फॉस्फेट रूपांतरण कोटिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
[[ फास्फेट |फास्फेट]] रूपांतरण परत एक रासायनिक उपचार है जो [[ इस्पात |इस्पात]] के भागो पर लागू  किया जाता है और जो धातुरोध, [[स्नेहन]], या बाद के कोटिंग्स या पेंटिंग के लिए नींव के रूप में लौह, [[जस्ता]], या [[मैंगनीज]] फॉस्फेट की पतली पालन परत बनाता है।<ref name=park2014/><ref name=surf2011/><ref name=nara2005/>यह [[रूपांतरण कोटिंग]] के सबसे आम प्रकारों में से एक है। इस प्रक्रिया को फॉस्फेट कोटिंग, फॉस्फेटीकरण या फॉस्फेटाइजिंग के नाम से भी जाना जाता है।<ref name=meis1986/>  यह सैन्य उपकरण और अन्य [[सैन्य उपकरणों]] पर लागू किए जाने पर विशेष रूप से [[ parkerizing | पार्करीकरण]]  ट्रेड नाम से भी जाना जाता है।
[[ फास्फेट |फास्फेट]] रूपांतरण परत एक रासायनिक उपचार है जो [[ इस्पात |इस्पात]] के भागो पर लागू  किया जाता है और जो धातुरोध, [[स्नेहन]], या बाद के कोटिंग्स या पेंटिंग के लिए नींव के रूप में लौह, [[जस्ता]], या [[मैंगनीज]] फॉस्फेट की पतली पालन परत बनाता है।<ref name=park2014/><ref name=surf2011/><ref name=nara2005/>यह [[रूपांतरण कोटिंग]] के सबसे आम प्रकारों में से एक है। इस प्रक्रिया को फॉस्फेट कोटिंग, फॉस्फेटीकरण या फॉस्फेटाइजिंग के नाम से भी जाना जाता है।<ref name=meis1986/>  यह सैन्य उपकरण और अन्य [[सैन्य उपकरणों]] पर लागू किए जाने पर विशेष रूप से [[ parkerizing | पार्करीकरण]]  ट्रेड नाम से भी जाना जाता है।


फॉस्फेट कोटिंग आमतौर पर इस्पात भागों पर [[फॉस्फोरिक एसिड]] के एक हल्के से हल्के विलयन से प्राप्त किया जाता है, संभवतः उपलब्ध फीके लोहे, जिंक और / या मैंगनीज नमकों के साथ। समाधान स्पंजिंग, स्प्रेइंग या विसर्जन  के माध्यम से लागू किया जा सकता है।<ref name=dufo2006/>फॉस्फेट रूपांतरण कोटिंग्स का उपयोग [[अल्युमीनियम]], जस्ता, [[कैडमियम]], चांदी और [[ विश्वास करना ]] पर भी किया जा सकता है।<ref name=edwa1997/><ref name=skar1997/>
फॉस्फेट कोटिंग सामान्यतः  इस्पात भागों पर [[फॉस्फोरिक एसिड]] के एक हल्के से हल्के विलयन से प्राप्त किया जाता है, संभवतः उपलब्ध फीके लोहे, जिंक और / या मैंगनीज नमकों के साथ। समाधान स्पंजिंग, स्प्रेइंग या विसर्जन  के माध्यम से लागू किया जा सकता है।<ref name=dufo2006/>फॉस्फेट रूपांतरण कोटिंग्स का उपयोग [[अल्युमीनियम]], जस्ता, [[कैडमियम]], चांदी और [[ विश्वास करना ]] पर भी किया जा सकता है।<ref name=edwa1997/><ref name=skar1997/>




Line 11: Line 11:
फॉस्फेट कोटिंग्स के मुख्य प्रकार मैंगनीज, लोहा और जस्ता होते हैं।<ref name=unit2011/>
फॉस्फेट कोटिंग्स के मुख्य प्रकार मैंगनीज, लोहा और जस्ता होते हैं।<ref name=unit2011/>


