गैर-रेखीय प्रतिगमन: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:


==सामान्य ==
==सामान्य ==
अरेखीय परावर्तन में, एक सांख्यिकीय प्रारूप होता है जिसका आकार है,,
अरेखीय परावर्तन में, एक सांख्यिकीय प्रारूप होता है जिसका आकार है,


:<math> \mathbf{y} \sim f(\mathbf{x}, \boldsymbol\beta)</math>
:<math> \mathbf{y} \sim f(\mathbf{x}, \boldsymbol\beta)</math>
स्वतंत्र चरों के एक वेक्टर से संबंधित है, <math>\mathbf{x}</math>, और इससे जुड़े अवलोकित [[आश्रित चर]], <math>\mathbf{y}</math>. कार्यक्रम <math>f</math> पैरामीटर्स के वेक्टर के घटकों में अरेखीय है <math>\beta</math>, लेकिन अन्यथा मनमाना। उदाहरण के लिए, एंजाइम कैनेटीक्स के लिए माइकलिस-मेंटेन मॉडल में दो पैरामीटर और एक स्वतंत्र चर है, जो इससे संबंधित है <math>f</math> द्वारा:{{efn|This model can also be expressed in the conventional biological notation:
स्वतंत्र चरों के एक सदिश से संबंधित है, <math>\mathbf{x}</math>, और इससे जुड़े अवलोकित [[आश्रित चर]], <math>\mathbf{y}</math>. कार्यक्रम <math>f</math> पैरामीटर्स के सदिश के घटकों में अरेखीय है <math>\beta</math>, परंतु  अन्यथा मनमाना। उदाहरण के लिए, एंजाइम कैनेटीक्स के लिए माइकलिस-मेंटेन मॉडल में दो पैरामीटर और एक स्वतंत्र चर है, जो इससे संबंधित है <math>f</math> द्वारा:{{efn|This model can also be expressed in the conventional biological notation:


:<math> v = \frac{V_\max\ [\mbox{S}]}{K_m + [\mbox{S}]} </math>
:<math> v = \frac{V_\max\ [\mbox{S}]}{K_m + [\mbox{S}]} </math>
}}
}}
एक स्वतंत्र चर सदिश <math>\mathbf{y}</math> को एक स्वतंत्रता संबंधी स्थायी चर सदिश <math>\mathbf{x}</math> और इसके संबंधित अवलोकित स्वतंत्र चर सदिश y के साथ जोड़ता है। फलन <math>f</math> पैरामीटर चर सदिश <math>\beta</math> के घटकों में अरेखीय होता है, परंतु  अन्यथा विशेष नहीं होता है। उदाहरण के रूप में, एंजाइम किनेटिक्स के लिए माइकेलिस-मेंटन मॉडल में दो पैरामीटर और एक स्वतंत्र चर सदिश द्वारा संबंधित होता है। इसे <math>f</math> द्वारा निम्न रूप में व्यक्त किया जा सकता है:


:<math> f(x,\boldsymbol\beta)= \frac{\beta_1 x}{\beta_2 + x} </math>
:<math> f(x,\boldsymbol\beta)= \frac{\beta_1 x}{\beta_2 + x} </math>
यह फलन अरैखिक है क्योंकि इसे दोनों के [[रैखिक संयोजन]] के रूप में व्यक्त नहीं किया जा सकता है<math>\beta</math>एस।
यह फलन अरैखिक है क्योंकि यह दो <math>\beta</math>s या पैरामीटरों के एक  [[रैखिक संयोजन]] के रूप में व्यक्त नहीं किया जा सकता है।


स्वतंत्र चर में व्यवस्थित त्रुटि मौजूद हो सकती है लेकिन इसका उपचार प्रतिगमन विश्लेषण के दायरे से बाहर है। यदि स्वतंत्र चर त्रुटि-मुक्त नहीं हैं, तो यह एक त्रुटि-में-चर मॉडल है, जो इस दायरे से बाहर भी है।
स्वतंत्र चर में व्यवस्थित त्रुटि उपस्थित हो सकती है परंतु इसका उपचार परावर्तन विश्लेषण के सीमा से बाहर होता है। यदि स्वतंत्र चर त्रुटि-मुक्त नहीं हैं, तो यह एक त्रुटि-में-चर प्रारूप है, जो इस सीमा से बाहर भी है।


