हेयुरिस्टिक: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Type of algorithm, produces approximately correct solutions}}
{{Short description|Type of algorithm, produces approximately correct solutions}}
{{other uses|स्वानुभविक (विसंदिग्धीकरण)}}
{{other uses|स्वानुभविक (विसंदिग्धीकरण)}}
[[गणितीय अनुकूलन]] और [[कंप्यूटर विज्ञान]] में, हेयुरिस्टिक, ग्रीक शब्द εὑρίσκω से उत्पन्न हुआ है जिसका अर्थ है 'खोज' यह ऐसी तकनीक है जिसे समस्या को अत्यधिक शीघ्रता से हल करने के लिए तब प्ररूपित किया गया जब पारंपरिक विधियां अनुमानित समाधान खोजने में बहुत धीमी थी या ये सटीक समाधान खोजने में विफल होती थी। यह इष्टतमता, पूर्णता, सटीकता या गति के लिए सटीकता के सापेक्ष प्राप्त किया जाता है। एक तरह से इसे लघुपथ के रूप मे संदर्भित किया जा सकता है।
[[गणितीय अनुकूलन]] और [[कंप्यूटर विज्ञान]] में, हेयुरिस्टिक, ग्रीक शब्द εὑρίσκω से उत्पन्न हुआ है जिसका अर्थ है 'खोज'यह ऐसी तकनीक है जिसे समस्या को अत्यधिक शीघ्रता से हल करने के लिए तब प्रारूपित किया गया जब पारंपरिक विधियां अनुमानित समाधान खोजने में बहुत धीमी थी या ये सटीक समाधान खोजने में विफल होती थी। यह इष्टतमता, पूर्णता, सटीकता या गति सटीकता के सापेक्ष प्राप्त किया जाता है। एक तरह से इसे लघुपथ के रूप मे भी संदर्भित किया जा सकता है।


हेयुरिस्टिक फलन, जिसे "ह्यूरिस्टिक" भी कहा जाता है, गणित मे एक फलन है जो उपलब्ध जानकारी के आधार पर [[खोज एल्गोरिदम|खोज]] कलनविधियों में विकल्पों को स्तरीकृत करता है जिस से यह तय किया जा सके कि कौन सी शाखा का पालन करना है। उदाहरण के लिए, इसका प्रयोग सटीक समाधानों का अनुमान लगाने के लिए किया जा सकता है।<ref>{{cite book |last=Pearl |first=Judea |title=Heuristics: intelligent search strategies for computer problem solving |year=1984 |publisher=Addison-Wesley Pub. Co., Inc., Reading, MA |location=United States |page=3|osti=5127296 }}</ref>
हेयुरिस्टिक फलन, जिसे "ह्यूरिस्टिक" भी कहा जाता है, गणित मे एक फलन है जो उपलब्ध जानकारी के आधार पर [[खोज एल्गोरिदम|खोज]] कलनविधियों में विकल्पों को स्तरीकृत करता है जिस से यह तय किया जा सके कि किस शाखा का अनुकरण करना है। उदाहरण के लिए, इसका प्रयोग सटीक समाधानों का अनुमान लगाने के लिए किया जा सकता है।<ref>{{cite book |last=Pearl |first=Judea |title=Heuristics: intelligent search strategies for computer problem solving |year=1984 |publisher=Addison-Wesley Pub. Co., Inc., Reading, MA |location=United States |page=3|osti=5127296 }}</ref>




== परिभाषा और प्रेरणा ==
== परिभाषा और प्रेरणा ==


अनुमानी का उद्देश्य उचित समय सीमा में समाधान तैयार करना है जो समस्या को हल करने के लिए बहुत अच्छा है। यह समाधान समस्याओ के सभी समाधानों में सबसे अच्छा नहीं हो सकता है, या यह सिर्फ सटीक समाधान का अनुमान लगा सकता है। परंतु फिर भी यह मूल्यवान है क्योंकि इसे खोजने के लिए निषेधात्मक रूप से लंबे समय की आवश्यकता नहीं होती है।
अनुमानी का उद्देश्य उचित समय सीमा में समाधान तैयार करना है जो समस्या को हल करने के लिए उपयुक्त है। यह समाधान समस्याओ के सभी समाधानों में सबसे उपयुक्त नहीं हो सकता है, या यह सिर्फ सटीक समाधान का अनुमान लगा सकता है। परंतु फिर भी यह उपयोगी है क्योंकि इसे खोजने के लिए निषेधात्मक रूप से लंबे समय की आवश्यकता नहीं होती है।