* मैंगनीज (II) फॉस्फेट कोटिंग को अधिकतर धातुरोध और स्नेहता के लिए उपयोग किया जाता है और यह केवल डुबोने के द्वारा लागू किया जाता है।
* मैंगनीज (II) फॉस्फेट कोटिंग को अधिकतर धातुरोध और स्नेहता के लिए उपयोग किया जाता है और यह एकमात्र डुबोने के के माध्यम से लागू किया जाता है।
* [[आयरन फास्फेट]] कोटिंग्स को सामान्यतः आगे के रंगों या पेंटिंग के लिए एक आधार के रूप में उपयोग किया जाता है और यह डुबोने या स्प्रे करके लागू किया जाता है।
* [[आयरन फास्फेट]] कोटिंग्स को सामान्यतः आगे के रंगों या पेंटिंग के लिए एक आधार के रूप में उपयोग किया जाता है और यह डुबोने या स्प्रे करके लागू किया जाता है।
* [[जिंक फास्फेट]] धातुरोध प्रतिरोध, स्नेहक धारक परत और रंग / कोटिंग आधार के रूप में उपयोग किया जाता है और इसे डुबोने या स्प्रे करके भी लागू किया जा सकता है। इसे जलवायुरोधी इस्पात पर भी लागू किया जा सकता है।<ref name=park2014/><ref name=dufo2006/>
* [[जिंक फास्फेट]] धातुरोध प्रतिरोध, स्नेहक धारक परत और रंग / कोटिंग आधार के रूप में उपयोग किया जाता है और इसे डुबोने या स्प्रे करके भी लागू किया जा सकता है। इसे जलवायुरोधी इस्पात पर भी लागू किया जा सकता है।<ref name=park2014/><ref name=dufo2006/>
Line 30: Line 30:
== पार्कराइजिंग ==
== पार्कराइजिंग ==
{{for|शराब अवधि|रॉबर्ट एम. पार्कर, जूनियर}}
{{for|शराब अवधि|रॉबर्ट एम. पार्कर, जूनियर}}
[[File:Springfield Armory M1911A1.JPG|thumb|300px|एक ज़िंक-पार्कराइज़्ड सिविलियन .45 ACP स्प्रिंगफ़ील्ड आर्मरी, इंक. M1911-A1 पिस्टल]]पार्कराइजिंग एक तरीका है जो एक स्टील सतह को कोरोज़न से बचाने और उसकी पहनावदारता को बढ़ाने के लिए एक रासायनिक फॉस्फेट कन्वर्जन कोटिंग का आवेदन करके किया जाता है। पार्कराइजिंग आमतौर पर एक बेहतरीन जिंक या मैंगनीज़ फॉस्फेटिंग प्रक्रिया के रूप में विचार किया जाता है, और इसे एक बेहतरीन आयरन फॉस्फेटिंग प्रक्रिया के रूप में नहीं विचारा जाता है, हालांकि कुछ लोग पार्कराइजिंग शब्द का उपयोग फॉस्फेटिंग (या फॉस्फेटाइजिंग) कोटिंग के लिए करते हैं जो आयरन फॉस्फेटिंग प्रक्रिया को भी शामिल करता है। बोंडराइजिंग, फॉस्फेटिंग, और फॉस्फेटाइजिंग पार्कराइजिंग प्रक्रिया से जुड़े अन्य शब्द हैं।{{citation needed|date=May 2021}} व्रॉट आयरन और स्टील के संदर्भ में इसे [[अचार बनाना (धातु)|पिकलिंग (धातु)]] के नाम से भी जाना जाता है।<ref name="pheiffer33">{{cite journal |last1=Pheiffer |first1=J. |title=फॉस्फोरिक एसिड के माध्यम से गढ़ा लोहा और इस्पात का अचार बनाना|journal=1st World Petroleum Congress, London, UK, July 1933. |date=18 July 1933 |issue=WPC-1122 |url=https://onepetro.org/WPCONGRESS/proceedings-abstract/WPC01/All-WPC01/WPC-1122/204027}}</ref>
[[File:Springfield Armory M1911A1.JPG|thumb|300px|एक ज़िंक-पार्कराइज़्ड सिविलियन .45 ACP स्प्रिंगफ़ील्ड आर्मरी, इंक. M1911-A1 पिस्टल]]पार्कराइजिंग एक प्रणाली है जो एक स्टील सतह को कोरोज़न से बचाने और उसकी पहनावदारता को बढ़ाने के लिए एक रासायनिक फॉस्फेट कन्वर्जन कोटिंग का आवेदन करके किया जाता है। पार्कराइजिंग सामान्यतः  एक बेहतरीन जिंक या मैंगनीज़ फॉस्फेटिंग प्रक्रिया के रूप में विचार किया जाता है, और इसे एक बेहतरीन आयरन फॉस्फेटिंग प्रक्रिया के रूप में नहीं विचारा जाता है, चूंकि कुछ लोग पार्कराइजिंग शब्द का उपयोग फॉस्फेटिंग (या फॉस्फेटाइजिंग) कोटिंग के लिए करते हैं जो आयरन फॉस्फेटिंग प्रक्रिया को भी सम्मलित करता है। बोंडराइजिंग, फॉस्फेटिंग, और फॉस्फेटाइजिंग पार्कराइजिंग प्रक्रिया से जुड़े अन्य शब्द हैं।{{citation needed|date=May 2021}} व्रॉट आयरन और स्टील के संदर्भ में इसे [[अचार बनाना (धातु)|पिकलिंग (धातु)]] के नाम से भी जाना जाता है।<ref name="pheiffer33">{{cite journal |last1=Pheiffer |first1=J. |title=फॉस्फोरिक एसिड के माध्यम से गढ़ा लोहा और इस्पात का अचार बनाना|journal=1st World Petroleum Congress, London, UK, July 1933. |date=18 July 1933 |issue=WPC-1122 |url=https://onepetro.org/WPCONGRESS/proceedings-abstract/WPC01/All-WPC01/WPC-1122/204027}}</ref>
पार्कराइजिंग आमतौर पर फायरआर्म पर लागू किया जाता है जो [[ब्लूइंग (स्टील)]] के एक बेहतर विकल्प के रूप में माना जाता है, जो एक पहले से विकसित रसायनिक परिवर्तन परत है। यह निर्मित विनिर्मित मेटल भागों को ज़्यादा हट्टे-कट्टे से रोधग्रस्त होने से बचाने के लिए ऑटोमोबाइल पर भी विस्तार से उपयोग किया जाता है।
पार्कराइजिंग सामान्यतः  फायरआर्म पर लागू किया जाता है जो [[ब्लूइंग (स्टील)]] के एक बेहतर विकल्प के रूप में माना जाता है, जो एक पहले से विकसित रसायनिक परिवर्तन परत है। यह निर्मित विनिर्मित मेटल भागों को ज़्यादा हट्टे-कट्टे से रोधग्रस्त होने से बचाने के लिए ऑटोमोबाइल पर भी विस्तार से उपयोग किया जाता है।


पार्कराइजिंग प्रक्रिया का उपयोग गैर-लौह धातुओं जैसे एल्यूमीनियम, [[पीतल]] या तांबे पर नहीं किया जा सकता है। इसी तरह यह उन स्टील्स पर लागू नहीं किया जा सकता है जिनमें बड़ी मात्रा में [[ निकल ]] या [[स्टेनलेस स्टील]] होता है। अन्य धातुओं की सुरक्षा के लिए निष्क्रियता (रसायन विज्ञान) का उपयोग किया जा सकता है।
पार्कराइजिंग प्रक्रिया का उपयोग गैर-लौह धातुओं जैसे एल्यूमीनियम, [[पीतल]] या तांबे पर नहीं किया जा सकता है। इसी प्रकार  यह उन स्टील्स पर लागू नहीं किया जा सकता है जिनमें बड़ी मात्रा में [[ निकल ]] या [[स्टेनलेस स्टील]] होता है। अन्य धातुओं की सुरक्षा के लिए निष्क्रियता (रसायन विज्ञान) का उपयोग किया जा सकता है।


=== प्रारंभिक इतिहास ===
=== प्रारंभिक इतिहास ===
Line 46: Line 46:
रुदौल्फ डी. कोल्कवॉन ने पार्कर रस्ट-प्रूफ फॉस्फेटिंग कंपनी ऑफ अमेरिका के एक और सुधार फॉस्फेटिंग पेटेंट आवेदन दाखिल किया था। इस पेटेंट को 1919 में {{US patent|1311319}}  के राजपत्रित के रूप में जारी किया गया था। यह एक सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) तकनीक था।
रुदौल्फ डी. कोल्कवॉन ने पार्कर रस्ट-प्रूफ फॉस्फेटिंग कंपनी ऑफ अमेरिका के एक और सुधार फॉस्फेटिंग पेटेंट आवेदन दाखिल किया था। इस पेटेंट को 1919 में {{US patent|1311319}}  के राजपत्रित के रूप में जारी किया गया था। यह एक सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) तकनीक था।