गैर-रेखीय कार्यों के अन्य उदाहरणों में [[घातांक]]ीय कार्य, [[लघुगणकीय वृद्धि]], [[त्रिकोणमितीय कार्य]], घातांक, गाऊसी फलन और [[कॉची वितरण]] शामिल हैं। कुछ फलन , जैसे कि घातीय या लघुगणकीय फलन , को रूपांतरित किया जा सकता है ताकि वे रैखिक हों। इस प्रकार परिवर्तित होने पर, मानक रैखिक प्रतिगमन किया जा सकता है लेकिन इसे सावधानी के साथ लागू किया जाना चाहिए। अधिक विवरण के लिए नीचे #Transformation|Linearization§Transformation देखें।
अरेखीय फलनों के अन्य उदाहरणों में [[घातांक|घातांकी]]य फलन, [[लघुगणकीय वृद्धि|लघुगणकीय फलन]], [[त्रिकोणमितीय कार्य|त्रिकोणमितीय फलन]], गाउसियन फलन और [[कॉची वितरण|लॉरेंट्स वितरण]] सम्मिलित हैं। कुछ फलन , जैसे कि [[घातांक|घातांकी]] या लघुगणकीय फलन , को रूपांतरित किया जा सकता है जिससे वे रैखिक हों। इस प्रकार परिवर्तित होने पर, मानक रैखिक परावर्तन किया जा सकता है परंतु इसे सावधानी के साथ लागू किया जाना चाहिए। अधिक विवरण के लिए नीचे देखें।


सामान्य तौर पर, सर्वोत्तम-फिटिंग मापदंडों के लिए कोई बंद-रूप अभिव्यक्ति नहीं होती है, जैसा कि रैखिक प्रतिगमन में होता है। आमतौर पर संख्यात्मक [[अनुकूलन (गणित)]] एल्गोरिदम सर्वोत्तम-फिटिंग पैरामीटर निर्धारित करने के लिए लागू किए जाते हैं। फिर से रैखिक प्रतिगमन के विपरीत, अनुकूलित किए जाने वाले फलन  के कई [[स्थानीय अधिकतम]] हो सकते हैं और यहां तक ​​कि वैश्विक न्यूनतम भी एक अनुमानक अनुमान का पूर्वाग्रह उत्पन्न कर सकता है। व्यवहार में, वर्गों के योग के वैश्विक न्यूनतम को खोजने का प्रयास करने के लिए, अनुकूलन एल्गोरिथ्म के साथ मिलकर, मापदंडों के अनुमानित मूल्य का उपयोग किया जाता है।
सामान्य तौर पर, सर्वोत्तम-फिटिंग मापदंडों के लिए कोई बंद-रूप अभिव्यक्ति नहीं होती है, जैसा कि रैखिक परावर्तन    में होता है। आमतौर पर संख्यात्मक [[अनुकूलन (गणित)]] एल्गोरिदम सर्वोत्तम-फिटिंग पैरामीटर निर्धारित करने के लिए लागू किए जाते हैं। फिर से रैखिक परावर्तन    के विपरीत, अनुकूलित किए जाने वाले फलन  के कई [[स्थानीय अधिकतम]] हो सकते हैं और यहां तक ​​कि वैश्विक न्यूनतम भी एक अनुमानक अनुमान का पूर्वाग्रह उत्पन्न कर सकता है। व्यवहार में, वर्गों के योग के वैश्विक न्यूनतम को खोजने का प्रयास करने के लिए, अनुकूलन एल्गोरिथ्म के साथ मिलकर, मापदंडों के अनुमानित मूल्य का उपयोग किया जाता है।


अरेखीय डेटा मॉडलिंग से संबंधित विवरण के लिए न्यूनतम वर्ग और अरेखीय न्यूनतम वर्ग देखें।
अरेखीय डेटा मॉडलिंग से संबंधित विवरण के लिए न्यूनतम वर्ग और अरेखीय न्यूनतम वर्ग देखें।


