महावीर: Difference between revisions

From Vigyanwiki
(Added redirecting link Updated Title English page)
(Added Content)
Line 32: Line 32:
</math>जहाँ a पहला पद है और r सार्व अनुपात है और S<sub>n</sub>, n पदों का योग है।
</math>जहाँ a पहला पद है और r सार्व अनुपात है और S<sub>n</sub>, n पदों का योग है।
:: महावीर के काम <ref>गुर्जर, एल वी (1947)। प्राचीन भारतीय गणित और वेद। पुणे।  पृष्ठ.102-103(Gurjar, L V (1947). Ancient Indian Mathematics and Vedha. Pune. page. 102–103)</ref>दूसरों की तुलना में  विविध आंकड़ों की परिभाषा के संबंध में अलग है। उन्होंने त्रिभुज की परिभाषाएँ दी हैं- समबाहु, समद्विबाहु और विषमबाहु-एक वर्ग, एक आयत, [[समद्विबाहु समलम्ब]], समलंब जिसकी तीन भुजाएँ बराबर हों, एक चतुर्भुज, एक वृत्त, एक अर्धवृत्त, एक दीर्घवृत्त, एक खोखला गोलार्द्ध और अर्द्धचन्द्र । यह सच है कि एक दीर्घवृत्त के क्षेत्रफल और एक दीर्घवृत्त के वक्र की लंबाई के संबंध में उन्होंने जो परिणाम निकाले, वे सटीक नहीं हैं, लेकिन इस रेखा में अग्रणी के रूप में उनका स्थान ऊँचा है। [[ब्रह्मगुप्त]] द्वारा प्रतिपादित [[चक्रीय चतुर्भुज]] के लगभग सभी गुणों की उनके द्वारा अधिक स्पष्ट रूप से व्याख्या की गई है।
:: महावीर के काम <ref>गुर्जर, एल वी (1947)। प्राचीन भारतीय गणित और वेद। पुणे।  पृष्ठ.102-103(Gurjar, L V (1947). Ancient Indian Mathematics and Vedha. Pune. page. 102–103)</ref>दूसरों की तुलना में  विविध आंकड़ों की परिभाषा के संबंध में अलग है। उन्होंने त्रिभुज की परिभाषाएँ दी हैं- समबाहु, समद्विबाहु और विषमबाहु-एक वर्ग, एक आयत, [[समद्विबाहु समलम्ब]], समलंब जिसकी तीन भुजाएँ बराबर हों, एक चतुर्भुज, एक वृत्त, एक अर्धवृत्त, एक दीर्घवृत्त, एक खोखला गोलार्द्ध और अर्द्धचन्द्र । यह सच है कि एक दीर्घवृत्त के क्षेत्रफल और एक दीर्घवृत्त के वक्र की लंबाई के संबंध में उन्होंने जो परिणाम निकाले, वे सटीक नहीं हैं, लेकिन इस रेखा में अग्रणी के रूप में उनका स्थान ऊँचा है। [[ब्रह्मगुप्त]] द्वारा प्रतिपादित [[चक्रीय चतुर्भुज]] के लगभग सभी गुणों की उनके द्वारा अधिक स्पष्ट रूप से व्याख्या की गई है।
== गणित में महावीर का योगदान ==
* ज्योतिष को गणित से अलग किया<ref>[https://vedicmathschool.org/mahavira/ https://vedicmathschool.org/Mahāvīra/]</ref>
* समबाहु और समद्विबाहु त्रिभुज, समचतुर्भुज, वृत्त और अर्धवृत्त शब्द बनाए
* एक निर्मित सूत्र जिसने दीर्घवृत्तों के क्षेत्रफल और परिमापों की गणना की।
* एक संख्या के वर्ग और एक संख्या के घनमूल की गणना करने के लिए विकसित तरीके।
* आर्यभट के कार्यों पर काम किया और उन्हें परिष्कृत किया।


== बाहरी संपर्क ==
== बाहरी संपर्क ==

Revision as of 15:08, 1 December 2022

महावीर या महावीराचार्य दक्षिण भारत में ,मैसूर, में पैदा हुए 9वीं शताब्दी के जैन गणितज्ञ थे। उनका जन्म वर्ष 815 ई.[1]