इसी तरह, पार्कर रस्ट-प्रूफ कंपनी के बेकर और डिंगमैन ने 1928 में एक और सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया पेटेंट दाखिल किया जो उस समय की मुकाबले प्रसंस्करण समय को तीसरे हिस्से में कम करता था। इस पेटेंट को 1930 में {{US patent|1761186}} के राजपत्रित के रूप में जारी किया गया था। इस प्रक्रिया में तबके को 500 से 550 डिग्री एफ (260 से 288 डिग्री सेल्सियस) के सटीक तापमान तक गर्म करने के माध्यम से प्रसंस्करण समय को कम किया गया था।
इसी प्रकार , पार्कर रस्ट-प्रूफ कंपनी के बेकर और डिंगमैन ने 1928 में एक और सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया पेटेंट दाखिल किया जो उस समय की मुकाबले प्रसंस्करण समय को तीसरे हिस्से में कम करता था। इस पेटेंट को 1930 में {{US patent|1761186}} के राजपत्रित के रूप में जारी किया गया था। इस प्रक्रिया में तबके को 500 से 550 डिग्री एफ (260 से 288 डिग्री सेल्सियस) के सटीक तापमान तक गर्म करने के माध्यम से प्रसंस्करण समय को कम किया गया था।


मैंगनीज फॉस्फेटिंग, इन प्रक्रिया सुधारों के साथ भी, महंगे और मुश्किल-से-प्राप्त मैंगनीज यौगिकों के उपयोग की आवश्यकता थी। इसके बाद, पार्कर कंपनी ने अल्टरनेटिव तकनीक का विकास किया जो कम खर्च में आसानी से प्राप्त होने वाले यौगिकों का उपयोग करती है। इसमें मैंगनीज फॉस्फेटिंग की जगह जिंक फॉस्फेटिंग का उपयोग किया जाता है। अमेरिकी रसायन पेंट कंपनी के आविष्कारक रोमिग को इस जिंक फॉस्फेटिंग प्रक्रिया के लिए जो उचित यौगिक होंगे उन्हें उपलब्ध रखने के लिए अमेरिका में एक युद्ध से पहले दिया गया था। यह पेटेंट {{US patent|2132883}}, के रूप में 1938 में दी गई थी, जो द्वितीय विश्वयुद्ध के दौरान मैंगनीज यौगिकों के उपलब्धता के नुकसान से पहले था।
मैंगनीज फॉस्फेटिंग, इन प्रक्रिया सुधारों के साथ भी, महंगे और कठिनाई-से-प्राप्त मैंगनीज यौगिकों के उपयोग की आवश्यकता थी। इसके बाद, पार्कर कंपनी ने अल्टरनेटिव तकनीक का विकास किया जो कम खर्च में आसानी से प्राप्त होने वाले यौगिकों का उपयोग करती है। इसमें मैंगनीज फॉस्फेटिंग की जगह जिंक फॉस्फेटिंग का उपयोग किया जाता है। अमेरिकी रसायन पेंट कंपनी के आविष्कारक रोमिग को इस जिंक फॉस्फेटिंग प्रक्रिया के लिए जो उचित यौगिक होंगे उन्हें उपलब्ध रखने के लिए अमेरिका में एक युद्ध से पहले दिया गया था। यह पेटेंट {{US patent|2132883}}, के रूप में 1938 में दी गई थी, जो द्वितीय विश्वयुद्ध के दौरान मैंगनीज यौगिकों के उपलब्धता के नुकसान से पहले था।


बेकर और डिंगमैन  के माध्यम से खोजी गई बेहतर मैंगनीज फॉस्फेटिंग प्रक्रिया में सुधार के अनुरूप कुछ हद तक, एक बेहतर जिंक फॉस्फेटिंग प्रक्रिया के लिए भी इसी तरह की बेहतर विधि पाई गई। इस सुधार की खोज पार्कर रस्ट प्रूफ कंपनी के डार्सी ने की थी, जिन्होंने फरवरी 1941 में एक पेटेंट दायर किया था, जिसे अगस्त 1942 में प्रदान किया गया था। {{US patent|2293716}}, जो कि जिंक फास्फेटाइजिंग (पार्कराइजिंग) प्रक्रिया में और सुधार हुआ। उन्होंने पाया कि तांबे को जोड़ने से अम्लता की आवश्यकता कम हो गई थी, और पहले से उपयोग किए गए नाइट्रेट्स में क्लोरेट को जोड़ने से प्रक्रिया को बहुत कम तापमान पर चलाने की अनुमति मिल जाएगी। {{convert|115|to|130|F|C|}}, प्रक्रिया को आगे चलाने की लागत को कम करना। इन प्रक्रिया सुधारों के साथ, अंतिम परिणाम यह था कि एक निम्न-तापमान (ऊर्जा-कुशल) जिंक फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया, रणनीतिक सामग्रियों का उपयोग करके, जिसके लिए संयुक्त राज्य अमेरिका के पास तैयार पहुंच थी, द्वितीय विश्व युद्ध के समय उपयोग की जाने वाली सबसे आम फॉस्फेटिंग प्रक्रिया बन गई। अमेरिकी युद्ध सामग्री जैसे आग्नेयास्त्रों और विमानों को जंग और क्षरण से बचाएं।
बेकर और डिंगमैन  के माध्यम से खोजी गई बेहतर मैंगनीज फॉस्फेटिंग प्रक्रिया में सुधार के अनुरूप कुछ हद तक, एक बेहतर जिंक फॉस्फेटिंग प्रक्रिया के लिए भी इसी प्रकार  की बेहतर विधि पाई गई। इस सुधार की खोज पार्कर रस्ट प्रूफ कंपनी के डार्सी ने की थी, जिन्होंने फरवरी 1941 में एक पेटेंट दायर किया था, जिसे अगस्त 1942 में प्रदान किया गया था। {{US patent|2293716}}, जो कि जिंक फास्फेटाइजिंग (पार्कराइजिंग) प्रक्रिया में और सुधार हुआ। उन्होंने पाया कि तांबे को जोड़ने से अम्लता की आवश्यकता कम हो गई थी, और पहले से उपयोग किए गए नाइट्रेट्स में क्लोरेट को जोड़ने से प्रक्रिया को बहुत कम तापमान पर चलाने की अनुमति मिल जाएगी। {{convert|115|to|130|F|C|}}, प्रक्रिया को आगे चलाने की लागत को कम करना। इन प्रक्रिया सुधारों के साथ, अंतिम परिणाम यह था कि एक निम्न-तापमान (ऊर्जा-कुशल) जिंक फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया, रणनीतिक सामग्रियों का उपयोग करके, जिसके लिए संयुक्त राज्य अमेरिका के पास तैयार पहुंच थी, द्वितीय विश्व युद्ध के समय उपयोग की जाने वाली सबसे आम फॉस्फेटिंग प्रक्रिया बन गई। अमेरिकी युद्ध सामग्री जैसे आग्नेयास्त्रों और विमानों को जंग और क्षरण से बचाएं।