==प्रतिगमन आँकड़े==
==परावर्तन    आँकड़े==
इस प्रक्रिया में अंतर्निहित धारणा यह है कि मॉडल को एक रैखिक फलन , अर्थात् प्रथम-क्रम [[टेलर श्रृंखला]] द्वारा अनुमानित किया जा सकता है:
इस प्रक्रिया में अंतर्निहित धारणा यह है कि मॉडल को एक रैखिक फलन , अर्थात् प्रथम-क्रम [[टेलर श्रृंखला]] द्वारा अनुमानित किया जा सकता है:


Line 30: Line 32:


:<math>\hat{\boldsymbol{\beta}} \approx \mathbf { (J^TJ)^{-1}J^Ty},</math>
:<math>\hat{\boldsymbol{\beta}} \approx \mathbf { (J^TJ)^{-1}J^Ty},</math>
इकाई मैट्रिक्स के आनुपातिक सहप्रसरण मैट्रिक्स के साथ [[सामान्यीकृत न्यूनतम वर्ग]]ों की तुलना करें। अरेखीय प्रतिगमन आँकड़ों की गणना और उपयोग रैखिक प्रतिगमन आँकड़ों की तरह किया जाता है, लेकिन सूत्रों में X के स्थान पर J का उपयोग किया जाता है।
इकाई मैट्रिक्स के आनुपातिक सहप्रसरण मैट्रिक्स के साथ [[सामान्यीकृत न्यूनतम वर्ग]]ों की तुलना करें। अरेखीय परावर्तन    आँकड़ों की गणना और उपयोग रैखिक परावर्तन    आँकड़ों की तरह किया जाता है, परंतु  सूत्रों में X के स्थान पर J का उपयोग किया जाता है।


जब समारोह <math>f(x_i,\boldsymbol\beta)</math> स्वयं विश्लेषणात्मक रूप से ज्ञात नहीं है, लेकिन रेखीय प्रतिगमन की आवश्यकता है <math>n+1</math>, या अधिक, ज्ञात मान (जहाँ <math>n</math> अनुमानकों की संख्या है), सबसे अच्छा अनुमानक सीधे [[रैखिक टेम्पलेट फ़िट]] से प्राप्त किया जाता है <ref>{{cite journal | title=रैखिक टेम्पलेट फ़िट| last=Britzger | first=Daniel | journal=Eur. Phys. J. C | volume=82 | year=2022 |pages=731 | doi=10.1140/epjc/s10052-022-10581-w | eprint=2112.01548}}</ref><math display="block"> \hat{\boldsymbol\beta} = ((\mathbf{Y\tilde{M}})^\mathsf{T} \boldsymbol\Omega^{-1} \mathbf{Y\tilde{M}})^{-1}(\mathbf{Y\tilde{M}})^\mathsf{T}\boldsymbol\Omega^{-1}(\mathbf{d}-\mathbf{Y\bar{m})}</math> (Linear_least_squares#Alternative_formulations भी देखें)।
जब समारोह <math>f(x_i,\boldsymbol\beta)</math> स्वयं विश्लेषणात्मक रूप से ज्ञात नहीं है, परंतु  रेखीय परावर्तन    की आवश्यकता है <math>n+1</math>, या अधिक, ज्ञात मान (जहाँ <math>n</math> अनुमानकों की संख्या है), सबसे अच्छा अनुमानक सीधे [[रैखिक टेम्पलेट फ़िट]] से प्राप्त किया जाता है <ref>{{cite journal | title=रैखिक टेम्पलेट फ़िट| last=Britzger | first=Daniel | journal=Eur. Phys. J. C | volume=82 | year=2022 |pages=731 | doi=10.1140/epjc/s10052-022-10581-w | eprint=2112.01548}}</ref><math display="block"> \hat{\boldsymbol\beta} = ((\mathbf{Y\tilde{M}})^\mathsf{T} \boldsymbol\Omega^{-1} \mathbf{Y\tilde{M}})^{-1}(\mathbf{Y\tilde{M}})^\mathsf{T}\boldsymbol\Omega^{-1}(\mathbf{d}-\mathbf{Y\bar{m})}</math> (Linear_least_squares#Alternative_formulations भी देखें)।


