रैखिक समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, एक मैट्रिक्स समूह एक [[समूह (गणित)]] ''G'' होता है जिसमें [[मैट्रिक्स गुणन]] के संचालन के साथ एक निर्दिष्ट [[क्षेत्र (गणित)]] ''K'' पर [[उलटा मैट्रिक्स]] [[मैट्रिक्स (गणित)]] होता है। एक रैखिक समूह एक ऐसा समूह है जो एक मैट्रिक्स समूह के लिए [[समूह समरूपता]] होता है (अर्थात, जो कि K पर विश्वसनीय, सीमित ''[[समूह प्रतिनिधित्व]] को स्वीकार करता है)''
गणित में, एक आव्यूह समूह एक [[समूह (गणित)]] ''G'' होता है जिसमें [[मैट्रिक्स गुणन|आव्यूह गुणन]] के संचालन के साथ एक निर्दिष्ट [[क्षेत्र (गणित)]] ''K'' पर [[उलटा मैट्रिक्स|उलटा आव्यूह]], [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] होता है। एक रैखिक समूह एक ऐसा समूह है जो एक आव्यूह समूह के लिए [[समूह समरूपता]] होता है (अर्थात, जो कि K पर विश्वसनीय, सीमित ''[[समूह प्रतिनिधित्व]] को स्वीकार करता है)''


कोई भी [[परिमित समूह]] रैखिक होता है, क्योंकि केली के उपयोग से परिवर्तन मैट्रिक्सों का उपयोग करके उसे प्राप्त किया जा सकता है। [[अनंत समूह सिद्धांत]] के बीच, रैखिक समूह एक रोचक और सुगम वर्ग बनाते हैं। गैर-रैखिक समूहों के उदाहरणों में वे समूह सम्मलित हैं जो "बहुत बड़े" समूह हैं (उदाहरण के लिए, एक अनंत सेट के क्रमपरिवर्तन का समूह), या जो कुछ रोग संबंधी व्यवहार प्रदर्शित करते हैं (उदाहरण के लिए, अंतिम रूप से उत्पन्न समूह अनंत मरोड़ वाले समूह)।
कोई भी [[परिमित समूह]] रैखिक होता है, क्योंकि केली के उपयोग से परिवर्तन आव्यूहों का उपयोग करके उसे प्राप्त किया जा सकता है। अनंत समूह सिद्धांत के बीच, रैखिक समूह एक रोचक और सुगम वर्ग बनाते हैं। गैर-रैखिक समूहों के उदाहरणों में वे समूह सम्मलित हैं जो "बहुत बड़े" समूह हैं (उदाहरण के लिए, एक अनंत सेट के क्रमपरिवर्तन का समूह), या जो कुछ रोग संबंधी व्यवहार प्रदर्शित करते हैं (उदाहरण के लिए, अंतिम रूप से उत्पन्न समूह अनंत मरोड़ वाले समूह)।


== परिभाषा और बुनियादी उदाहरण ==
== परिभाषा और बुनियादी उदाहरण ==


एक समूह G को रैखिक कहा जाता है यदि एक क्षेत्र K, एक [[पूर्णांक]] d और G से [[सामान्य रैखिक समूह]] GL<sub>''d''</sub>(K) तक एक [[इंजेक्शन]] समूह समाकारिता सम्मलित होता है। (K पर आयाम d के विश्वसनीय रैखिक प्रतिनिधित्व का एक वफादार रैखिक प्रतिनिधित्व): ययदि आवश्यक हो तो G को डिग्री d के K पर रैखिक कहा जा सकता है। उन समूहों को सम्मलित करते हैं जो एक रैखिक समूह के [[उपसमूह]] के रूप में परिभाषित किए गए हैं, उदाहरण के लिए:
एक समूह G को रैखिक कहा जाता है यदि एक क्षेत्र K, एक [[पूर्णांक]] d और G से [[सामान्य रैखिक समूह]] GL<sub>''d''</sub>(K) तक एक इंजेक्शन समूह समाकारिता सम्मलित होता है। (K पर आयाम d के विश्वसनीय रैखिक प्रतिनिधित्व का एक वफादार रैखिक प्रतिनिधित्व): ययदि आवश्यक हो तो G को डिग्री d के K पर रैखिक कहा जा सकता है। उन समूहों को सम्मलित करते हैं जो एक रैखिक समूह के [[उपसमूह]] के रूप में परिभाषित किए गए हैं, उदाहरण के लिए:
#GL<sub>''n''</sub>(K) समूह इसी प्रकार का है;
#GL<sub>''n''</sub>(K) समूह इसी प्रकार का है;
#[[विशेष रैखिक समूह]] SL<sub>''n''</sub>(K) (निर्धारक 1 के साथ मेट्रिसेस का उपसमूह);
#[[विशेष रैखिक समूह]] SL<sub>''n''</sub>(K) (निर्धारक 1 के साथ मेट्रिसेस का उपसमूह);
# उल्टे ऊपरी (या निचले) [[त्रिकोणीय मैट्रिक्स]] का समूह
# उल्टे ऊपरी (या निचले) [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय आव्यूह]] का समूह
#यदि G<sub>i</sub> एक संग्रह है जो एक समूह I  के माध्यम से [[सूचकांक सेट]] हैं, तो G<sub>i</sub>  के माध्यम से उत्पन्न किए गए उपसमूह एक रैखिक समूह हैं।
#यदि G<sub>i</sub> एक संग्रह है जो एक समूह I  के माध्यम से [[सूचकांक सेट]] हैं, तो G<sub>i</sub>  के माध्यम से उत्पन्न किए गए उपसमूह एक रैखिक समूह हैं।
[[झूठ समूह|झूठ समूहों]] के अध्ययन में, कभी-कभी झूठ समूहों पर ध्यान देने के लिए शैक्षणिक रूप से सुविधाजनक होता है, जिन्हें [[जटिल संख्या]]ओं के क्षेत्र में ईमानदारी से प्रदर्शित किया जा सकता है। (कुछ लेखकों की आवश्यकता है कि समूह को GL<sub>''n''</sub>(C) के एक बंद उपसमूह के रूप में प्रतिनिधित्व किया जाना चाहिए।) इस दृष्टिकोण से इस प्रकार की पुस्तकें हॉल (2015) सम्मलित हैं<ref>{{harvtxt|Hall|2015}}</ref> और रॉसमैन (2002)।<ref>{{harvtxt|Rossmann|2002}}</ref>
[[झूठ समूह|लाई समूहों]] के अध्ययन में, कभी-कभी लाई समूहों पर ध्यान देने के लिए शैक्षणिक रूप से सुविधाजनक होता है, जिन्हें [[जटिल संख्या]]ओं के क्षेत्र में ईमानदारी से प्रदर्शित किया जा सकता है। (कुछ लेखकों की आवश्यकता है कि समूह को GL<sub>''n''</sub>(C) के एक बंद उपसमूह के रूप में प्रतिनिधित्व किया जाना चाहिए।) इस दृष्टिकोण से इस प्रकार की पुस्तकें हॉल (2015) सम्मलित हैं<ref>{{harvtxt|Hall|2015}}</ref> और रॉसमैन (2002)।<ref>{{harvtxt|Rossmann|2002}}</ref>




