फलन का शून्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
{{Css Image Crop |Image = X-intercepts.svg |bSize = 300 |cWidth = 300 |cHeight = 110 |oLeft = 0 |oTop = 100 |Location = right |Description = A graph of the function <math>\cos(x)</math> for <math>x</math> in <math>\left[-2\pi,2\pi\right]</math>, with '''zeros''' at <math>-\tfrac{3\pi}{2},\;-\tfrac{\pi}{2},\;\tfrac{\pi}{2}</math>, and <math>\tfrac{3\pi}{2},</math> marked in <span style="color:red">red</span>.}}
{{Css Image Crop |Image = X-intercepts.svg |bSize = 300 |cWidth = 300 |cHeight = 110 |oLeft = 0 |oTop = 100 |Location = right |Description = A graph of the function <math>\cos(x)</math> for <math>x</math> in <math>\left[-2\pi,2\pi\right]</math>, with '''zeros''' at <math>-\tfrac{3\pi}{2},\;-\tfrac{\pi}{2},\;\tfrac{\pi}{2}</math>, and <math>\tfrac{3\pi}{2},</math> marked in <span style="color:red">red</span>.}}


गणित में, एक [[वास्तविक संख्या]], [[जटिल संख्या|सम्मिश्र  संख्या]] या सामान्यतः [[वेक्टर-मूल्यवान फ़ंक्शन|सदिश फलन]] का मान शून्य होता है, जिसे कभी-कभी रूट भी कहा जाता है और इस प्रकार <math>f</math>के डोमेन का एक सदस्य <math>x</math> के रूप में होता है, जैसे कि <math>f</math> ऐसा है कि <math>f(x)</math> पर वनिश हो जाता है अर्थात फलन <math>f</math>, <math>x</math> पर 0 का मान प्राप्त करता है <math>x</math>, या समकक्ष, <math>x</math> समीकरण का  <math>f(x) = 0</math> हल है.<ref name=":0">{{Cite web|url=http://tutorial.math.lamar.edu/Classes/Alg/ZeroesOfPolynomials.aspx | title=Algebra - Zeroes/Roots of Polynomials |website=tutorial.math.lamar.edu| access-date=2019-12-15}}</ref> इस प्रकार किसी फलन  का शून्य एक इनपुट मान होता है, जो 0 का आउटपुट उत्पन्न करता है।<ref name="Foerster">{{cite book | last = Foerster | first = Paul A. | title = Algebra and Trigonometry: Functions and Applications, Teacher's Edition | edition = Classics | year = 2006 | page = [https://archive.org/details/algebratrigonome00paul_0/page/535 535] | publisher = [[Prentice Hall]] | location = Upper Saddle River, NJ | url = https://archive.org/details/algebratrigonome00paul_0/page/535 | isbn = 0-13-165711-9 }}</ref>
गणित में, एक [[वास्तविक संख्या]], [[जटिल संख्या|सम्मिश्र  संख्या]] या सामान्यतः [[वेक्टर-मूल्यवान फ़ंक्शन|सदिश फलन]] का मान शून्य होता है, जिसे कभी-कभी रूट भी कहा जाता है और इस प्रकार <math>f</math> के डोमेन का एक सदस्य <math>x</math> के रूप में है, जैसे कि <math>f</math> ऐसा है कि <math>f(x)</math> पर वनिश हो जाता है अर्थात फलन <math>f</math>, <math>x</math> पर 0 का मान प्राप्त करता है <math>x</math>, या समकक्ष, <math>x</math> समीकरण का  <math>f(x) = 0</math> हल है.<ref name=":0">{{Cite web|url=http://tutorial.math.lamar.edu/Classes/Alg/ZeroesOfPolynomials.aspx | title=Algebra - Zeroes/Roots of Polynomials |website=tutorial.math.lamar.edu| access-date=2019-12-15}}</ref> इस प्रकार किसी फलन  का शून्य एक इनपुट मान होता है, जो 0 का आउटपुट उत्पन्न करता है।<ref name="Foerster">{{cite book | last = Foerster | first = Paul A. | title = Algebra and Trigonometry: Functions and Applications, Teacher's Edition | edition = Classics | year = 2006 | page = [https://archive.org/details/algebratrigonome00paul_0/page/535 535] | publisher = [[Prentice Hall]] | location = Upper Saddle River, NJ | url = https://archive.org/details/algebratrigonome00paul_0/page/535 | isbn = 0-13-165711-9 }}</ref>
 