अनुमानी स्वयं परिणाम उत्पन्न कर सकते हैं, या उनकी दक्षता में सुधार के लिए अनुकूलन [[कलन विधि|कलनविधि]] के संयोजन के साथ उनका उपयोग किया जा सकता है उदाहरण के लिए, उनका उपयोग अच्छे बीज मूल्यों को उत्पन्न करने के लिए किया जा सकता है।
अनुमानी स्वयं परिणाम उत्पन्न कर सकते हैं, या उनकी दक्षता में सुधार के लिए [[कलन विधि|कलनविधि]] के संयोजन के साथ इनका उपयोग किया जा सकता है उदाहरण के लिए, उनका उपयोग अच्छे बीज मूल्यों को उत्पन्न करने के लिए किया जा सकता है।


सैद्धांतिक कंप्यूटर विज्ञान में एनपी-कठोरता के परिणाम विभिन्न प्रकार की जटिल अनुकूलन समस्याओं के लिए अनुमानी को एकमात्र व्यवहार्य विकल्प बनाते हैं जिन्हें वास्तविक संसार के अनुप्रयोगों में नियमित रूप से हल करने की आवश्यकता होती है।
सैद्धांतिक कंप्यूटर विज्ञान में एनपी-कठोरता के परिणाम विभिन्न प्रकार की जटिल अनुकूलन समस्याओं के लिए अनुमानी को एकमात्र व्यवहार्य विकल्प बनाते हैं जिन्हें वास्तविक संसार के अनुप्रयोगों में नियमित रूप से हल करने की आवश्यकता होती है।


अनुमानी कृत्रिम बुद्धिमता और सोच के कंप्यूटर मिथ्याभाश के सम्पूर्ण क्षेत्र को रेखांकित करता है, क्योंकि उनका उपयोग उन स्थितियों में किया जा सकता है जहां कोई ज्ञात कलनविधियाँ नहीं हैं।<ref>{{cite book|last=Apter|first=Michael J.|title=The Computer Simulation of Behaviour|year=1970|publisher=Hutchinson & Co|location=London|page=83|isbn=9781351021005|url=https://books.google.com/books?id=-b5aDwAAQBAJ&q=Heuristic}}</ref>
अनुमानी कृत्रिम बुद्धिमता और सोच के कंप्यूटर मिथ्याभाश के सम्पूर्ण क्षेत्र को रेखांकित करता है, क्योंकि उनका उपयोग उन स्थितियों में भी किया जा सकता है जहां कोई ज्ञात कलनविधियाँ नहीं हैं।<ref>{{cite book|last=Apter|first=Michael J.|title=The Computer Simulation of Behaviour|year=1970|publisher=Hutchinson & Co|location=London|page=83|isbn=9781351021005|url=https://books.google.com/books?id=-b5aDwAAQBAJ&q=Heuristic}}</ref>




== दुविधाएँ ==
== दुविधाएँ ==


किसी समस्या को हल करने के लिए अनुमानी का उपयोग करना है या नहीं, यह तय करने के लिए दुविधा मानदंडों में निम्नलिखित कसोटिया सम्मिलित हैं:
किसी समस्या को हल करने के लिए अनुमानी का उपयोग करना है या नहीं, यह तय करने के लिए दुविधा मानदंडों में निम्नलिखित मापदंड सम्मिलित हैं:


* इष्टतमता: जब किसी समस्या के लिए कई समाधान उपलब्ध होते हैं, तो क्या अनुमानी सबसे सटीक समाधान देने की प्रत्याभूति देता है? क्या वास्तव में सबसे सटीक समाधान खोजना आवश्यक है?
* '''इष्टतमता:''' जब किसी समस्या के लिए कई समाधान उपलब्ध होते हैं, तो क्या अनुमानी सबसे सटीक समाधान देने की प्रत्याभूति करता है? क्या वास्तव में सबसे सटीक समाधान जाँचना आवश्यक है?
* पूर्णता: जब किसी दी गई समस्या के लिए विभिन्न समाधान उपलब्ध होते हैं, तो क्या अनुमानी उन सभी को खोज सकता है? क्या वास्तव में हमें सभी समाधानों की आवश्यकता है? कई अनुमानी सिर्फ एक समाधान खोजने के लिए होते हैं।
* '''पूर्णता:''' जब किसी दी गई समस्या के लिए विभिन्न समाधान उपलब्ध होते हैं, तो क्या अनुमानी उन सभी को खोज सकता है? क्या वास्तव में हमें सभी समाधानों की आवश्यकता है? कई अनुमानी सिर्फ एक समाधान खोजने के लिए होते हैं।
* सटीकता और परिशुद्धता: क्या अनुमानी कथित समाधान के लिए एक [[विश्वास अंतराल|विश्वास्यता अंतराल]] प्रदान कर सकता है? क्या समाधान पर त्रुटि पट्टी अनुचित रूप से दीर्घ है?
* '''सटीकता और परिशुद्धता''': क्या अनुमानी कथित समाधान के लिए एक [[विश्वास अंतराल|विश्वास्यता अंतराल]] प्रदान कर सकता है? क्या समाधान पर त्रुटि पट्टी अनुचित रूप से दीर्घ है?
* निष्पादन समय: क्या यह समस्या को हल करने के लिए सबसे उचित अनुमानी है? कुछ अनुमानी अन्य की तुलना में तेजी से एकाग्र होते हैं। कुछ अनुमानी पारंपरिक विधियों की तुलना में सिर्फ साधारण रूप से तेज होते हैं, इस संदर्भ में अनुमानी की गणना पर 'शीर्ष' का नकारात्मक प्रभाव पड़ सकता है।
* '''निष्पादन समय:''' क्या यह समस्या को हल करने के लिए सबसे उचित अनुमानी है? कुछ अनुमानी अन्य की तुलना में तीव्रता से एकाग्र होते हैं। कुछ अनुमानी पारंपरिक विधियों की तुलना में सिर्फ साधारण रूप से तीव्र होते हैं, इस संदर्भ में अनुमानी की गणना पर 'शीर्ष' का नकारात्मक प्रभाव पड़ सकता है।


कुछ संदर्भों में, यह तय करना कठिन हो सकता है कि क्या अनुमानी द्वारा खोजा गया समाधान अच्छा है, क्योंकि इनमे अंतर्निहित सिद्धांत अधिक विस्तृत नहीं है।
कुछ संदर्भों में, यह तय करना कठिन हो सकता है कि क्या अनुमानी द्वारा खोजा गया समाधान सटीक है, क्योंकि इनमे अंतर्निहित सिद्धांत अधिक विस्तृत नहीं है।


== उदाहरण ==
== उदाहरण ==
Line 33: Line 33:
अनुमानी से अपेक्षित संगणनीय प्रदर्शन लाभ प्राप्त करने की एक विधि, सरल समस्या को हल करना है जिसका समाधान, प्रारंभिक समस्या का भी समाधान है।
अनुमानी से अपेक्षित संगणनीय प्रदर्शन लाभ प्राप्त करने की एक विधि, सरल समस्या को हल करना है जिसका समाधान, प्रारंभिक समस्या का भी समाधान है।