रैखिक सन्निकटन आंकड़ों में [[पूर्वाग्रह (सांख्यिकी)]] का परिचय देता है। इसलिए, गैर-रेखीय मॉडल से प्राप्त आँकड़ों की व्याख्या करने में सामान्य से अधिक सावधानी की आवश्यकता होती है।
रैखिक सन्निकटन आंकड़ों में [[पूर्वाग्रह (सांख्यिकी)]] का परिचय देता है। इसलिए, गैर-रेखीय मॉडल से प्राप्त आँकड़ों की व्याख्या करने में सामान्य से अधिक सावधानी की आवश्यकता होती है।
Line 38: Line 40:
==साधारण और [[भारित न्यूनतम वर्ग]]==
==साधारण और [[भारित न्यूनतम वर्ग]]==


सबसे उपयुक्त वक्र अक्सर वह माना जाता है जो आँकड़ों में वर्ग त्रुटियों और अवशेषों के योग को कम करता है। यह सामान्य न्यूनतम वर्ग (ओएलएस) दृष्टिकोण है। हालाँकि, ऐसे मामलों में जहां आश्रित चर में निरंतर भिन्नता नहीं होती है, भारित वर्ग अवशेषों का योग कम किया जा सकता है; भारित न्यूनतम वर्ग देखें. प्रत्येक भार आदर्श रूप से अवलोकन के विचरण के व्युत्क्रम के बराबर होना चाहिए, लेकिन पुनरावृत्त रूप से भारित न्यूनतम वर्ग एल्गोरिथ्म में, प्रत्येक पुनरावृत्ति पर भार की पुनर्गणना की जा सकती है।
सबसे उपयुक्त वक्र अक्सर वह माना जाता है जो आँकड़ों में वर्ग त्रुटियों और अवशेषों के योग को कम करता है। यह सामान्य न्यूनतम वर्ग (ओएलएस) दृष्टिकोण है। हालाँकि, ऐसे मामलों में जहां आश्रित चर में निरंतर भिन्नता नहीं होती है, भारित वर्ग अवशेषों का योग कम किया जा सकता है; भारित न्यूनतम वर्ग देखें. प्रत्येक भार आदर्श रूप से अवलोकन के विचरण के व्युत्क्रम के बराबर होना चाहिए, परंतु  पुनरावृत्त रूप से भारित न्यूनतम वर्ग एल्गोरिथ्म में, प्रत्येक पुनरावृत्ति पर भार की पुनर्गणना की जा सकती है।


==रैखिकीकरण==
==रैखिकीकरण==
Line 45: Line 47:
{{further|Data transformation (statistics)}}
{{further|Data transformation (statistics)}}


मॉडल फॉर्मूलेशन के उपयुक्त परिवर्तन द्वारा कुछ गैर-रेखीय प्रतिगमन समस्याओं को एक रैखिक डोमेन में ले जाया जा सकता है।
मॉडल फॉर्मूलेशन के उपयुक्त परिवर्तन द्वारा कुछ गैर-रेखीय परावर्तन    समस्याओं को एक रैखिक डोमेन में ले जाया जा सकता है।


उदाहरण के लिए, अरेखीय प्रतिगमन समस्या पर विचार करें
उदाहरण के लिए, अरेखीय परावर्तन    समस्या पर विचार करें


:<math> y = a e^{b x}U \,\!</math>
:<math> y = a e^{b x}U \,\!</math>
Line 53: Line 55:


:<math> \ln{(y)} = \ln{(a)} + b x + u, \,\!</math>
:<math> \ln{(y)} = \ln{(a)} + b x + u, \,\!</math>
जहां u = ln(U), x पर ln(y) के रैखिक प्रतिगमन द्वारा अज्ञात मापदंडों के अनुमान का सुझाव देता है, एक गणना जिसमें पुनरावृत्त अनुकूलन की आवश्यकता नहीं होती है। हालाँकि, अरेखीय परिवर्तन के उपयोग में सावधानी की आवश्यकता होती है। डेटा मानों का प्रभाव बदल जाएगा, साथ ही मॉडल की त्रुटि संरचना और किसी भी अनुमानित परिणाम की व्याख्या भी बदल जाएगी। ये वांछित प्रभाव नहीं हो सकते हैं. दूसरी ओर, त्रुटि का सबसे बड़ा स्रोत क्या है, इस पर निर्भर करते हुए, एक गैर-रेखीय परिवर्तन गाऊसी फैशन में त्रुटियों को वितरित कर सकता है, इसलिए एक गैर-रेखीय परिवर्तन करने का विकल्प मॉडलिंग विचारों द्वारा सूचित किया जाना चाहिए।
जहां u = ln(U), x पर ln(y) के रैखिक परावर्तन    द्वारा अज्ञात मापदंडों के अनुमान का सुझाव देता है, एक गणना जिसमें पुनरावृत्त अनुकूलन की आवश्यकता नहीं होती है। हालाँकि, अरेखीय परिवर्तन के उपयोग में सावधानी की आवश्यकता होती है। डेटा मानों का प्रभाव बदल जाएगा, साथ ही मॉडल की त्रुटि संरचना और किसी भी अनुमानित परिणाम की व्याख्या भी बदल जाएगी। ये वांछित प्रभाव नहीं हो सकते हैं. दूसरी ओर, त्रुटि का सबसे बड़ा स्रोत क्या है, इस पर निर्भर करते हुए, एक गैर-रेखीय परिवर्तन गाऊसी फैशन में त्रुटियों को वितरित कर सकता है, इसलिए एक गैर-रेखीय परिवर्तन करने का विकल्प मॉडलिंग विचारों द्वारा सूचित किया जाना चाहिए।


माइकलिस-मेंटेन कैनेटीक्स के लिए, रैखिक लाइनवीवर-बर्क प्लॉट
माइकलिस-मेंटेन कैनेटीक्स के लिए, रैखिक लाइनवीवर-बर्क प्लॉट
Line 66: Line 68:
{{main|Segmented regression}}
{{main|Segmented regression}}


स्वतंत्र चर (मान लीजिए X) को वर्गों या खंडों में विभाजित किया जा सकता है और प्रति खंड रैखिक प्रतिगमन किया जा सकता है। [[विश्वास अंतराल]] के साथ खंडित प्रतिगमन का परिणाम यह हो सकता है कि आश्रित चर (जैसे Y) विभिन्न खंडों में अलग-अलग व्यवहार करता है।<ref>R.J.Oosterbaan, 1994, Frequency and Regression Analysis. In: H.P.Ritzema (ed.), Drainage Principles and Applications, Publ. 16, pp. 175-224, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. {{ISBN|90-70754-33-9}} . Download as PDF : [http://www.waterlog.info/pdf/regtxt.pdf]</ref>
स्वतंत्र चर (मान लीजिए X) को वर्गों या खंडों में विभाजित किया जा सकता है और प्रति खंड रैखिक परावर्तन    किया जा सकता है। [[विश्वास अंतराल]] के साथ खंडित परावर्तन    का परिणाम यह हो सकता है कि आश्रित चर (जैसे Y) विभिन्न खंडों में अलग-अलग व्यवहार करता है।<ref>R.J.Oosterbaan, 1994, Frequency and Regression Analysis. In: H.P.Ritzema (ed.), Drainage Principles and Applications, Publ. 16, pp. 175-224, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. {{ISBN|90-70754-33-9}} . Download as PDF : [http://www.waterlog.info/pdf/regtxt.pdf]</ref>
आंकड़े से पता चलता है कि [[मिट्टी की लवणता]] (एक्स) शुरू में सरसों की फसल की उपज (वाई) पर कोई प्रभाव नहीं डालती है, जब तक कि एक महत्वपूर्ण या सीमा मूल्य (ब्रेकपॉइंट) नहीं हो जाता, जिसके बाद उपज नकारात्मक रूप से प्रभावित होती है।<ref>R.J.Oosterbaan, 2002. Drainage research in farmers' fields: analysis of data. Part of project “Liquid Gold” of the
आंकड़े से पता चलता है कि [[मिट्टी की लवणता]] (एक्स) शुरू में सरसों की फसल की उपज (वाई) पर कोई प्रभाव नहीं डालती है, जब तक कि एक महत्वपूर्ण या सीमा मूल्य (ब्रेकपॉइंट) नहीं हो जाता, जिसके बाद उपज नकारात्मक रूप से प्रभावित होती है।<ref>R.J.Oosterbaan, 2002. Drainage research in farmers' fields: analysis of data. Part of project “Liquid Gold” of the
International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Download as PDF : [http://www.waterlog.info/pdf/analysis.pdf]. The figure was made with the [[SegReg]] program, which can be downloaded freely from [http://www.waterlog.info/segreg.htm]</ref>
International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Download as PDF : [http://www.waterlog.info/pdf/analysis.pdf]. The figure was made with the [[SegReg]] program, which can be downloaded freely from [http://www.waterlog.info/segreg.htm]</ref>
Line 76: Line 78:
* [[वक्र फिटिंग]]
* [[वक्र फिटिंग]]
* सामान्यीकृत रैखिक मॉडल
* सामान्यीकृत रैखिक मॉडल
* [[स्थानीय प्रतिगमन]]
* [[स्थानीय प्रतिगमन|स्थानीय परावर्तन]]  
* [[प्रतिक्रिया मॉडलिंग पद्धति]]
* [[प्रतिक्रिया मॉडलिंग पद्धति]]
* [[ आनुवंशिक प्रोग्रामिंग ]]
* [[ आनुवंशिक प्रोग्रामिंग ]]