Line 17: Line 17:
=== [[शास्त्रीय समूह|मौलिक समूह]] और संबंधित उदाहरण ===
=== [[शास्त्रीय समूह|मौलिक समूह]] और संबंधित उदाहरण ===


उपरोक्त उदाहरण 1 और 2 का सामान्यीकरण करने के लिए, सामान्य रूप से कहे जाने वाले क्लासिकल समूहों को बनाया जाता है। वे [[रैखिक बीजगणितीय समूह|रैखिक बीजगणितीय समूहों]]  के रूप में उत्पन्न होते हैं, अर्थात GL<sub>''n''</sub> के उपसमूहों  होते हैं जो एक सीमित संख्या के समीकरणों के माध्यम से परिभाषित होते हैं। मूल उदाहरण ओर्थोगोनल समूह, [[एकात्मक समूह]] और [[सहानुभूतिपूर्ण समूह]] हैं किन्तु [[विभाजन बीजगणित]]  (उदाहरण के लिए क्वाटरनियन बीजगणित के एक युक्ति समूह का [[इकाई समूह]] एक मौलिक समूह है) का उपयोग करके अधिक समूह निर्मित किये जा सकते हैं। ध्यान दें कि इन समूहों से संबंधित प्रोजेक्टिव समूह भी रैखिक होते हैं, चूंकि इसका स्पष्टतया पता नहीं चलता है। उदाहरण के लिए, समूह PSLR<sub>2</sub>(R) एक  2 × 2 मैट्रिक्सों का समूह नहीं है, किन्तु इसका एक विश्वसनीय रूपवादक 3 × 3 मैट्रिक्सों के रूप में होता है (एडजॉइंट रूपवादन), जो सामान्य स्थितियोंमें उपयोग किया जा सकता है।
उपरोक्त उदाहरण 1 और 2 का सामान्यीकरण करने के लिए, सामान्य रूप से कहे जाने वाले क्लासिकल समूहों को बनाया जाता है। वे [[रैखिक बीजगणितीय समूह|रैखिक बीजगणितीय समूहों]]  के रूप में उत्पन्न होते हैं, अर्थात GL<sub>''n''</sub> के उपसमूहों  होते हैं जो एक सीमित संख्या के समीकरणों के माध्यम से परिभाषित होते हैं। मूल उदाहरण ओर्थोगोनल समूह, [[एकात्मक समूह]] और [[सहानुभूतिपूर्ण समूह]] हैं किन्तु [[विभाजन बीजगणित]]  (उदाहरण के लिए क्वाटरनियन बीजगणित के एक युक्ति समूह का इकाई समूह एक मौलिक समूह है) का उपयोग करके अधिक समूह निर्मित किये जा सकते हैं। ध्यान दें कि इन समूहों से संबंधित प्रोजेक्टिव समूह भी रैखिक होते हैं, चूंकि इसका स्पष्टतया पता नहीं चलता है। उदाहरण के लिए, समूह PSLR<sub>2</sub>(R) एक  2 × 2 आव्यूहों का समूह नहीं है, किन्तु इसका एक विश्वसनीय रूपवादक 3 × 3 आव्यूहों के रूप में होता है (एडजॉइंट रूपवादन), जो सामान्य स्थितियोंमें उपयोग किया जा सकता है।


बहुत से झूठ समूह रैखिक होते हैं, किन्तु सभी नहीं होते हैं। SL<sub>2</sub>(R) टोपोलॉजी और यूनिवर्सल कवर का यूनिवर्सल कवर(आर) रैखिक नहीं है, जैसा कि कई [[हल करने योग्य समूह]] हैं, उदाहरण के लिए एक [[केंद्रीय उपसमूह]] चक्रीय उपसमूह  के माध्यम से [[हाइजेनबर्ग समूह]] के विभाग समूह।
बहुत से लाई समूह रैखिक होते हैं, किन्तु सभी नहीं होते हैं। SL<sub>2</sub>(R) टोपोलॉजी और यूनिवर्सल कवर का यूनिवर्सल कवर(आर) रैखिक नहीं है, जैसा कि कई [[हल करने योग्य समूह]] हैं, उदाहरण के लिए एक केंद्रीय उपसमूह चक्रीय उपसमूह  के माध्यम से [[हाइजेनबर्ग समूह]] के विभाग समूह।


मौलिक झूठ समूहों के [[असतत उपसमूह]] (उदाहरण के लिए [[जाली (असतत उपसमूह)]] या पतला समूह (बीजगणितीय समूह सिद्धांत) भी रोचक रैखिक समूहों के उदाहरण हैं।
मौलिक लाई समूहों के असतत उपसमूह (उदाहरण के लिए जाली (असतत उपसमूह) या थिन समूह (बीजगणितीय समूह सिद्धांत) भी रोचक रैखिक समूहों के उदाहरण हैं।