=== ट्रैवलिंग सेल्समैन समस्या ===
=== व्यापार यात्री की समस्या ===


[[ट्रैवलिंग सेल्समैन की समस्या]]  को हल करने के लिए सन्निकटन का एक उदाहरण [[जॉन बेंटले (कंप्यूटर वैज्ञानिक)|जॉन बेंटले]] द्वारा वर्णित किया गया है:
[[ट्रैवलिंग सेल्समैन की समस्या|व्यापार यात्री की समस्या]]  को हल करने के लिए सन्निकटन का एक उदाहरण [[जॉन बेंटले (कंप्यूटर वैज्ञानिक)|जॉन बेंटले]] द्वारा वर्णित किया गया है:
* शहरों की एक सूची और शहरों की प्रत्येक युग्म के मध्य की दूरी को देखते हुए, सबसे छोटा संभव मार्ग कौन सा है जो प्रत्येक शहर में एक बार जाता है और मूल शहर में वापस आता है?
* शहरों की एक सूची और शहरों की प्रत्येक युग्म के मध्य की दूरी को देखते हुए, सबसे छोटा संभव मार्ग कौन सा है जो प्रत्येक शहर में एक बार जाता है और मूल शहर में वापस आता है?
ट्रैवलिंग सेल्समैन समस्या को [[एनपी-कठोरता]] के रूप में जाना जाता है जिससे [[पेन प्लॉटर]] का उपयोग करके आरेखित करने के क्रम का चयन किया जा सके। इसके अतिरिक्त  लालची कलनविधि  का उपयोग यथोचित कम समय में इष्टतम अनुमानित तथा सटीक समाधान देने के लिए किया जा सकता है। लालची अनुमानी कलनविधि कहता है कि वर्तमान में जो भी चरण सटीक है उसका अनुकरण करना चाहिए भले ही वह बाद में अच्छे चरणों को रोकता है या असंभव बना देता है। यह इस अर्थ में एक अनुमानी है कि अभ्यास इंगित करता है कि यह एक अच्छा पर्याप्त समाधान है, जबकि सिद्धांत इंगित करता है कि यही बेहतर समाधान हैं।<ref>{{cite book|last=Jon Louis Bentley|title=Writing Efficient Programs|url=https://archive.org/details/writingefficient00bent|url-access=registration|year=1982|publisher=Prentice Hall|page=[https://archive.org/details/writingefficient00bent/page/11 11]}}</ref>
व्यापार यात्री समस्या को [[एनपी-कठोरता]] के रूप में जाना जाता है जिससे [[पेन प्लॉटर]] का उपयोग करके आरेखित करने के क्रम का चयन किया जा सके। इसके अतिरिक्त  लालची कलनविधि  का उपयोग यथोचित कम समय में इष्टतम अनुमानित तथा सटीक समाधान देने के लिए किया जा सकता है। लालची अनुमानी कलनविधि कहता है कि वर्तमान में जो भी चरण सटीक है उसका अनुकरण करना चाहिए भले ही वह बाद में अच्छे चरणों को रोकता है या असंभव बना देता है। अभ्यास इंगित करता है कि यह एक अच्छा पर्याप्त समाधान है, जबकि सिद्धांत इंगित करता है कि यही बेहतर समाधान हैं।<ref>{{cite book|last=Jon Louis Bentley|title=Writing Efficient Programs|url=https://archive.org/details/writingefficient00bent|url-access=registration|year=1982|publisher=Prentice Hall|page=[https://archive.org/details/writingefficient00bent/page/11 11]}}</ref>




Line 67: Line 67:
== व्युत्पत्ति ==
== व्युत्पत्ति ==
{{wiktionary|heuristic}}
{{wiktionary|heuristic}}
19वीं शताब्दी के प्रारंभ में ह्यूरिस्टिक शब्द का प्रयोग शुरू हुआ। यह [[ग्रीक भाषा]] के शब्द ह्यूरिसकेन के अनियमित रूप से बना है, जिसका अर्थ है खोजना।<ref>{{cite web|url=https://en.oxforddictionaries.com/definition/heuristic |title=Definition of ''heuristic'' in English |publisher=Oxford University Press |access-date=22 October 2016 |archive-url=https://web.archive.org/web/20161023011059/https://en.oxforddictionaries.com/definition/heuristic |archive-date=23 October 2016 |url-status=dead }}</ref>
19वीं शताब्दी के प्रारंभ में ह्यूरिस्टिक शब्द का प्रयोग शुरू हुआ। यह [[ग्रीक भाषा]] के शब्द ह्यूरिसकेन के अनियमित रूप से बना है, जिसका अर्थ है जाँचना।<ref>{{cite web|url=https://en.oxforddictionaries.com/definition/heuristic |title=Definition of ''heuristic'' in English |publisher=Oxford University Press |access-date=22 October 2016 |archive-url=https://web.archive.org/web/20161023011059/https://en.oxforddictionaries.com/definition/heuristic |archive-date=23 October 2016 |url-status=dead }}</ref>





Revision as of 02:35, 17 February 2023

गणितीय अनुकूलन और कंप्यूटर विज्ञान में, हेयुरिस्टिक, ग्रीक शब्द εὑρίσκω से उत्पन्न हुआ है जिसका अर्थ है 'खोज'। यह ऐसी तकनीक है जिसे समस्या को अत्यधिक शीघ्रता से हल करने के लिए तब प्रारूपित किया गया जब पारंपरिक विधियां अनुमानित समाधान खोजने में बहुत धीमी थी या ये सटीक समाधान खोजने में विफल होती थी। यह इष्टतमता, पूर्णता, सटीकता या गति सटीकता के सापेक्ष प्राप्त किया जाता है। एक तरह से इसे लघुपथ के रूप मे भी संदर्भित किया जा सकता है।