=== बाद के घटनाक्रम ===
=== बाद के घटनाक्रम ===
[[File:Glock 17.jpg|thumb|ब्लैक पार्कराइज़्ड टॉपकोट के साथ [[ Glock | ग्लॉक]] पिस्टल]][[ऑस्ट्रिया]]ई आग्नेयास्त्र निर्माता ग्लॉक जीईएस.एम.बी.एच., एक , अपने  के माध्यम से निर्मित [[पिस्तौल]] की [[पिस्टल स्लाइड]] की सुरक्षा के लिए [[टेनिफर]] प्रक्रिया के लिए एक टॉपकोट के रूप में एक ब्लैक पार्कराइज़िंग प्रक्रिया का उपयोग करता है। टेनीफर प्रक्रिया लागू करने के बाद, एक काले पार्कराइज्ड फिनिश लागू किया जाता है और अगर पार्कराइज़िंग की फिनिश उतर जाए तो स्लाइड सुरक्षित रहता है। इस तरह से, पार्कराइजिंग एक सुरक्षा और सजावटी अंतिम संस्करण तकनीक बन रही है जो मेटल सुरक्षा के अन्य सुधारित तकनीकों के ऊपर लागू की जाती है।
[[File:Glock 17.jpg|thumb|ब्लैक पार्कराइज़्ड टॉपकोट के साथ [[ Glock | ग्लॉक]] पिस्टल]][[ऑस्ट्रिया]]ई आग्नेयास्त्र निर्माता ग्लॉक जीईएस.एम.बी.एच., एक , अपने  के माध्यम से निर्मित [[पिस्तौल]] की [[पिस्टल स्लाइड]] की सुरक्षा के लिए [[टेनिफर]] प्रक्रिया के लिए एक टॉपकोट के रूप में एक ब्लैक पार्कराइज़िंग प्रक्रिया का उपयोग करता है। टेनीफर प्रक्रिया लागू करने के बाद, एक ब्लैक पार्कराइज्ड फिनिश लागू किया जाता है और यदि पार्कराइज़िंग की फिनिश उतर जाए तो स्लाइड सुरक्षित रहता है। इस प्रकार  से, पार्कराइजिंग एक सुरक्षा और सजावटी अंतिम संस्करण तकनीक बन रही है जो मेटल सुरक्षा के अन्य सुधारित तकनीकों के ऊपर लागू की जाती है।


पारंपरिक लौह फॉस्फेट, जिंक फॉस्फेट, और मैंगनीज फॉस्फेट रासायनिक रूपांतरण कोटिंग्स, पार्कराइजिंग विविधताओं सहित, सभी की आलोचना की गई है<ref name="epa.gov">[http://www.epa.gov/airtoxics/steel/steelpkpg.html ''U.S. Environmental Protection Agency Recommendations'']</ref> हाल के वर्षों में सतही जल प्रणालियों में फॉस्फेट को सम्मलित करने के लिए, शैवाल ([[ eutrophication | यूट्रॉफिकेश]]) के तेजी से विकास को प्रोत्साहित करने के लिए। परिणाम स्वरुप , हाल के वर्षों में, पारंपरिक फॉस्फेट कोटिंग्स के लिए नई, उभरती हुई प्रौद्योगिकी विकल्पों को पार्कराइजिंग सहित सभी फॉस्फेटिंग कोटिंग्स को बदलने के लिए सीमित उपयोग देखना प्रारंभ हो गया है। इन नए रूपांतरण कोटिंग्स में से अधिकांश फ़्लोरोज़िरको नियम-आधारित हैं। 2005 में प्रस्तुत किए गए इन फ्लोरोज़िरकोनियम-आधारित रूपांतरण कोटिंग्स में सबसे लोकप्रिय, संक्रमण धातु [[वैनेडियम]] सम्मलित है। इस नए, अधिक पर्यावरण के अनुकूल कोटिंग को वनाडेट रूपांतरण कोटिंग कहा जाता है। वनाडेट कोटिंग्स के अतिरिक्त, [[ arsenate |आर्सेनैट]] कोटिंग्स सैद्धांतिक रूप से मनुष्यों और जानवरों के स्वास्थ्य के लिए खतरा होने के जोखिम पर समान सुरक्षा प्रदान कर सकती हैं। यह देखा जाना बाकी है कि क्या ये या अन्य नए रासायनिक रूपांतरण कोटिंग्स अंततः पारंपरिक फॉस्फेटिंग और पार्कराइजिंग को बदल देंगे।
पारंपरिक लौह फॉस्फेट, जिंक फॉस्फेट, और मैंगनीज फॉस्फेट रासायनिक रूपांतरण कोटिंग्स, पार्कराइजिंग विविधताओं सहित, सभी की आलोचना की गई है<ref name="epa.gov">[http://www.epa.gov/airtoxics/steel/steelpkpg.html ''U.S. Environmental Protection Agency Recommendations'']</ref> हाल के वर्षों में सतही जल प्रणालियों में फॉस्फेट को सम्मलित करने के लिए, शैवाल ([[ eutrophication | यूट्रॉफिकेश]]) के तेजी से विकास को प्रोत्साहित करने के लिए। परिणाम स्वरुप , हाल के वर्षों में, पारंपरिक फॉस्फेट कोटिंग्स के लिए नई, उभरती हुई प्रौद्योगिकी विकल्पों को पार्कराइजिंग सहित सभी फॉस्फेटिंग कोटिंग्स को बदलने के लिए सीमित उपयोग देखना प्रारंभ हो गया है। इन नए रूपांतरण कोटिंग्स में से अधिकांश फ़्लोरोज़िरको नियम-आधारित हैं। 2005 में प्रस्तुत किए गए इन फ्लोरोज़िरकोनियम-आधारित रूपांतरण कोटिंग्स में सबसे लोकप्रिय, संक्रमण धातु [[वैनेडियम]] सम्मलित है। इस नए, अधिक पर्यावरण के अनुकूल कोटिंग को वनाडेट रूपांतरण कोटिंग कहा जाता है। वनाडेट कोटिंग्स के अतिरिक्त, [[ arsenate |आर्सेनैट]] कोटिंग्स सैद्धांतिक रूप से मनुष्यों और जानवरों के स्वास्थ्य के लिए खतरा होने के जोखिम पर समान सुरक्षा प्रदान कर सकती हैं। यह देखा जाना बाकी है कि क्या ये या अन्य नए रासायनिक रूपांतरण कोटिंग्स अंततः पारंपरिक फॉस्फेटिंग और पार्कराइजिंग को बदल देंगे।