=== परिमित समूह ===
=== परिमित समूह ===
Line 27: Line 27:
[[आदेश (समूह सिद्धांत)]] n का एक परिमित समूह G किसी भी क्षेत्र K पर अधिकतम n डिग्री का रैखिक है। इस कथन को कभी-कभी केली प्रमेय कहा जाता है, और एकमात्र इस तथ्य से परिणाम होता है कि समूह रिंग K[G] पर G की क्रिया बाएं (या दाएं) गुणा रैखिक और वफादार है। लाइ प्रकार का समूह (परिमित क्षेत्रों पर मौलिक समूह) परिमित सरल समूहों का एक महत्वपूर्ण परिवार है, क्योंकि वे परिमित सरल समूहों के वर्गीकरण में अधिकांश स्लॉट लेते हैं।
[[आदेश (समूह सिद्धांत)]] n का एक परिमित समूह G किसी भी क्षेत्र K पर अधिकतम n डिग्री का रैखिक है। इस कथन को कभी-कभी केली प्रमेय कहा जाता है, और एकमात्र इस तथ्य से परिणाम होता है कि समूह रिंग K[G] पर G की क्रिया बाएं (या दाएं) गुणा रैखिक और वफादार है। लाइ प्रकार का समूह (परिमित क्षेत्रों पर मौलिक समूह) परिमित सरल समूहों का एक महत्वपूर्ण परिवार है, क्योंकि वे परिमित सरल समूहों के वर्गीकरण में अधिकांश स्लॉट लेते हैं।


=== बारीकी से उत्पन्न मैट्रिक्स समूह ===
=== बारीकी से उत्पन्न आव्यूह समूह ===


ऊपर दिए गए उदाहरण 4 बहुत सामान्य है जो एक विशिष्ट वर्ग को परिभाषित करने के लिए पर्याप्त नहीं है (इसमें सभी रैखिक समूह सम्मलित हैं)। चूंकि, एक सीमित सूचकांक सेट आई के लिए, अर्थात अंतिम उत्पन्न समूहों के लिए, बहुत से रोचक उदाहरण बनाने की अनुमति देता है। उदाहरण के लिए:
ऊपर दिए गए उदाहरण 4 बहुत सामान्य है जो एक विशिष्ट वर्ग को परिभाषित करने के लिए पर्याप्त नहीं है (इसमें सभी रैखिक समूह सम्मलित हैं)। चूंकि, एक सीमित सूचकांक सेट आई के लिए, अर्थात अंतिम उत्पन्न समूहों के लिए, बहुत से रोचक उदाहरण बनाने की अनुमति देता है। उदाहरण के लिए:
* [[पिंग-पोंग लेम्मा]] का उपयोग रैखिक समूहों के कई उदाहरणों के निर्माण के लिए किया जा सकता है जो [[मुक्त समूह]] हैं (उदाहरण के लिए समूह  के माध्यम से उत्पन्न समूह <math>\bigl( {}_2^1 \,_1^0\bigr), \, \bigl( {}_0^1 \,_1^2\bigr)</math> आज़ाद है)।
* पिंग-पोंग लेम्मा का उपयोग रैखिक समूहों के कई उदाहरणों के निर्माण के लिए किया जा सकता है जो [[मुक्त समूह]] हैं (उदाहरण के लिए समूह  के माध्यम से उत्पन्न समूह <math>\bigl( {}_2^1 \,_1^0\bigr), \, \bigl( {}_0^1 \,_1^2\bigr)</math> आज़ाद है)।
* अंकगणितीय समूहों को अंतिम रूप से उत्पन्न होने के लिए जाना जाता है। दूसरी तरफ एक दिए गए अंकगणितीय समूह के लिए एक स्पष्ट जनरेटर सेट खोजना एक कठिन समस्या होती है।
* अंकगणितीय समूहों को अंतिम रूप से उत्पन्न होने के लिए जाना जाता है। दूसरी तरफ एक दिए गए अंकगणितीय समूह के लिए एक स्पष्ट जनरेटर सेट खोजना एक कठिन समस्या होती है।
*ब्रेड समूह (जो एक सीमित रूप से प्रस्तुत समूह होता है) के पास एक समाप्त वर्ग से पूर्ण लिनियर प्रतिनिधि होती है जो एक अंतिम-आयामी जटिल वेक्टर स्थान पर होती है जहां जेनरेटर मैट्रिक्स से स्पष्ट रूप से कार्य करते हैं।<ref>{{citation|url=https://www.ams.org/jams/2001-14-02/S0894-0347-00-00361-1/S0894-0347-00-00361-1.pdf|title=Braid groups are linear|author=Stephen J. Bigelow|volume=14|number=2|pages=471–486|date=December 13, 2000|journal=Journal of the American Mathematical Society|doi=10.1090/S0894-0347-00-00361-1|s2cid=18936096|doi-access=free}}</ref>
*ब्रेड समूह (जो एक सीमित रूप से प्रस्तुत समूह होता है) के पास एक समाप्त वर्ग से पूर्ण लिनियर प्रतिनिधि होती है जो एक अंतिम-आयामी जटिल वेक्टर स्थान पर होती है जहां जेनरेटर आव्यूह से स्पष्ट रूप से कार्य करते हैं।<ref>{{citation|url=https://www.ams.org/jams/2001-14-02/S0894-0347-00-00361-1/S0894-0347-00-00361-1.pdf|title=Braid groups are linear|author=Stephen J. Bigelow|volume=14|number=2|pages=471–486|date=December 13, 2000|journal=Journal of the American Mathematical Society|doi=10.1090/S0894-0347-00-00361-1|s2cid=18936096|doi-access=free}}</ref>