Revision as of 12:31, 12 July 2023

विवरण के लिए माइकलिस-मेंटेन कैनेटीक्स देखें

आंकड़ों में, अरैखिक परावर्तन, परावर्तन विश्लेषण का एक रूप है जिसमें अवलोकन संबंधी डेटा को एक फलन द्वारा प्रारूपित किया जाता है जो प्रारूपित मापदंडों का एक अरैखिक संयोजन है और एक या अधिक स्वतंत्र चर पर निर्भर करता है। डेटा को क्रमिक सन्निकटन की विधि द्वारा जोड़ा जाता है।

सामान्य

अरेखीय परावर्तन में, एक सांख्यिकीय प्रारूप होता है जिसका आकार है,

स्वतंत्र चरों के एक सदिश से संबंधित है, , और इससे जुड़े अवलोकित आश्रित चर, . कार्यक्रम पैरामीटर्स के सदिश के घटकों में अरेखीय है , परंतु अन्यथा मनमाना। उदाहरण के लिए, एंजाइम कैनेटीक्स के लिए माइकलिस-मेंटेन मॉडल में दो पैरामीटर और एक स्वतंत्र चर है, जो इससे संबंधित है द्वारा:[lower-alpha 1]

एक स्वतंत्र चर सदिश को एक स्वतंत्रता संबंधी स्थायी चर सदिश और इसके संबंधित अवलोकित स्वतंत्र चर सदिश y के साथ जोड़ता है। फलन पैरामीटर चर सदिश के घटकों में अरेखीय होता है, परंतु अन्यथा विशेष नहीं होता है। उदाहरण के रूप में, एंजाइम किनेटिक्स के लिए माइकेलिस-मेंटन मॉडल में दो पैरामीटर और एक स्वतंत्र चर सदिश द्वारा संबंधित होता है। इसे द्वारा निम्न रूप में व्यक्त किया जा सकता है:

यह फलन अरैखिक है क्योंकि यह दो s या पैरामीटरों के एक रैखिक संयोजन के रूप में व्यक्त नहीं किया जा सकता है।

स्वतंत्र चर में व्यवस्थित त्रुटि उपस्थित हो सकती है परंतु इसका उपचार परावर्तन विश्लेषण के सीमा से बाहर होता है। यदि स्वतंत्र चर त्रुटि-मुक्त नहीं हैं, तो यह एक त्रुटि-में-चर प्रारूप है, जो इस सीमा से बाहर भी है।

अरेखीय फलनों के अन्य उदाहरणों में घातांकीय फलन, लघुगणकीय फलन, त्रिकोणमितीय फलन, गाउसियन फलन और लॉरेंट्स वितरण सम्मिलित हैं। कुछ फलन , जैसे कि घातांकी या लघुगणकीय फलन , को रूपांतरित किया जा सकता है जिससे वे रैखिक हों। इस प्रकार परिवर्तित होने पर, मानक रैखिक परावर्तन किया जा सकता है परंतु इसे सावधानी के साथ लागू किया जाना चाहिए। अधिक विवरण के लिए नीचे देखें।