स्टोवटॉप किचन पार्कराइज़िंग के लिए इसी तरह के कई व्यंजन कई बार बंदूक प्रकाशनों में प्रसारित होते हैं, और पार्कराइज़िंग किट प्रमुख बंदूक-पुर्ज़ों के वितरकों जैसे कि ब्राउनल्स  के माध्यम से बेचे जाते हैं।
स्टोवटॉप किचन पार्कराइज़िंग के लिए इसी प्रकार  के कई व्यंजन कई बार बंदूक प्रकाशनों में प्रसारित होते हैं, और पार्कराइज़िंग किट प्रमुख बंदूक-पुर्ज़ों के वितरकों जैसे कि ब्राउनल्स  के माध्यम से बेचे जाते हैं।


== उपयोग करता है ==
== उपयोग करता है ==
Line 66: Line 66:


=== संक्षारण प्रतिरोध ===
=== संक्षारण प्रतिरोध ===
फॉस्फेट कोटिंग धातु भागों को [[जंग लगने]] और अन्य प्रकार की कोरोशन से बचाने के लिए आमतौर पर इस्तेमाल किये जाते हैं। हालांकि, वे थोड़े पोरस होते हैं, इसलिए इस उपयोग के लिए कोटिंग को तेल, पेंट या किसी अन्य सीलिंग पदार्थ से भर देना आवश्यक होता है। परिणाम एक कसकर पालन करने वाली [[ढांकता हुआ]] (विद्युत रूप से इन्सुलेट) परत है जो इलेक्ट्रोकैमिस्ट्री  जंग और अंडर-पेंट जंग से भाग की रक्षा कर सकती है।<ref name=dufo2006/>
फॉस्फेट कोटिंग धातु भागों को [[जंग लगने]] और अन्य प्रकार की कोरोशन से बचाने के लिए सामान्यतः  उपयोग किये जाते हैं। चूंकि, वे थोड़े पोरस होते हैं, इसलिए इस उपयोग के लिए कोटिंग को तेल, पेंट या किसी अन्य सीलिंग पदार्थ से भर देना आवश्यक होता है। परिणाम एक कसकर पालन करने वाली [[ढांकता हुआ]] (विद्युत रूप से इन्सुलेट) परत है जो इलेक्ट्रोकैमिस्ट्री  जंग और अंडर-पेंट जंग से भाग की रक्षा कर सकती है।<ref name=dufo2006/>




Line 74: Line 74:


=== स्नेहन ===
=== स्नेहन ===
जबकि एक जस्ता फॉस्फेट कोटिंग अपने आप में कुछ प्रकार से [[अपघर्षक]] होती है, लेकिन यह [[सोडियम स्टीयरेट]] ([[साबुन]]) के साथ उपचार करने से कोल्ड फॉर्मिंग ऑपरेशन्स के लिए एक लुब्रिकेटिंग लेयर में बदल जाती है। सोडियम स्टीयरेट फॉस्फेट क्रिस्टल्स के साथ प्रतिक्रिया करता है, जो एक बहुत पतला असमाधानीय और [[हाइड्रोफोबिसिटी]] [[जिंक स्टीयरेट]] लेयर बनाता है, जो हिस्से को विपरीत तनाव, जैसे कि[[ तार ड्राइंग ]] में, के तहत भी रखने में मदद करता है।<ref name=park2014/><ref name=surf2009/>
चूँकि एक जस्ता फॉस्फेट कोटिंग अपने आप में कुछ प्रकार से [[अपघर्षक]] होती है, किन्तुयह [[सोडियम स्टीयरेट]] ([[साबुन]]) के साथ उपचार करने से कोल्ड फॉर्मिंग ऑपरेशन्स के लिए एक लुब्रिकेटिंग लेयर में बदल जाती है। सोडियम स्टीयरेट फॉस्फेट क्रिस्टल्स के साथ प्रतिक्रिया करता है, जो एक बहुत पतला असमाधानीय और [[हाइड्रोफोबिसिटी]] [[जिंक स्टीयरेट]] लेयर बनाता है, जो हिस्से को विपरीत तनाव, जैसे कि[[ तार ड्राइंग ]] में, के अनुसार  भी रखने में मदद करता है।<ref name=park2014/><ref name=surf2009/>





Revision as of 13:46, 30 March 2023

फास्फेट रूपांतरण परत एक रासायनिक उपचार है जो इस्पात के भागो पर लागू किया जाता है और जो धातुरोध, स्नेहन, या बाद के कोटिंग्स या पेंटिंग के लिए नींव के रूप में लौह, जस्ता, या मैंगनीज फॉस्फेट की पतली पालन परत बनाता है।[1][2][3]यह रूपांतरण कोटिंग के सबसे आम प्रकारों में से एक है। इस प्रक्रिया को फॉस्फेट कोटिंग, फॉस्फेटीकरण या फॉस्फेटाइजिंग के नाम से भी जाना जाता है।[4] यह सैन्य उपकरण और अन्य सैन्य उपकरणों पर लागू किए जाने पर विशेष रूप से पार्करीकरण ट्रेड नाम से भी जाना जाता है।

फॉस्फेट कोटिंग सामान्यतः इस्पात भागों पर फॉस्फोरिक एसिड के एक हल्के से हल्के विलयन से प्राप्त किया जाता है, संभवतः उपलब्ध फीके लोहे, जिंक और / या मैंगनीज नमकों के साथ। समाधान स्पंजिंग, स्प्रेइंग या विसर्जन के माध्यम से लागू किया जा सकता है।[5]फॉस्फेट रूपांतरण कोटिंग्स का उपयोग अल्युमीनियम, जस्ता, कैडमियम, चांदी और विश्वास करना पर भी किया जा सकता है।[6][7]


प्रकार

फॉस्फेट कोटिंग्स के मुख्य प्रकार मैंगनीज, लोहा और जस्ता होते हैं।[8]

  • मैंगनीज (II) फॉस्फेट कोटिंग को अधिकतर धातुरोध और स्नेहता के लिए उपयोग किया जाता है और यह एकमात्र डुबोने के के माध्यम से लागू किया जाता है।
  • आयरन फास्फेट कोटिंग्स को सामान्यतः आगे के रंगों या पेंटिंग के लिए एक आधार के रूप में उपयोग किया जाता है और यह डुबोने या स्प्रे करके लागू किया जाता है।
  • जिंक फास्फेट धातुरोध प्रतिरोध, स्नेहक धारक परत और रंग / कोटिंग आधार के रूप में उपयोग किया जाता है और इसे डुबोने या स्प्रे करके भी लागू किया जा सकता है। इसे जलवायुरोधी इस्पात पर भी लागू किया जा सकता है।[1][5]