हेयुरिस्टिक फलन, जिसे "ह्यूरिस्टिक" भी कहा जाता है, गणित मे एक फलन है जो उपलब्ध जानकारी के आधार पर खोज कलनविधियों में विकल्पों को स्तरीकृत करता है जिस से यह तय किया जा सके कि किस शाखा का अनुकरण करना है। उदाहरण के लिए, इसका प्रयोग सटीक समाधानों का अनुमान लगाने के लिए किया जा सकता है।[1]


परिभाषा और प्रेरणा

अनुमानी का उद्देश्य उचित समय सीमा में समाधान तैयार करना है जो समस्या को हल करने के लिए उपयुक्त है। यह समाधान समस्याओ के सभी समाधानों में सबसे उपयुक्त नहीं हो सकता है, या यह सिर्फ सटीक समाधान का अनुमान लगा सकता है। परंतु फिर भी यह उपयोगी है क्योंकि इसे खोजने के लिए निषेधात्मक रूप से लंबे समय की आवश्यकता नहीं होती है।

अनुमानी स्वयं परिणाम उत्पन्न कर सकते हैं, या उनकी दक्षता में सुधार के लिए कलनविधि के संयोजन के साथ इनका उपयोग किया जा सकता है उदाहरण के लिए, उनका उपयोग अच्छे बीज मूल्यों को उत्पन्न करने के लिए किया जा सकता है।

सैद्धांतिक कंप्यूटर विज्ञान में एनपी-कठोरता के परिणाम विभिन्न प्रकार की जटिल अनुकूलन समस्याओं के लिए अनुमानी को एकमात्र व्यवहार्य विकल्प बनाते हैं जिन्हें वास्तविक संसार के अनुप्रयोगों में नियमित रूप से हल करने की आवश्यकता होती है।

अनुमानी कृत्रिम बुद्धिमता और सोच के कंप्यूटर मिथ्याभाश के सम्पूर्ण क्षेत्र को रेखांकित करता है, क्योंकि उनका उपयोग उन स्थितियों में भी किया जा सकता है जहां कोई ज्ञात कलनविधियाँ नहीं हैं।[2]


दुविधाएँ

किसी समस्या को हल करने के लिए अनुमानी का उपयोग करना है या नहीं, यह तय करने के लिए दुविधा मानदंडों में निम्नलिखित मापदंड सम्मिलित हैं:

  • इष्टतमता: जब किसी समस्या के लिए कई समाधान उपलब्ध होते हैं, तो क्या अनुमानी सबसे सटीक समाधान देने की प्रत्याभूति करता है? क्या वास्तव में सबसे सटीक समाधान जाँचना आवश्यक है?
  • पूर्णता: जब किसी दी गई समस्या के लिए विभिन्न समाधान उपलब्ध होते हैं, तो क्या अनुमानी उन सभी को खोज सकता है? क्या वास्तव में हमें सभी समाधानों की आवश्यकता है? कई अनुमानी सिर्फ एक समाधान खोजने के लिए होते हैं।
  • सटीकता और परिशुद्धता: क्या अनुमानी कथित समाधान के लिए एक विश्वास्यता अंतराल प्रदान कर सकता है? क्या समाधान पर त्रुटि पट्टी अनुचित रूप से दीर्घ है?
  • निष्पादन समय: क्या यह समस्या को हल करने के लिए सबसे उचित अनुमानी है? कुछ अनुमानी अन्य की तुलना में तीव्रता से एकाग्र होते हैं। कुछ अनुमानी पारंपरिक विधियों की तुलना में सिर्फ साधारण रूप से तीव्र होते हैं, इस संदर्भ में अनुमानी की गणना पर 'शीर्ष' का नकारात्मक प्रभाव पड़ सकता है।

कुछ संदर्भों में, यह तय करना कठिन हो सकता है कि क्या अनुमानी द्वारा खोजा गया समाधान सटीक है, क्योंकि इनमे अंतर्निहित सिद्धांत अधिक विस्तृत नहीं है।

उदाहरण

सरल समस्या

अनुमानी से अपेक्षित संगणनीय प्रदर्शन लाभ प्राप्त करने की एक विधि, सरल समस्या को हल करना है जिसका समाधान, प्रारंभिक समस्या का भी समाधान है।

व्यापार यात्री की समस्या

व्यापार यात्री की समस्या को हल करने के लिए सन्निकटन का एक उदाहरण जॉन बेंटले द्वारा वर्णित किया गया है:

  • शहरों की एक सूची और शहरों की प्रत्येक युग्म के मध्य की दूरी को देखते हुए, सबसे छोटा संभव मार्ग कौन सा है जो प्रत्येक शहर में एक बार जाता है और मूल शहर में वापस आता है?