गणितसारसंग्रह की रचना महावीर ने की थी। वह राष्ट्रकूट वंश के राजा अमोघवर्ष के शाही दरबार में थे।

गणितसारसंग्रह में निम्नलिखित अध्याय हैं: [2]

  1. संज्ञाधिकार (शब्दावली)
  2. परिकर्मव्यवहार (अंकगणितीय संचालन)
  3. कलासवर्णव्यवहार (अंश)
  4. प्रकीर्णकव्यवहार (विविध समस्याएं)
  5. त्रैराशिकव्यवहार (तीन का नियम)
  6. मिश्रकव्यवहार (मिश्रित समस्याएं)
  7. क्षेत्रगणितव्यवहार (क्षेत्रों का मापन)
  8. खातव्यवहार ( उत्खनन के संबंध में गणना)
  9. छायाव्यवहार (छाया से संबंधित गणना)

गणितसारसंग्रह में महावीराचार्य ने गणित की प्रशंसा की है

लौकिके वैदिके वापि तथा सामयिकेऽपि यः।
व्यापारस्तत्र सर्वत्र संख्यानमुपयुज्यते॥
अर्थ : जहां सांसारिक, वैदिक और समसामयिक में व्यापार होता है, वहां हर जगह अंकों का ही प्रयोग होता है।
यह महावीर ही थे जिन्होंने सर्वप्रथम श्रृंखला को ज्यामितीय श्रेणी में माना और उसमें आवश्यक लगभग सभी सूत्र दिए।
गुणसङ्कलितान्त्यधनं विगतैकपदस्य गुणधनं भवति ।
तद्गुणगुणं मुखोनं व्येकोत्तर भाजितं सारम् ॥
अन्त्यधन - अंतिम अवधि का मूल्य। गुण - सामान्य अनुपात।
पद कहता है कि
जहाँ a पहला पद है और r सार्व अनुपात है और Sn, n पदों का योग है।
महावीर के काम [3]दूसरों की तुलना में विविध आंकड़ों की परिभाषा के संबंध में अलग है। उन्होंने त्रिभुज की परिभाषाएँ दी हैं- समबाहु, समद्विबाहु और विषमबाहु-एक वर्ग, एक आयत, समद्विबाहु समलम्ब, समलंब जिसकी तीन भुजाएँ बराबर हों, एक चतुर्भुज, एक वृत्त, एक अर्धवृत्त, एक दीर्घवृत्त, एक खोखला गोलार्द्ध और अर्द्धचन्द्र । यह सच है कि एक दीर्घवृत्त के क्षेत्रफल और एक दीर्घवृत्त के वक्र की लंबाई के संबंध में उन्होंने जो परिणाम निकाले, वे सटीक नहीं हैं, लेकिन इस रेखा में अग्रणी के रूप में उनका स्थान ऊँचा है। ब्रह्मगुप्त द्वारा प्रतिपादित चक्रीय चतुर्भुज के लगभग सभी गुणों की उनके द्वारा अधिक स्पष्ट रूप से व्याख्या की गई है।

गणित में महावीर का योगदान

  • ज्योतिष को गणित से अलग किया[4]
  • समबाहु और समद्विबाहु त्रिभुज, समचतुर्भुज, वृत्त और अर्धवृत्त शब्द बनाए
  • एक निर्मित सूत्र जिसने दीर्घवृत्तों के क्षेत्रफल और परिमापों की गणना की।
  • एक संख्या के वर्ग और एक संख्या के घनमूल की गणना करने के लिए विकसित तरीके।
  • आर्यभट के कार्यों पर काम किया और उन्हें परिष्कृत किया।

बाहरी संपर्क

यह भी देखें

Mahāvīra

संदर्भ

  1. महावीर(Mahavira/)
  2. "गणितसारसंग्रह"("Ganitasarsangrah")
  3. गुर्जर, एल वी (1947)। प्राचीन भारतीय गणित और वेद। पुणे।  पृष्ठ.102-103(Gurjar, L V (1947). Ancient Indian Mathematics and Vedha. Pune. page. 102–103)
  4. https://vedicmathschool.org/Mahāvīra/