प्रक्रिया

यह प्रक्रिया मध्यम या उच्च pH पर फॉस्फेट की कम घुलनशीलता का लाभ उठाती है। स्नान फॉस्फोरिक एसिड (H3PO4) का एक समाधान है, वांछित लोहा, जस्ता या मैंगनीज केशन और अन्य योजक युक्त।[9]अम्ल लौह धातु के साथ अभिक्रिया करके हाइड्रोजन और लौह धनायन बनाता है:

Fe + 2 H
3
O+
Fe2+
+ H
2
+ 2 H
2
O

प्रतिक्रिया खपत करने वाले प्रोटॉन सतह के तत्काल आसपास के क्षेत्र में समाधान के पीएच को बढ़ाते हैं, जब तक कि अंततः फॉस्फेट अघुलनशील नहीं हो जाते हैं और इसके ऊपर जमा हो जाते हैं। एसिड और धातु की प्रतिक्रिया भी स्थानीय स्तर पर आयरन फॉस्फेट बनाती है जो जमा भी हो सकती है। जिंक फॉस्फेट या मैंगनीज (II) फॉस्फेट जमा करते समय अतिरिक्त आयरन फॉस्फेट एक अवांछित अशुद्धता हो सकती है।

स्नान में अधिकांशतः ऑक्सीडाइज़र सम्मलित होता है, जैसे सोडियम नाइट्राइट (NaNO2), हाइड्रोजन गैस का उपभोग करने के लिए (H
2
) - जो अन्यथा सतह पर छोटे बुलबुले की एक परत बना देगा, प्रतिक्रिया को धीमा कर देगा।[9]

मुख्य फॉस्फेटिंग चरण से पहले एक "सक्रियण" बाथ हो सकता है जो सतह पर टाइटेनियम यौगिकों के छोटे अणु बनाता है।[9]

फॉस्फेट कोटिंग का प्रदर्शन उसकी क्रिस्टल संरचना के साथ ही उसकी मोटाई पर भी निर्भर करता है। कम सरंध्रता वाली सघन माइक्रोक्रिस्टलाइन संरचना सामान्यतः संक्षारण प्रतिरोध या बाद की पेंटिंग के लिए सबसे अच्छी होती है। पहनने के प्रतिरोध के लिए तेल के साथ गर्भवती एक मोटे अनाज की संरचना सबसे अच्छी हो सकती है। इन कारकों को स्नान की एकाग्रता, संरचना, तापमान और समय को बदलकर नियंत्रित किया जा सकता है।[5]


पार्कराइजिंग

एक ज़िंक-पार्कराइज़्ड सिविलियन .45 ACP स्प्रिंगफ़ील्ड आर्मरी, इंक. M1911-A1 पिस्टल

पार्कराइजिंग एक प्रणाली है जो एक स्टील सतह को कोरोज़न से बचाने और उसकी पहनावदारता को बढ़ाने के लिए एक रासायनिक फॉस्फेट कन्वर्जन कोटिंग का आवेदन करके किया जाता है। पार्कराइजिंग सामान्यतः एक बेहतरीन जिंक या मैंगनीज़ फॉस्फेटिंग प्रक्रिया के रूप में विचार किया जाता है, और इसे एक बेहतरीन आयरन फॉस्फेटिंग प्रक्रिया के रूप में नहीं विचारा जाता है, चूंकि कुछ लोग पार्कराइजिंग शब्द का उपयोग फॉस्फेटिंग (या फॉस्फेटाइजिंग) कोटिंग के लिए करते हैं जो आयरन फॉस्फेटिंग प्रक्रिया को भी सम्मलित करता है। बोंडराइजिंग, फॉस्फेटिंग, और फॉस्फेटाइजिंग पार्कराइजिंग प्रक्रिया से जुड़े अन्य शब्द हैं।[citation needed] व्रॉट आयरन और स्टील के संदर्भ में इसे पिकलिंग (धातु) के नाम से भी जाना जाता है।[10]

पार्कराइजिंग सामान्यतः फायरआर्म पर लागू किया जाता है जो ब्लूइंग (स्टील) के एक बेहतर विकल्प के रूप में माना जाता है, जो एक पहले से विकसित रसायनिक परिवर्तन परत है। यह निर्मित विनिर्मित मेटल भागों को ज़्यादा हट्टे-कट्टे से रोधग्रस्त होने से बचाने के लिए ऑटोमोबाइल पर भी विस्तार से उपयोग किया जाता है।

पार्कराइजिंग प्रक्रिया का उपयोग गैर-लौह धातुओं जैसे एल्यूमीनियम, पीतल या तांबे पर नहीं किया जा सकता है। इसी प्रकार यह उन स्टील्स पर लागू नहीं किया जा सकता है जिनमें बड़ी मात्रा में निकल या स्टेनलेस स्टील होता है। अन्य धातुओं की सुरक्षा के लिए निष्क्रियता (रसायन विज्ञान) का उपयोग किया जा सकता है।

प्रारंभिक इतिहास

प्रक्रिया का विकास इंग्लैंड में प्रारंभ हुआ और संयुक्त राज्य अमेरिका में पार्कर परिवार के माध्यम से जारी रखा गया। पार्करीकरण, पार्कराइज, और पार्कराइज़्ड शब्द सभी तकनीकी रूप से सँभालना के पंजीकृत यू.एस. ट्रेडमार्क हैं, चूंकि कई वर्षों के लिए शब्दावली अधिक हद तक सामान्य ट्रेडमार्क में पारित हो गई है। प्रक्रिया का पहली बार विस्तृत स्तर पर विनिर्माण के दौरान संयुक्त राज्य अमेरिका के सैन्य इंटेलिजेंस कोर के लिए विश्व युद्ध II के दौरान किया गया था।[11]

फॉस्फेटिंग प्रक्रियाओं पर सबसे पहले काम विलियम अलेक्जेंडर रॉस ने 1869 में ब्रिटिश पेटेंट 3119 के अंतर्गत विकसित किया था और थॉमस वॉट्स कॉस्लेट ने 1906 में इसी प्रक्रिया पर काम किया था। कॉस्लेट, बर्मिंघम, इंग्लैंड, ने फिर अमेरिका में इसी प्रक्रिया पर आधारित एक पेटेंट दाखिल किया था जो 1907 में अमेरिकी पेटेंट 870,937 के रूप में दी गई थी। यह अनिवार्य रूप से फॉस्फोरिक एसिड का उपयोग करके एक आयरन फॉस्फेटिंग प्रक्रिया प्रदान करता है।

एक सुधारित पेटेंट अनुप्रयोग मैंगनीज फास्फेटिंग पर आधारित बड़े हिस्से में इस पहली ब्रिटिश आयरन फास्फेटिंग प्रक्रिया पर अमेरिका में 1912 में दाखिल किया गया था, और 1913 में फ्रैंक रूपर्ट ग्रैनविल रिचर्ड्स को U.S. Patent 1,069,903 के रूप में जारी किया गया था।