=== ज्यामिति से उदाहरण ===
=== ज्यामिति से उदाहरण ===


कुछ स्थितियों में एक ज्यामितीय संरचना से आने वाले अभ्यावेदन का उपयोग करके [[कई गुना]] के मूलभूत समूह को रैखिक दिखाया जा सकता है। उदाहरण के लिए, [[जीनस (गणित)]] की कम से कम 2 सभी [[बंद सतह|बंद सतहें]] अतिशयोक्तिपूर्ण [[रीमैन सतह|रीमैन सतहें]] हैं। [[एकरूपता प्रमेय]] के माध्यम से यह [[अतिशयोक्तिपूर्ण विमान]] के [[आइसोमेट्री समूह]] में अपने [[मौलिक समूह]] के प्रतिनिधित्व को जन्म देता है, जो कि PSL<sub>2</sub>(R) के समानक होता है और यह मूल समूह को फुक्सियन समूह के रूप में रियलाइज़ करता है। मैनिफोल्ड पर (G, X)-संरचना के ध्यान की एक सामान्यीकृत निर्माण  के माध्यम से इस निर्माण का विस्तार किया जाता है।
कुछ स्थितियों में एक ज्यामितीय संरचना से आने वाले अभ्यावेदन का उपयोग करके कई गुना के मूलभूत समूह को रैखिक दिखाया जा सकता है। उदाहरण के लिए, [[जीनस (गणित)]] की कम से कम 2 सभी बंद सतहें अतिशयोक्तिपूर्ण रीमैन सतहें  हैं। एकरूपता प्रमेय के माध्यम से यह अतिशयोक्तिपूर्ण समष्टि के [[आइसोमेट्री समूह]] में अपने [[मौलिक समूह]] के प्रतिनिधित्व को जन्म देता है, जो कि PSL<sub>2</sub>(R) के समानक होता है और यह मूल समूह को फुक्सियन समूह के रूप में रियलाइज़ करता है। मैनिफोल्ड पर (G, X)-संरचना के ध्यान की एक सामान्यीकृत निर्माण  के माध्यम से इस निर्माण का विस्तार किया जाता है।


एक और उदाहरण है [[ सीफर्ट कई गुना | सीफर्ट मैनिफोल्ड]] के मौलिक समूह है। दूसरी तरफ, यह नहीं जाना जा सकता कि क्या सभी 3-मैनिफोल्ड के मौलिक समूह रैखिक हैं।<ref>{{cite book | last1=Aschenbrenner | first1=Matthias | last2=Friedl | first2=Stefan | last3=Wilton | first3=Henry | title=3&ndash;manifolds groups | series=EMS Series of Lectures in Mathematics | publisher=European Math. Soc. | year=2015 | at=Section 9.6 | url=http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/3-manifold-groups-final-version-031115}}</ref>
एक और उदाहरण है सीफर्ट मैनिफोल्ड के मौलिक समूह है। दूसरी तरफ, यह नहीं जाना जा सकता कि क्या सभी 3-मैनिफोल्ड के मौलिक समूह रैखिक हैं।<ref>{{cite book | last1=Aschenbrenner | first1=Matthias | last2=Friedl | first2=Stefan | last3=Wilton | first3=Henry | title=3&ndash;manifolds groups | series=EMS Series of Lectures in Mathematics | publisher=European Math. Soc. | year=2015 | at=Section 9.6 | url=http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/friedl/papers/3-manifold-groups-final-version-031115}}</ref>




Line 45: Line 45:


लीनियर समूह एक विशाल उदाहरण वर्ग होते हैं, जो सभी अनंत समूहों में कई उल्लेखनीय गुणों से अलग होते हैं। अंतिम रूप से उत्पन्न लीनियर समूहों के निम्नलिखित गुण होते हैं:
लीनियर समूह एक विशाल उदाहरण वर्ग होते हैं, जो सभी अनंत समूहों में कई उल्लेखनीय गुणों से अलग होते हैं। अंतिम रूप से उत्पन्न लीनियर समूहों के निम्नलिखित गुण होते हैं:
*वे [[अवशिष्ट परिमित समूह]] होते हैं;
*वे अवशिष्ट परिमित समूह होते हैं;
*बर्नसाइड का उल्लेख: एक फ़ील्ड के लघुत्तम घातांक 0 के लिए लीनियर टॉरशन समूह जो अंत तक होता है, उसको फाइनाइट होना होगा।{{sfn|Wehrfritz|1973|p=15}}
*बर्नसाइड का उल्लेख: एक फ़ील्ड के लघुत्तम घातांक 0 के लिए लीनियर टॉरशन समूह जो अंत तक होता है, उसको फाइनाइट होना होगा।{{sfn|Wehrfritz|1973|p=15}}
* शूर का उल्लेख: टॉरशन लीनियर समूह स्थानीय रूप से अंत होते हैं। विशेष रूप से, यदि वह अंतिम रूप से उत्पन्न होता है, तो वह फाइनाइट होता है।{{sfn|Wehfritz|1973|p=57}}
* शूर का उल्लेख: टॉरशन लीनियर समूह स्थानीय रूप से अंत होते हैं। विशेष रूप से, यदि वह अंतिम रूप से उत्पन्न होता है, तो वह फाइनाइट होता है।{{sfn|Wehfritz|1973|p=57}}
* सेलबर्ग की लेम्मा: किसी भी संख्यात्मक उत्पन्न रैखिक समूह में एक अंत से सीमित विवर्तन-मुक्त उपसमूह होता है।<ref>{{cite journal | last=Alperin | first=Roger C. |authorlink=Roger C. Alperin | title=सेलबर्ग के लेम्मा का एक प्राथमिक खाता| journal=L'Enseignement Mathématique | volume=33 | date=1987}}</ref>
* सेलबर्ग की लेम्मा: किसी भी संख्यात्मक उत्पन्न रैखिक समूह में एक अंत से सीमित विवर्तन-मुक्त उपसमूह होता है।<ref>{{cite journal | last=Alperin | first=Roger C. |authorlink=Roger C. Alperin | title=सेलबर्ग के लेम्मा का एक प्राथमिक खाता| journal=L'Enseignement Mathématique | volume=33 | date=1987}}</ref>
स्तन विकल्प बताता है कि एक रैखिक समूह में या तो एक गैर-अबेलियन मुक्त समूह होता है या फिर वास्तव में हल करने योग्य होता है (अर्थात, परिमित सूचकांक का एक हल करने योग्य समूह होता है)। इसके कई और परिणाम हैं, उदाहरण के लिए:
टिट्स विकल्प बताता है कि एक रैखिक समूह में या तो एक गैर-अबेलियन मुक्त समूह होता है या फिर वास्तव में हल करने योग्य होता है (अर्थात, परिमित सूचकांक का एक हल करने योग्य समूह होता है)। इसके कई और परिणाम हैं, उदाहरण के लिए:
*एक अंतिम रूप से व्यवक्त रैखिक समूह का डेन फ़ंक्शन एकमात्र बहुपदी या घातांकीय हो सकता है।
*एक अंतिम रूप से व्यवक्त रैखिक समूह का डेन फ़ंक्शन एकमात्र बहुपदी या घातांकीय हो सकता है।
*एक समझौतापूर्ण रैखिक समूह मौलिक रूप से संगठित होता है, विशेष रूप से प्राथमिक समझौतापूर्ण।
*एक समझौतापूर्ण रैखिक समूह मौलिक रूप से संगठित होता है, विशेष रूप से प्राथमिक समझौतापूर्ण।
*रैखिक समूहों के लिए [[वॉन न्यूमैन अनुमान]] सत्य होता है।
*रैखिक समूहों के लिए वॉन न्यूमैन अनुमान सत्य होता है।