सामान्य तौर पर, सर्वोत्तम-फिटिंग मापदंडों के लिए कोई बंद-रूप अभिव्यक्ति नहीं होती है, जैसा कि रैखिक परावर्तन में होता है। आमतौर पर संख्यात्मक अनुकूलन (गणित) एल्गोरिदम सर्वोत्तम-फिटिंग पैरामीटर निर्धारित करने के लिए लागू किए जाते हैं। फिर से रैखिक परावर्तन के विपरीत, अनुकूलित किए जाने वाले फलन के कई स्थानीय अधिकतम हो सकते हैं और यहां तक ​​कि वैश्विक न्यूनतम भी एक अनुमानक अनुमान का पूर्वाग्रह उत्पन्न कर सकता है। व्यवहार में, वर्गों के योग के वैश्विक न्यूनतम को खोजने का प्रयास करने के लिए, अनुकूलन एल्गोरिथ्म के साथ मिलकर, मापदंडों के अनुमानित मूल्य का उपयोग किया जाता है।

अरेखीय डेटा मॉडलिंग से संबंधित विवरण के लिए न्यूनतम वर्ग और अरेखीय न्यूनतम वर्ग देखें।

परावर्तन आँकड़े

इस प्रक्रिया में अंतर्निहित धारणा यह है कि मॉडल को एक रैखिक फलन , अर्थात् प्रथम-क्रम टेलर श्रृंखला द्वारा अनुमानित किया जा सकता है:

कहाँ . इससे यह निष्कर्ष निकलता है कि न्यूनतम वर्ग अनुमानक द्वारा दिये गये हैं

इकाई मैट्रिक्स के आनुपातिक सहप्रसरण मैट्रिक्स के साथ सामान्यीकृत न्यूनतम वर्गों की तुलना करें। अरेखीय परावर्तन आँकड़ों की गणना और उपयोग रैखिक परावर्तन आँकड़ों की तरह किया जाता है, परंतु सूत्रों में X के स्थान पर J का उपयोग किया जाता है।

जब समारोह स्वयं विश्लेषणात्मक रूप से ज्ञात नहीं है, परंतु रेखीय परावर्तन की आवश्यकता है , या अधिक, ज्ञात मान (जहाँ अनुमानकों की संख्या है), सबसे अच्छा अनुमानक सीधे रैखिक टेम्पलेट फ़िट से प्राप्त किया जाता है [1]

(Linear_least_squares#Alternative_formulations भी देखें)।

रैखिक सन्निकटन आंकड़ों में पूर्वाग्रह (सांख्यिकी) का परिचय देता है। इसलिए, गैर-रेखीय मॉडल से प्राप्त आँकड़ों की व्याख्या करने में सामान्य से अधिक सावधानी की आवश्यकता होती है।

साधारण और भारित न्यूनतम वर्ग

सबसे उपयुक्त वक्र अक्सर वह माना जाता है जो आँकड़ों में वर्ग त्रुटियों और अवशेषों के योग को कम करता है। यह सामान्य न्यूनतम वर्ग (ओएलएस) दृष्टिकोण है। हालाँकि, ऐसे मामलों में जहां आश्रित चर में निरंतर भिन्नता नहीं होती है, भारित वर्ग अवशेषों का योग कम किया जा सकता है; भारित न्यूनतम वर्ग देखें. प्रत्येक भार आदर्श रूप से अवलोकन के विचरण के व्युत्क्रम के बराबर होना चाहिए, परंतु पुनरावृत्त रूप से भारित न्यूनतम वर्ग एल्गोरिथ्म में, प्रत्येक पुनरावृत्ति पर भार की पुनर्गणना की जा सकती है।

रैखिकीकरण

परिवर्तन

मॉडल फॉर्मूलेशन के उपयुक्त परिवर्तन द्वारा कुछ गैर-रेखीय परावर्तन समस्याओं को एक रैखिक डोमेन में ले जाया जा सकता है।

उदाहरण के लिए, अरेखीय परावर्तन समस्या पर विचार करें

पैरामीटर ए और बी के साथ और गुणक त्रुटि पद यू के साथ। यदि हम दोनों पक्षों का लघुगणक लेते हैं, तो यह बन जाता है