व्यापार यात्री समस्या को एनपी-कठोरता के रूप में जाना जाता है जिससे पेन प्लॉटर का उपयोग करके आरेखित करने के क्रम का चयन किया जा सके। इसके अतिरिक्त लालची कलनविधि का उपयोग यथोचित कम समय में इष्टतम अनुमानित तथा सटीक समाधान देने के लिए किया जा सकता है। लालची अनुमानी कलनविधि कहता है कि वर्तमान में जो भी चरण सटीक है उसका अनुकरण करना चाहिए भले ही वह बाद में अच्छे चरणों को रोकता है या असंभव बना देता है। अभ्यास इंगित करता है कि यह एक अच्छा पर्याप्त समाधान है, जबकि सिद्धांत इंगित करता है कि यही बेहतर समाधान हैं।[3]


खोजें

खोज, समस्याओं में विधिकलन को अनुमानी द्वारा शीघ्र बनाने का एक उदाहरण है। प्रारंभ में, अनुमानी प्रत्येक चरण पर पूर्ण-स्थान खोज विधिकलन की तरह सभी संभावनाओ का प्रयास करता है। परंतु यदि वर्तमान संभावना पहले से मिले सर्वोत्तम समाधान से निकृष्ट है तों यह किसी भी समय खोज को रोक सकता है। ऐसी खोज समस्याओं में, प्रारम्भिक सटीक विकल्पों को चिन्हित करने के लिए अनुमानी का उपयोग किया जा सकता है जिससे खराब रास्तों को जल्दी समाप्त किया जा सके। सर्वश्रेष्ठ-प्रथम खोज विधिकलन के संदर्भ में, जैसे कि A* खोज, अनुमानी विधिकालन के अभिसरण में सुधार करता है और इसकी सटीकता को तब तक बनाए रखता है जब तक अनुमानी स्वीकार्य अनुमानी है।

नेवेल और साइमन: अनुमानी खोज परिकल्पना

अपने ट्यूरिंग पुरस्कार स्वीकृति भाषण में, एलन नेवेल और हर्बर्ट ए. साइमन ने अनुमानी खोज परिकल्पना पर चर्चा की और कहा की भौतिक प्रतीक प्रणाली ज्ञात प्रतीक संरचनाओं को बार-बार उत्पन्न और संशोधित करेगी जब तक कि बनाई गई संरचना समाधान संरचना से मेल नहीं खाती। प्रत्येक अगला चरण, पहले के चरण पर निर्भर करता है, इस प्रकार अनुमानी खोज यह मापने के लिए कि समाधान के लिए वर्तमान चरण कितना सटीक है, निर्धारित करता है किस पथ का अनुकलन करना है और कौन से विधियों की उपेक्षा करना है। इसलिए, कुछ संभावनाएं कभी उत्पन्न नहीं होंगी क्योंकि उनके समाधान करने की संभावना कम है।

खोज वृक्ष आरेख का उपयोग करके एक अनुमानी पद्धति अपने कार्य को पूरा कर सकती है। यद्यपि, सभी संभव समाधान शाखाओं को उत्पन्न करने के अतिरिक्त, अनुमानी शाखाओं का चयन करता है जो अन्य शाखाओं की तुलना में परिणाम उत्पन्न करने की अधिक संभावना रखते हैं। यह प्रत्येक निर्णय बिंदु पर चयनात्मक है और उन शाखाओं को चुनता है जो समाधान उत्पन्न करने की अधिक संभावना रखते हैं।[4]