== गैर रैखिक समूहों के उदाहरण ==
== गैर रैखिक समूहों के उदाहरण ==


गैर-रैखिक समूहों के असीम रूप से उत्पन्न उदाहरण देना कठिन नहीं है: उदाहरण के लिए अनंत एबेलियन समूह (Z/2Z)<sup>N x (Z/3Z)<sup>N रैखिक नहीं हो सकता।<ref>This follows from {{harvtxt|Wehrfritz|1973|loc=Theorem 2.2}}.</ref> चूंकि अनंत सेट पर [[सममित समूह]] में यह समूह होता है, यह भी रैखिक नहीं है। बारीक रूप से उत्पन्न उदाहरणों को खोजना सूक्ष्म है और सामान्यतः ऊपर सूचीबद्ध गुणों में से एक के उपयोग की आवश्यकता होती है।
गैर-रैखिक समूहों के असीम रूप से उत्पन्न उदाहरण देना कठिन नहीं है: उदाहरण के लिए अनंत एबेलियन समूह (Z/2Z)<sup>N


* क्योंकि कोई भी सीमित रूप से रूपयोजी समूह शेष अंत समूह होता है, इसलिए यह सामान्यतः सादा और असीमित दोनों नहीं हो सकता। इस प्रकार, अनंत जनन के साथ सीमित उत्पन्न अखंड समूह, उदाहरण के लिए थॉम्पसन का समूह F और हिगमन का समूह, रूपयोजी नहीं होते।
* क्योंकि कोई भी सीमित रूप से रूपयोजी समूह शेष अंत समूह होता है, इसलिए यह सामान्यतः सादा और असीमित दोनों नहीं हो सकता। इस प्रकार, अनंत जनन के साथ सीमित उत्पन्न अखंड समूह, उदाहरण के लिए थॉम्पसन का समूह F और हिगमन का समूह, रूपयोजी नहीं होते।
*ऊपर उल्लिखित स्तन विकल्प के परिणाम के अनुसार, मध्यवर्ती विकास के समूह जैसे मध्यम विकास के समूह रूपयोजी नहीं होते हैं।
*ऊपर उल्लिखित टिट्स विकल्प के परिणाम के अनुसार, मध्यवर्ती विकास के समूह जैसे मध्यम विकास के समूह रूपयोजी नहीं होते हैं।
* फिर से स्तन विकल्प  के माध्यम से,ऊपर उल्लिखित वन न्यूमैन के कंजेक्चर के सभी विरोधाभासी उदाहरण रूपयोजी नहीं होते हैं। इसमें थॉम्पसन का समूह F और टार्स्की मॉन्स्टर समूह भी सम्मलित हैं।
* फिर से टिट्स विकल्प  के माध्यम से,ऊपर उल्लिखित वन न्यूमैन के कंजेक्चर के सभी विरोधाभासी उदाहरण रूपयोजी नहीं होते हैं। इसमें थॉम्पसन का समूह F और टार्स्की मॉन्स्टर समूह भी सम्मलित हैं।
* बर्नसाइड के  सिद्धांत के अनुसार,टार्स्की मॉन्स्टर समूह जैसे असीमित, अंतिम रूप से उत्पन्न टॉरशन समूह रैखिक नहीं हो सकते।
* बर्नसाइड के  सिद्धांत के अनुसार,टार्स्की मॉन्स्टर समूह जैसे असीमित, अंतिम रूप से उत्पन्न टॉरशन समूह रैखिक नहीं हो सकते।
*Sp(n,1) लिएग्रूप में गुठनीयों में से कुछ बीजायद लैटिस के वंशों के भिन्न चौल समूहों के उदाहरण हाइपरबोलिक समूह हैं जो रैखिक नहीं हैं।।<ref>{{cite web |url=http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf |title=ज्यामितीय समूह सिद्धांत में प्रश्न|last1=Bestvina |first1=Mladen  |date=2004 | at=Question 1.15 |access-date=17 August 2016 }}</ref>
*Sp(n,1) लिएग्रूप में गुठनीयों में से कुछ बीजायद लैटिस के वंशों के भिन्न चौल समूहों के उदाहरण हाइपरबोलिक समूह हैं जो रैखिक नहीं हैं।।<ref>{{cite web |url=http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf |title=ज्यामितीय समूह सिद्धांत में प्रश्न|last1=Bestvina |first1=Mladen  |date=2004 | at=Question 1.15 |access-date=17 August 2016 }}</ref>
Line 70: Line 70:
एक समूह ने जब लीनियर होने की स्थापना कर ली होती है तो इसे "आदर्श" वफादार रूपांतरण ढूंढना रोचक होता है, उदाहरण के लिए सबसे कम आवश्यक आयाम या यह भी कि सभी उसके रूपांतरणों (जिनमें वफादार नहीं हो सकता) की वर्गीकरण को ढूंढना। ये सवाल प्रतिनिधि सिद्धांत के विषय होते हैं। महत्वपूर्ण तत्त्वों में से कुछ सम्मलित हैं:
एक समूह ने जब लीनियर होने की स्थापना कर ली होती है तो इसे "आदर्श" वफादार रूपांतरण ढूंढना रोचक होता है, उदाहरण के लिए सबसे कम आवश्यक आयाम या यह भी कि सभी उसके रूपांतरणों (जिनमें वफादार नहीं हो सकता) की वर्गीकरण को ढूंढना। ये सवाल प्रतिनिधि सिद्धांत के विषय होते हैं। महत्वपूर्ण तत्त्वों में से कुछ सम्मलित हैं:
*[[परिमित समूहों का प्रतिनिधित्व सिद्धांत]];
*[[परिमित समूहों का प्रतिनिधित्व सिद्धांत]];
* झूठ समूहों और अधिक सामान्यतः रैखिक बीजगणितीय समूहों का प्रतिनिधित्व सिद्धांत।
* लाई समूहों और अधिक सामान्यतः रैखिक बीजगणितीय समूहों का प्रतिनिधित्व सिद्धांत।
अनंत रूप से उत्पन्न समूहों की प्रतिनिधि सिद्धांत सामान्यतः रहस्यमय होती है; इस स्थितियोंमें रुचि का विषय उन समूहों के विभिन्न चरित्र विस्तारों में होता है, जो एकमात्र कुछ ही स्थितियों में अच्छी प्रकार समझ में आते हैं, जैसे मुक्त समूह, सतह समूह और अधिक सामान्य रूप से लिए गए लिए समूह (उदाहरण के लिए मार्गुलिस के [[अति कठोरता]] के सिद्धांत और अन्य रिगिडिटी परिणामों के माध्यम से)।
अनंत रूप से उत्पन्न समूहों की प्रतिनिधि सिद्धांत सामान्यतः रहस्यमय होती है; इस स्थितियोंमें रुचि का विषय उन समूहों के विभिन्न चरित्र विस्तारों में होता है, जो एकमात्र कुछ ही स्थितियों में अच्छी प्रकार समझ में आते हैं, जैसे मुक्त समूह, सतह समूह और अधिक सामान्य रूप से लिए गए लिए समूह (उदाहरण के लिए मार्गुलिस के [[अति कठोरता]] के सिद्धांत और अन्य रिगिडिटी परिणामों के माध्यम से)।



