1465330
  11. Leary, Ian (2018), "Uncountably many groups of type FP", Proceedings of the London Mathematical Society, 117 (2): 246–276, doi:10.1112/plms.12135, MR 3851323
  12. Appel, Kenneth I.; Schupp, Paul E. (1983), "Artin Groups and Infinite Coxeter Groups", Inventiones Mathematicae, 72 (2): 201–220, Bibcode:1983InMat..72..201A, doi:10.1007/BF01389320, MR 0700768
  13. Peifer, David (1996), "Artin groups of extra-large type are biautomatic", Journal of Pure and Applied Algebra, 110 (1): 15–56, doi:10.1016/0022-4049(95)00094-1, MR 1390670
  14. Holt, Derek; Rees, Sarah (2012). "बड़े प्रकार के आर्टिन समूह नियमित जियोडेसिक्स के साथ शॉर्टलेक्स स्वचालित होते हैं". Proceedings of the London Mathematical Society. 104 (3): 486–512. arXiv:1003.6007. doi:10.1112/plms/pdr035. MR 2900234.
  15. Altobelli, Joe; Charney, Ruth (2000), "A geometric rational form for Artin groups of FC type", Geometriae Dedicata, 79 (3): 277–289, doi:10.1023/A:1005216814166, MR 1755729
  16. Dehornoy, Patrick (2017), "Multifraction reduction I: The 3-Ore case and Artin–Tits groups of type FC", Journal of Combinatorial Algebra, 1 (2): 185–228, arXiv:1606.08991, doi:10.4171/JCA/1-2-3, MR 3634782
  17. McCammond, Jon; Sulway, Robert (2017), "Artin groups of Euclidean type", Inventiones Mathematicae, 210 (1): 231–282, Bibcode:2017InMat.210..231M, doi:10.1007/s00222-017-0728-2, MR 3698343
  18. Paolini, Giovanni; Salvetti, Mario (2019), Proof of the conjecture for affine Artin groups, arXiv:1907.11795


अग्रिम पठन