क्लार्क डब्लू पार्कर ने कॉसलेट और रिचर्ड्स के यूएस पेटेंटों के अधिकार हासिल किए, और इन और अन्य जंग रोकने वाली फार्मूलों के साथ परिवार के रसोई में प्रयोग किया। अंतिम परिणाम यह था कि क्लार्क डब्लू पार्कर ने अपने बेटे वाइमैन सी पार्कर के साथ मिलकर 1915 में पार्कर रस्ट-प्रूफ फास्फेटिंग कंपनी ऑफ अमेरिका की स्थापना की।

रुदौल्फ डी. कोल्कवॉन ने पार्कर रस्ट-प्रूफ फॉस्फेटिंग कंपनी ऑफ अमेरिका के एक और सुधार फॉस्फेटिंग पेटेंट आवेदन दाखिल किया था। इस पेटेंट को 1919 में U.S. Patent 1,311,319 के राजपत्रित के रूप में जारी किया गया था। यह एक सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) तकनीक था।

इसी प्रकार , पार्कर रस्ट-प्रूफ कंपनी के बेकर और डिंगमैन ने 1928 में एक और सुधार भंगुर फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया पेटेंट दाखिल किया जो उस समय की मुकाबले प्रसंस्करण समय को तीसरे हिस्से में कम करता था। इस पेटेंट को 1930 में U.S. Patent 1,761,186 के राजपत्रित के रूप में जारी किया गया था। इस प्रक्रिया में तबके को 500 से 550 डिग्री एफ (260 से 288 डिग्री सेल्सियस) के सटीक तापमान तक गर्म करने के माध्यम से प्रसंस्करण समय को कम किया गया था।

मैंगनीज फॉस्फेटिंग, इन प्रक्रिया सुधारों के साथ भी, महंगे और कठिनाई-से-प्राप्त मैंगनीज यौगिकों के उपयोग की आवश्यकता थी। इसके बाद, पार्कर कंपनी ने अल्टरनेटिव तकनीक का विकास किया जो कम खर्च में आसानी से प्राप्त होने वाले यौगिकों का उपयोग करती है। इसमें मैंगनीज फॉस्फेटिंग की जगह जिंक फॉस्फेटिंग का उपयोग किया जाता है। अमेरिकी रसायन पेंट कंपनी के आविष्कारक रोमिग को इस जिंक फॉस्फेटिंग प्रक्रिया के लिए जो उचित यौगिक होंगे उन्हें उपलब्ध रखने के लिए अमेरिका में एक युद्ध से पहले दिया गया था। यह पेटेंट U.S. Patent 2,132,883, के रूप में 1938 में दी गई थी, जो द्वितीय विश्वयुद्ध के दौरान मैंगनीज यौगिकों के उपलब्धता के नुकसान से पहले था।

बेकर और डिंगमैन के माध्यम से खोजी गई बेहतर मैंगनीज फॉस्फेटिंग प्रक्रिया में सुधार के अनुरूप कुछ हद तक, एक बेहतर जिंक फॉस्फेटिंग प्रक्रिया के लिए भी इसी प्रकार की बेहतर विधि पाई गई। इस सुधार की खोज पार्कर रस्ट प्रूफ कंपनी के डार्सी ने की थी, जिन्होंने फरवरी 1941 में एक पेटेंट दायर किया था, जिसे अगस्त 1942 में प्रदान किया गया था। U.S. Patent 2,293,716, जो कि जिंक फास्फेटाइजिंग (पार्कराइजिंग) प्रक्रिया में और सुधार हुआ। उन्होंने पाया कि तांबे को जोड़ने से अम्लता की आवश्यकता कम हो गई थी, और पहले से उपयोग किए गए नाइट्रेट्स में क्लोरेट को जोड़ने से प्रक्रिया को बहुत कम तापमान पर चलाने की अनुमति मिल जाएगी। 115 to 130 °F (46 to 54 °C), प्रक्रिया को आगे चलाने की लागत को कम करना। इन प्रक्रिया सुधारों के साथ, अंतिम परिणाम यह था कि एक निम्न-तापमान (ऊर्जा-कुशल) जिंक फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया, रणनीतिक सामग्रियों का उपयोग करके, जिसके लिए संयुक्त राज्य अमेरिका के पास तैयार पहुंच थी, द्वितीय विश्व युद्ध के समय उपयोग की जाने वाली सबसे आम फॉस्फेटिंग प्रक्रिया बन गई। अमेरिकी युद्ध सामग्री जैसे आग्नेयास्त्रों और विमानों को जंग और क्षरण से बचाएं।

बाद के घटनाक्रम

ब्लैक पार्कराइज़्ड टॉपकोट के साथ ग्लॉक पिस्टल

ऑस्ट्रियाई आग्नेयास्त्र निर्माता ग्लॉक जीईएस.एम.बी.एच., एक , अपने के माध्यम से निर्मित पिस्तौल की पिस्टल स्लाइड की सुरक्षा के लिए टेनिफर प्रक्रिया के लिए एक टॉपकोट के रूप में एक ब्लैक पार्कराइज़िंग प्रक्रिया का उपयोग करता है। टेनीफर प्रक्रिया लागू करने के बाद, एक ब्लैक पार्कराइज्ड फिनिश लागू किया जाता है और यदि पार्कराइज़िंग की फिनिश उतर जाए तो स्लाइड सुरक्षित रहता है। इस प्रकार से, पार्कराइजिंग एक सुरक्षा और सजावटी अंतिम संस्करण तकनीक बन रही है जो मेटल सुरक्षा के अन्य सुधारित तकनीकों के ऊपर लागू की जाती है।

पारंपरिक लौह फॉस्फेट, जिंक फॉस्फेट, और मैंगनीज फॉस्फेट रासायनिक रूपांतरण कोटिंग्स, पार्कराइजिंग विविधताओं सहित, सभी की आलोचना की गई है[12] हाल के वर्षों में सतही जल प्रणालियों में फॉस्फेट को सम्मलित करने के लिए, शैवाल ( यूट्रॉफिकेश) के तेजी से विकास को प्रोत्साहित करने के लिए। परिणाम स्वरुप , हाल के वर्षों में, पारंपरिक फॉस्फेट कोटिंग्स के लिए नई, उभरती हुई प्रौद्योगिकी विकल्पों को पार्कराइजिंग सहित सभी फॉस्फेटिंग कोटिंग्स को बदलने के लिए सीमित उपयोग देखना प्रारंभ हो गया है। इन नए रूपांतरण कोटिंग्स में से अधिकांश फ़्लोरोज़िरको नियम-आधारित हैं। 2005 में प्रस्तुत किए गए इन फ्लोरोज़िरकोनियम-आधारित रूपांतरण कोटिंग्स में सबसे लोकप्रिय, संक्रमण धातु वैनेडियम सम्मलित है। इस नए, अधिक पर्यावरण के अनुकूल कोटिंग को वनाडेट रूपांतरण कोटिंग कहा जाता है। वनाडेट कोटिंग्स के अतिरिक्त, आर्सेनैट कोटिंग्स सैद्धांतिक रूप से मनुष्यों और जानवरों के स्वास्थ्य के लिए खतरा होने के जोखिम पर समान सुरक्षा प्रदान कर सकती हैं। यह देखा जाना बाकी है कि क्या ये या अन्य नए रासायनिक रूपांतरण कोटिंग्स अंततः पारंपरिक फॉस्फेटिंग और पार्कराइजिंग को बदल देंगे।