जहां u = ln(U), x पर ln(y) के रैखिक परावर्तन द्वारा अज्ञात मापदंडों के अनुमान का सुझाव देता है, एक गणना जिसमें पुनरावृत्त अनुकूलन की आवश्यकता नहीं होती है। हालाँकि, अरेखीय परिवर्तन के उपयोग में सावधानी की आवश्यकता होती है। डेटा मानों का प्रभाव बदल जाएगा, साथ ही मॉडल की त्रुटि संरचना और किसी भी अनुमानित परिणाम की व्याख्या भी बदल जाएगी। ये वांछित प्रभाव नहीं हो सकते हैं. दूसरी ओर, त्रुटि का सबसे बड़ा स्रोत क्या है, इस पर निर्भर करते हुए, एक गैर-रेखीय परिवर्तन गाऊसी फैशन में त्रुटियों को वितरित कर सकता है, इसलिए एक गैर-रेखीय परिवर्तन करने का विकल्प मॉडलिंग विचारों द्वारा सूचित किया जाना चाहिए।

माइकलिस-मेंटेन कैनेटीक्स के लिए, रैखिक लाइनवीवर-बर्क प्लॉट

1/[S] के विरुद्ध 1/v का बहुत अधिक उपयोग किया गया है। हालाँकि, चूंकि यह डेटा त्रुटि के प्रति बहुत संवेदनशील है और डेटा को स्वतंत्र चर, [एस] की एक विशेष श्रेणी में फिट करने के प्रति दृढ़ता से पक्षपाती है, इसलिए इसके उपयोग को दृढ़ता से हतोत्साहित किया जाता है।

घातीय परिवार से संबंधित त्रुटि वितरण के लिए, सामान्यीकृत रैखिक मॉडल ढांचे के तहत मापदंडों को बदलने के लिए एक लिंक फलन का उपयोग किया जा सकता है।

विभाजन

सरसों की उपज और मिट्टी की लवणता

स्वतंत्र चर (मान लीजिए X) को वर्गों या खंडों में विभाजित किया जा सकता है और प्रति खंड रैखिक परावर्तन किया जा सकता है। विश्वास अंतराल के साथ खंडित परावर्तन का परिणाम यह हो सकता है कि आश्रित चर (जैसे Y) विभिन्न खंडों में अलग-अलग व्यवहार करता है।[2] आंकड़े से पता चलता है कि मिट्टी की लवणता (एक्स) शुरू में सरसों की फसल की उपज (वाई) पर कोई प्रभाव नहीं डालती है, जब तक कि एक महत्वपूर्ण या सीमा मूल्य (ब्रेकपॉइंट) नहीं हो जाता, जिसके बाद उपज नकारात्मक रूप से प्रभावित होती है।[3]


यह भी देखें

संदर्भ

  1. Britzger, Daniel (2022). "रैखिक टेम्पलेट फ़िट". Eur. Phys. J. C. 82: 731. arXiv:2112.01548. doi:10.1140/epjc/s10052-022-10581-w.
  2. R.J.Oosterbaan, 1994, Frequency and Regression Analysis. In: H.P.Ritzema (ed.), Drainage Principles and Applications, Publ. 16, pp. 175-224, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90-70754-33-9 . Download as PDF : [1]
  3. R.J.Oosterbaan, 2002. Drainage research in farmers' fields: analysis of data. Part of project “Liquid Gold” of the International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. Download as PDF : [2]. The figure was made with the SegReg program, which can be downloaded freely from [3]


टिप्पणियाँ

  1. This model can also be expressed in the conventional biological notation:


अग्रिम पठन

  • Bethea, R. M.; Duran, B. S.; Boullion, T. L. (1985). Statistical Methods for Engineers and Scientists. New York: Marcel Dekker. ISBN 0-8247-7227-X.
  • Meade, N.; Islam, T. (1995). "Prediction Intervals for Growth Curve Forecasts". Journal of Forecasting. 14 (5): 413–430. doi:10.1002/for.3980140502.
  • Schittkowski, K. (2002). Data Fitting in Dynamical Systems. Boston: Kluwer. ISBN 1402010796.
  • Seber, G. A. F.; Wild, C. J. (1989). Nonlinear Regression. New York: John Wiley and Sons. ISBN 0471617601.