एंटीवायरस सॉफ्टवेयर

एंटीवायरस सॉफ़्टवेयर प्रायः वायरस और अन्य प्रकार के मैलवेयर का पता लगाने के लिए अनुमानी नियमों का उपयोग करता है। अनुमानी निरीक्षण विभिन्न वायरसों के नियमों के विभिन्न समुच्चयों के साथ वायरसों के एक वर्ग या परिवार के लिए सामान्य कूट और व्यवहार प्रतिरूप की तलाश करती है। यदि किसी फ़ाइल या निष्पादन प्रक्रिया में सम कूट प्रतिरूप या गतिविधियों के उस समुच्चय को निष्पादित करते हुए पाया जाता है, तो निरीक्षक यह अनुमान करता है कि फ़ाइल संक्रमित है। व्यवहार-आधारित अनुमानी निरीक्षण का सबसे उन्नत भाग यह है कि यह अत्यधिक यादृच्छिक स्व-संशोधित वायरस के खिलाफ कार्य कर सकता है जिसे सरल शृंखला निरीक्षण विधियों द्वारा आसानी से नहीं पहचाना जा सकता है। अनुमानी निरीक्षण में भविष्य के वायरस का पता लगाने की क्षमता होती है, जिसमें वायरस को पहले कहीं और पता लगाने की आवश्यकता नहीं होती है, वायरस निरीक्षक उत्पादक को प्रस्तुत किया जाता है, विश्लेषण किया जाता है, और निरीक्षक के उपयोगकर्ताओं को प्रदान किए गए निरीक्षक के लिए एक संसूचक नवीनीकरण होता है।

नुकसान

कुछ अनुमानीयों का मजबूत अंतर्निहित सिद्धांत है; वे या तो सिद्धांत से शीर्ष-पाद विधि से प्राप्त होते हैं या प्रायोगिक या वास्तविक विश्व डेटा के आधार पर संदरभित किए जाते हैं। अन्य सिद्धांत वास्तविक दुनिया के अवलोकन या अनुभव के आधार पर सिर्फ अंगूठे का नियम हैं।

जब विभिन्न संदर्भों में एक अनुमानी का पुन: उपयोग किया जाता है क्योंकि इसे एक संदर्भ में कार्य करते देखा गया है, गणितीय रूप से आवश्यकताओं के एक समुच्चय को पूरा करने के लिए सिद्ध किए बिना, यह संभव है कि वर्तमान डेटा समुच्चय भविष्य के डेटा समुच्चयों का प्रतिनिधित्व नहीं करता है और कथित समाधान मात्र कोलाहल के समान हैं।

गलत परिणामों की संभावना का अनुमान लगाने के लिए अनुमानी को नियोजित करते समय सांख्यिकीय विश्लेषण किया जा सकता है। किसी खोज समस्या या नैपसैक समस्या को हल करने के लिए अनुमानी का उपयोग करने से पहले, यह जांचना आवश्यक है कि अनुमानी स्वीकार्य अनुमानी है या नहीं। एक अनुमानी फलन दिया गया है वास्तविक इष्टतम दूरी का अनुमान लगाने के लिए लक्ष्य नोड के लिए एक निर्देशित आरेख में युक्त नामित किए गए कुल शीर्ष होने चाहिए , स्वीकार्य का अर्थ सामान्यतः यह है कि अनुमानी लक्ष्य की लागत सभी के लिए जहाँ को औपचारिक रूप से कम आंकता है

यदि एक अनुमानी स्वीकार्य नहीं है, तो यह कभी भी लक्ष्य को प्राप्त नहीं कर सकता है, या तो आरेख के मृत अंत में समाप्त हो सकता है

व्युत्पत्ति

19वीं शताब्दी के प्रारंभ में ह्यूरिस्टिक शब्द का प्रयोग शुरू हुआ। यह ग्रीक भाषा के शब्द ह्यूरिसकेन के अनियमित रूप से बना है, जिसका अर्थ है जाँचना।[5]


यह भी देखें

संदर्भ

  1. Pearl, Judea (1984). Heuristics: intelligent search strategies for computer problem solving. United States: Addison-Wesley Pub. Co., Inc., Reading, MA. p. 3. OSTI 5127296.
  2. Apter, Michael J. (1970). The Computer Simulation of Behaviour. London: Hutchinson & Co. p. 83. ISBN 9781351021005.
  3. Jon Louis Bentley (1982). Writing Efficient Programs. Prentice Hall. p. 11.
  4. Allen Newell and Herbert A. Simon (1976). "Computer Science as Empirical Inquiry: Symbols and Search" (PDF). Comm. ACM. 19 (3): 113–126. doi:10.1145/360018.360022. S2CID 5581562.
  5. "Definition of heuristic in English". Oxford University Press. Archived from the original on 23 October 2016. Retrieved 22 October 2016.