स्टोवटॉप किचन पार्कराइज़िंग के लिए इसी प्रकार के कई व्यंजन कई बार बंदूक प्रकाशनों में प्रसारित होते हैं, और पार्कराइज़िंग किट प्रमुख बंदूक-पुर्ज़ों के वितरकों जैसे कि ब्राउनल्स के माध्यम से बेचे जाते हैं।

उपयोग करता है

पेंटिंग प्राइमर

फॉस्फेट कोटिंग्स का उपयोग सामान्यतः आगे की कोटिंग या पेंटिंग के लिए एक प्रभावी सतह तैयारी के रूप में किया जाता है, जो उत्कृष्ट आसंजन और विद्युत अलगाव प्रदान करता है।[5]


संक्षारण प्रतिरोध

फॉस्फेट कोटिंग धातु भागों को जंग लगने और अन्य प्रकार की कोरोशन से बचाने के लिए सामान्यतः उपयोग किये जाते हैं। चूंकि, वे थोड़े पोरस होते हैं, इसलिए इस उपयोग के लिए कोटिंग को तेल, पेंट या किसी अन्य सीलिंग पदार्थ से भर देना आवश्यक होता है। परिणाम एक कसकर पालन करने वाली ढांकता हुआ (विद्युत रूप से इन्सुलेट) परत है जो इलेक्ट्रोकैमिस्ट्री जंग और अंडर-पेंट जंग से भाग की रक्षा कर सकती है।[5]


प्रतिरोध पहनें

जिंक और मैंगनीज कोटिंग पहनने वाले घटकों को वियर ड्राइंग जैसे अधिक घसीटने वाले ऑपरेशन के लिए ब्रेक-इन करने में मदद करते हैं[1] और गैलिंग से बचाने में मदद करते हैं।[5]


स्नेहन

चूँकि एक जस्ता फॉस्फेट कोटिंग अपने आप में कुछ प्रकार से अपघर्षक होती है, किन्तुयह सोडियम स्टीयरेट (साबुन) के साथ उपचार करने से कोल्ड फॉर्मिंग ऑपरेशन्स के लिए एक लुब्रिकेटिंग लेयर में बदल जाती है। सोडियम स्टीयरेट फॉस्फेट क्रिस्टल्स के साथ प्रतिक्रिया करता है, जो एक बहुत पतला असमाधानीय और हाइड्रोफोबिसिटी जिंक स्टीयरेट लेयर बनाता है, जो हिस्से को विपरीत तनाव, जैसे कितार ड्राइंग में, के अनुसार भी रखने में मदद करता है।[1][13]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 "Zinc and Manganese Phosphates". www.parkerhq.com. Parker Rust-Proof of Cleveland. Retrieved 2014-09-30.
  2. "Phosphating ; Advanced Corrosion Protection". surfacepretreatment.com. Archived from the original on 2011-07-16.
  3. T.S.N. Sankara Narayanan (2005): "[Surface pretreatment by phosphate conversion coatings - A review Surface pretreatment by phosphate conversion coatings - A review]" Rev.Adv.Mater.Sci, volume 9, pages 130-177.
  4. W. Meisel (1986): "Studies of the Phosphatization of Steel and its Corrosion Products". Chapter of Industrial Applications of the Mössbauer Effect. doi:10.1007/978-1-4613-1827-9_15
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Jim Dufour (2006): An Introduction to Metallurgy, 5th edition, pages IX 11–12.
  6. Joseph Edwards (1997): Coating and Surface Treatment Systems for Metals. Finishing Publications Ltd. ISBN 0-904477-16-9
  7. J. Skar, M. Walter, and D. Albright (1997): "Non-Chromate Conversion Coatings for Magnesium Die Castings". ', https://www.sae.org/publications/technical-papers/content/970324/ DOI: https://doi.org/10.4271/970324 Citation: Skar, J., Walter, M., and Albright, D., "," SAE International, Technical Paper 970324 doi:10.4271/970324
  8. "Phosphate Coating: Zinc, Iron or Manganese Phosphate". United Plating, Inc. Archived from the original on 2011-07-17.
  9. 9.0 9.1 9.2 Stauffer, J.L (1993). Finishing Systems Design and Implementation: A Guide for Product Parameters, Coatings, Process, and Equipment. SME. pp. 132–134. ISBN 9780872634343.
  10. Pheiffer, J. (18 July 1933). "फॉस्फोरिक एसिड के माध्यम से गढ़ा लोहा और इस्पात का अचार बनाना". 1st World Petroleum Congress, London, UK, July 1933. (WPC-1122).
  11. "सिर्फ तथ्यों". Calvan.com. Retrieved April 12, 2014.
  12. U.S. Environmental Protection Agency Recommendations
  13. "Wire Drawing Phosphate". Archived from the original on February 28, 2009. Retrieved January 3, 2009.


स्रोत

  • MIL-HDBK-205, फेरस मेटल्स की फॉस्फेट और ब्लैक ऑक्साइड कोटिंग: फॉस्फेट और ब्लैक ऑक्साइड (ब्लिंग) कोटिंग्स पर एक मानक अवलोकन
  • Budinski, Kenneth G. (1988), Surface Engineering for Wear Resistance, Englewood Cliffs, New Jersey: Prentice Hall, p. 48
  • Brimi, Marjorie A. (1965), Electrofinishing, New York, New York: American Elsevier Publishing Company, Inc., pp. 62–63.

बाहरी संबंध

  • Henkel Surface Technologies—Current owner of Parco-Lubrite (a manganese phosphating process) and other पार्करीकरण rust-prevention coatings. (Parco is a registered trademark of Henkel Surface Technologies.)
  • Coral Chemical Company—Current owner of Coral Eco Treat (vanadium conversion coating process)
  • Parker Rust-Proof of Cleveland—Last remaining of the four original job shop licensees of Parker Chemical, currently offers phosphating services