Revision as of 13:42, 19 October 2023

गणित में, एक आव्यूह समूह एक समूह (गणित) G होता है जिसमें आव्यूह गुणन के संचालन के साथ एक निर्दिष्ट क्षेत्र (गणित) K पर उलटा आव्यूह, आव्यूह (गणित) होता है। एक रैखिक समूह एक ऐसा समूह है जो एक आव्यूह समूह के लिए समूह समरूपता होता है (अर्थात, जो कि K पर विश्वसनीय, सीमित समूह प्रतिनिधित्व को स्वीकार करता है)

कोई भी परिमित समूह रैखिक होता है, क्योंकि केली के उपयोग से परिवर्तन आव्यूहों का उपयोग करके उसे प्राप्त किया जा सकता है। अनंत समूह सिद्धांत के बीच, रैखिक समूह एक रोचक और सुगम वर्ग बनाते हैं। गैर-रैखिक समूहों के उदाहरणों में वे समूह सम्मलित हैं जो "बहुत बड़े" समूह हैं (उदाहरण के लिए, एक अनंत सेट के क्रमपरिवर्तन का समूह), या जो कुछ रोग संबंधी व्यवहार प्रदर्शित करते हैं (उदाहरण के लिए, अंतिम रूप से उत्पन्न समूह अनंत मरोड़ वाले समूह)।

परिभाषा और बुनियादी उदाहरण

एक समूह G को रैखिक कहा जाता है यदि एक क्षेत्र K, एक पूर्णांक d और G से सामान्य रैखिक समूह GLd(K) तक एक इंजेक्शन समूह समाकारिता सम्मलित होता है। (K पर आयाम d के विश्वसनीय रैखिक प्रतिनिधित्व का एक वफादार रैखिक प्रतिनिधित्व): ययदि आवश्यक हो तो G को डिग्री d के K पर रैखिक कहा जा सकता है। उन समूहों को सम्मलित करते हैं जो एक रैखिक समूह के उपसमूह के रूप में परिभाषित किए गए हैं, उदाहरण के लिए:

  1. GLn(K) समूह इसी प्रकार का है;
  2. विशेष रैखिक समूह SLn(K) (निर्धारक 1 के साथ मेट्रिसेस का उपसमूह);
  3. उल्टे ऊपरी (या निचले) त्रिकोणीय आव्यूह का समूह
  4. यदि Gi एक संग्रह है जो एक समूह I के माध्यम से सूचकांक सेट हैं, तो Gi के माध्यम से उत्पन्न किए गए उपसमूह एक रैखिक समूह हैं।

लाई समूहों के अध्ययन में, कभी-कभी लाई समूहों पर ध्यान देने के लिए शैक्षणिक रूप से सुविधाजनक होता है, जिन्हें जटिल संख्याओं के क्षेत्र में ईमानदारी से प्रदर्शित किया जा सकता है। (कुछ लेखकों की आवश्यकता है कि समूह को GLn(C) के एक बंद उपसमूह के रूप में प्रतिनिधित्व किया जाना चाहिए।) इस दृष्टिकोण से इस प्रकार की पुस्तकें हॉल (2015) सम्मलित हैं[1] और रॉसमैन (2002)।[2]


रैखिक समूहों की कक्षाएं

मौलिक समूह और संबंधित उदाहरण

उपरोक्त उदाहरण 1 और 2 का सामान्यीकरण करने के लिए, सामान्य रूप से कहे जाने वाले क्लासिकल समूहों को बनाया जाता है। वे रैखिक बीजगणितीय समूहों के रूप में उत्पन्न होते हैं, अर्थात GLn के उपसमूहों होते हैं जो एक सीमित संख्या के समीकरणों के माध्यम से परिभाषित होते हैं। मूल उदाहरण ओर्थोगोनल समूह, एकात्मक समूह और सहानुभूतिपूर्ण समूह हैं किन्तु विभाजन बीजगणित (उदाहरण के लिए क्वाटरनियन बीजगणित के एक युक्ति समूह का इकाई समूह एक मौलिक समूह है) का उपयोग करके अधिक समूह निर्मित किये जा सकते हैं। ध्यान दें कि इन समूहों से संबंधित प्रोजेक्टिव समूह भी रैखिक होते हैं, चूंकि इसका स्पष्टतया पता नहीं चलता है। उदाहरण के लिए, समूह PSLR2(R) एक 2 × 2 आव्यूहों का समूह नहीं है, किन्तु इसका एक विश्वसनीय रूपवादक 3 × 3 आव्यूहों के रूप में होता है (एडजॉइंट रूपवादन), जो सामान्य स्थितियोंमें उपयोग किया जा सकता है।

बहुत से लाई समूह रैखिक होते हैं, किन्तु सभी नहीं होते हैं। SL2(R) टोपोलॉजी और यूनिवर्सल कवर का यूनिवर्सल कवर(आर) रैखिक नहीं है, जैसा कि कई हल करने योग्य समूह हैं, उदाहरण के लिए एक केंद्रीय उपसमूह चक्रीय उपसमूह के माध्यम से हाइजेनबर्ग समूह के विभाग समूह।

मौलिक लाई समूहों के असतत उपसमूह (उदाहरण के लिए जाली (असतत उपसमूह) या थिन समूह (बीजगणितीय समूह सिद्धांत) भी रोचक रैखिक समूहों के उदाहरण हैं।

परिमित समूह

आदेश (समूह सिद्धांत) n का एक परिमित समूह G किसी भी क्षेत्र K पर अधिकतम n डिग्री का रैखिक है। इस कथन को कभी-कभी केली प्रमेय कहा जाता है, और एकमात्र इस तथ्य से परिणाम होता है कि समूह रिंग K[G] पर G की क्रिया बाएं (या दाएं) गुणा रैखिक और वफादार है। लाइ प्रकार का समूह (परिमित क्षेत्रों पर मौलिक समूह) परिमित सरल समूहों का एक महत्वपूर्ण परिवार है, क्योंकि वे परिमित सरल समूहों के वर्गीकरण में अधिकांश स्लॉट लेते हैं।

बारीकी से उत्पन्न आव्यूह समूह

ऊपर दिए गए उदाहरण 4 बहुत सामान्य है जो एक विशिष्ट वर्ग को परिभाषित करने के लिए पर्याप्त नहीं है (इसमें सभी रैखिक समूह सम्मलित हैं)। चूंकि, एक सीमित सूचकांक सेट आई के लिए, अर्थात अंतिम उत्पन्न समूहों के लिए, बहुत से रोचक उदाहरण बनाने की अनुमति देता है। उदाहरण के लिए:

  • पिंग-पोंग लेम्मा का उपयोग रैखिक समूहों के कई उदाहरणों के निर्माण के लिए किया जा सकता है जो मुक्त समूह हैं (उदाहरण के लिए समूह के माध्यम से उत्पन्न समूह आज़ाद है)।
  • अंकगणितीय समूहों को अंतिम रूप से उत्पन्न होने के लिए जाना जाता है। दूसरी तरफ एक दिए गए अंकगणितीय समूह के लिए एक स्पष्ट जनरेटर सेट खोजना एक कठिन समस्या होती है।
  • ब्रेड समूह (जो एक सीमित रूप से प्रस्तुत समूह होता है) के पास एक समाप्त वर्ग से पूर्ण लिनियर प्रतिनिधि होती है जो एक अंतिम-आयामी जटिल वेक्टर स्थान पर होती है जहां जेनरेटर आव्यूह से स्पष्ट रूप से कार्य करते हैं।[3]


ज्यामिति से उदाहरण

कुछ स्थितियों में एक ज्यामितीय संरचना से आने वाले अभ्यावेदन का उपयोग करके कई गुना के मूलभूत समूह को रैखिक दिखाया जा सकता है। उदाहरण के लिए, जीनस (गणित) की कम से कम 2 सभी बंद सतहें अतिशयोक्तिपूर्ण रीमैन सतहें हैं। एकरूपता प्रमेय के माध्यम से यह अतिशयोक्तिपूर्ण समष्टि के आइसोमेट्री समूह में अपने मौलिक समूह के प्रतिनिधित्व को जन्म देता है, जो कि PSL2(R) के समानक होता है और यह मूल समूह को फुक्सियन समूह के रूप में रियलाइज़ करता है। मैनिफोल्ड पर (G, X)-संरचना के ध्यान की एक सामान्यीकृत निर्माण के माध्यम से इस निर्माण का विस्तार किया जाता है।

एक और उदाहरण है सीफर्ट मैनिफोल्ड के मौलिक समूह है। दूसरी तरफ, यह नहीं जाना जा सकता कि क्या सभी 3-मैनिफोल्ड के मौलिक समूह रैखिक हैं।[4]


गुण

लीनियर समूह एक विशाल उदाहरण वर्ग होते हैं, जो सभी अनंत समूहों में कई उल्लेखनीय गुणों से अलग होते हैं। अंतिम रूप से उत्पन्न लीनियर समूहों के निम्नलिखित गुण होते हैं:

  • वे अवशिष्ट परिमित समूह होते हैं;
  • बर्नसाइड का उल्लेख: एक फ़ील्ड के लघुत्तम घातांक 0 के लिए लीनियर टॉरशन समूह जो अंत तक होता है, उसको फाइनाइट होना होगा।[5]
  • शूर का उल्लेख: टॉरशन लीनियर समूह स्थानीय रूप से अंत होते हैं। विशेष रूप से, यदि वह अंतिम रूप से उत्पन्न होता है, तो वह फाइनाइट होता है।[6]
  • सेलबर्ग की लेम्मा: किसी भी संख्यात्मक उत्पन्न रैखिक समूह में एक अंत से सीमित विवर्तन-मुक्त उपसमूह होता है।[7]

टिट्स विकल्प बताता है कि एक रैखिक समूह में या तो एक गैर-अबेलियन मुक्त समूह होता है या फिर वास्तव में हल करने योग्य होता है (अर्थात, परिमित सूचकांक का एक हल करने योग्य समूह होता है)। इसके कई और परिणाम हैं, उदाहरण के लिए:

  • एक अंतिम रूप से व्यवक्त रैखिक समूह का डेन फ़ंक्शन एकमात्र बहुपदी या घातांकीय हो सकता है।
  • एक समझौतापूर्ण रैखिक समूह मौलिक रूप से संगठित होता है, विशेष रूप से प्राथमिक समझौतापूर्ण।
  • रैखिक समूहों के लिए वॉन न्यूमैन अनुमान सत्य होता है।

गैर रैखिक समूहों के उदाहरण

गैर-रैखिक समूहों के असीम रूप से उत्पन्न उदाहरण देना कठिन नहीं है: उदाहरण के लिए अनंत एबेलियन समूह (Z/2Z)N

  • क्योंकि कोई भी सीमित रूप से रूपयोजी समूह शेष अंत समूह होता है, इसलिए यह सामान्यतः सादा और असीमित दोनों नहीं हो सकता। इस प्रकार, अनंत जनन के साथ सीमित उत्पन्न अखंड समूह, उदाहरण के लिए थॉम्पसन का समूह F और हिगमन का समूह, रूपयोजी नहीं होते।
  • ऊपर उल्लिखित टिट्स विकल्प के परिणाम के अनुसार, मध्यवर्ती विकास के समूह जैसे मध्यम विकास के समूह रूपयोजी नहीं होते हैं।
  • फिर से टिट्स विकल्प के माध्यम से,ऊपर उल्लिखित वन न्यूमैन के कंजेक्चर के सभी विरोधाभासी उदाहरण रूपयोजी नहीं होते हैं। इसमें थॉम्पसन का समूह F और टार्स्की मॉन्स्टर समूह भी सम्मलित हैं।
  • बर्नसाइड के सिद्धांत के अनुसार,टार्स्की मॉन्स्टर समूह जैसे असीमित, अंतिम रूप से उत्पन्न टॉरशन समूह रैखिक नहीं हो सकते।
  • Sp(n,1) लिएग्रूप में गुठनीयों में से कुछ बीजायद लैटिस के वंशों के भिन्न चौल समूहों के उदाहरण हाइपरबोलिक समूह हैं जो रैखिक नहीं हैं।।[8]
  • मुक्त समूह के बाहरी ऑटोमॉर्फिज़्म समूह आउट(OFn)का न्यूनतम आकार 4 के लिए रूपयोजी होने का ज्ञात है।[9]
  • ब्रेड समूहों के स्थितियोंके विपरीत, यह एक खुली समस्या है कि जनसंख्या> 1 के एक सतह के मैपिंग वर्ग के लिए रूपयोजी होने का क्या होगा।

प्रतिनिधित्व सिद्धांत

एक समूह ने जब लीनियर होने की स्थापना कर ली होती है तो इसे "आदर्श" वफादार रूपांतरण ढूंढना रोचक होता है, उदाहरण के लिए सबसे कम आवश्यक आयाम या यह भी कि सभी उसके रूपांतरणों (जिनमें वफादार नहीं हो सकता) की वर्गीकरण को ढूंढना। ये सवाल प्रतिनिधि सिद्धांत के विषय होते हैं। महत्वपूर्ण तत्त्वों में से कुछ सम्मलित हैं:

अनंत रूप से उत्पन्न समूहों की प्रतिनिधि सिद्धांत सामान्यतः रहस्यमय होती है; इस स्थितियोंमें रुचि का विषय उन समूहों के विभिन्न चरित्र विस्तारों में होता है, जो एकमात्र कुछ ही स्थितियों में अच्छी प्रकार समझ में आते हैं, जैसे मुक्त समूह, सतह समूह और अधिक सामान्य रूप से लिए गए लिए समूह (उदाहरण के लिए मार्गुलिस के अति कठोरता के सिद्धांत और अन्य रिगिडिटी परिणामों के माध्यम से)।

टिप्पणियाँ

  1. Hall (2015)
  2. Rossmann (2002)
  3. Stephen J. Bigelow (December 13, 2000), "Braid groups are linear" (PDF), Journal of the American Mathematical Society, 14 (2): 471–486, doi:10.1090/S0894-0347-00-00361-1, S2CID 18936096
  4. Aschenbrenner, Matthias; Friedl, Stefan; Wilton, Henry (2015). 3–manifolds groups. EMS Series of Lectures in Mathematics. European Math. Soc. Section 9.6.
  5. Wehrfritz 1973, p. 15.
  6. Wehfritz 1973, p. 57.
  7. Alperin, Roger C. (1987). "सेलबर्ग के लेम्मा का एक प्राथमिक खाता". L'Enseignement Mathématique. 33.
  8. Bestvina, Mladen (2004). "ज्यामितीय समूह सिद्धांत में प्रश्न" (PDF). Question 1.15. Retrieved 17 August 2016.
  9. Formanek, E.; Procesi, C. (1992). "मुक्त समूह का ऑटोमोर्फिज्म समूह रेखीय नहीं होता है". J. Algebra. 149 (2): 494–499. doi:10.1016/0021-8693(92)90029-l.


संदर्भ

  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666.
  • Rossmann, Wulf (2002), Lie Groups: An Introduction through Linear Groups, Oxford Graduate Texts in Mathematics, Oxford University Press, ISBN 9780198596837.
  • Suprnenko, D.A. (1976). Matrix groups. Translations of mathematical monographs. Vol. 45. American Mathematical Society. ISBN 0-8218-1595-4.
  • Wehrfritz, B.A.F. (1973). Infinite linear groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 76. Springer-Verlag.