एक [[बहुपद]] का रूट संगत बहुपद फलन शून्य होता है।<ref name=":0" /> इस प्रकार बीजगणित के फंडामेंटल प्रमेय  से पता चलता है कि किसी भी गैर-शून्य बहुपद में [[बहुपद की डिग्री|बहुपद की घात]]  के बराबर रूट  की संख्या होती है और जब कोई सम्मिश्र रूट पर कंसीडर करता है तो रूट  की संख्या और घात  बराबर होती है और इस प्रकार सामान्यतः  [[बीजगणितीय रूप से बंद विस्तार|बीजगणितीय क्लोज्ड एक्सटेंशन]] में जड़ें उनकी [[बहुलता (गणित)]] के साथ गिनी जाती हैं।<ref>{{Cite web|url=https://www.mathplanet.com/education/algebra-2/polynomial-functions/roots-and-zeros|title=Roots and zeros (Algebra 2, Polynomial functions)| website=Mathplanet |language=en|access-date=2019-12-15}}</ref> उदाहरण के लिए, <math>f(x)=x^2-5x+6</math>  द्वारा परिभाषित घात दो के बहुपद <math>f</math> के दो रुट जो 2 और 3 के रूप में होते है या शून्य रूप में होते है।


एक [[बहुपद]] का मूल संगत बहुपद फलन का एक शून्य होता है।<ref name=":0" />बीजगणित के मौलिक प्रमेय से पता चलता है कि किसी भी गैर-शून्य बहुपद में [[बहुपद की डिग्री]] के बराबर जड़ों की संख्या होती है, और जब कोई  सम्मिश्र  जड़ों (या अधिक सामान्यतः,) पर विचार करता है तो जड़ों की संख्या और डिग्री बराबर होती है। [[बीजगणितीय रूप से बंद विस्तार]] में जड़ें) उनकी [[बहुलता (गणित)]] के साथ गिनी जाती हैं।<ref>{{Cite web|url=https://www.mathplanet.com/education/algebra-2/polynomial-functions/roots-and-zeros|title=Roots and zeros (Algebra 2, Polynomial functions)| website=Mathplanet |language=en|access-date=2019-12-15}}</ref> उदाहरण के लिए, बहुपद <math>f</math> डिग्री दो की, द्वारा परिभाषित <math>f(x)=x^2-5x+6</math> इसके दो मूल (या शून्य) हैं जो 2 और 3 हैं।
<math display="block">f(2)=2^2-5\times 2+6= 0\text{ and }f(3)=3^2-5\times 3+6=0.</math>
<math display="block">f(2)=2^2-5\times 2+6= 0\text{ and }f(3)=3^2-5\times 3+6=0.</math>
यदि फलन  वास्तविक संख्याओं को वास्तविक संख्याओं में मैप करता है, तो इसके शून्य हैं <math>x</math>-उन बिंदुओं के निर्देशांक जहां [[किसी फ़ंक्शन का ग्राफ़|किसी फलन  का ग्राफ़]] x-अक्ष|x-अक्ष से मिलता है। ऐसे बिंदु के लिए एक वैकल्पिक नाम <math>(x,0)</math> इस संदर्भ में एक है <math>x</math>-अवरोधन.
 
 
यदि फलन  वास्तविक संख्याओं को वास्तविक संख्याओं में मैप करता है, तो इसके शून्य उन बिंदुओं के <math>x</math>- निर्देशांक होते हैं, जहां [[किसी फ़ंक्शन का ग्राफ़|इस फलन  का ग्राफ़]] x-अक्ष से मिलता है। इस संदर्भ में ऐसे बिंदु <math>(x,0)</math> के लिए एक वैकल्पिक नाम <math>x</math>-इंटरसेप्ट के रूप में होता है


==एक [[समीकरण]] का हल==
==एक [[समीकरण]] का हल==
Line 18: Line 21:
== बहुपद मूल ==
== बहुपद मूल ==
{{main|Properties of polynomial roots}}
{{main|Properties of polynomial roots}}
एक बहुपद की विषम घात वाले प्रत्येक वास्तविक बहुपद में वास्तविक मूलों की एक विषम संख्या होती है (बहुपद की एक जड़ की बहुलता (गणित) # बहुलता की गिनती); इसी प्रकार, सम घात वाले वास्तविक बहुपद में वास्तविक मूलों की संख्या भी सम होनी चाहिए। नतीजतन, वास्तविक विषम बहुपदों में कम से कम एक वास्तविक मूल होना चाहिए (क्योंकि सबसे छोटी विषम पूर्ण संख्या 1 है), जबकि सम बहुपदों में कोई भी नहीं हो सकता है। इस सिद्धांत को [[मध्यवर्ती मूल्य प्रमेय]] के संदर्भ से सिद्ध किया जा सकता है: चूंकि बहुपद फलन सतत फलन हैं, इसलिए ऋणात्मक से धनात्मक या इसके विपरीत में बदलने की प्रक्रिया में, फलन मान को शून्य को पार करना होगा (जो हमेशा विषम कार्यों के लिए होता है)।
एक बहुपद की विषम घात वाले प्रत्येक वास्तविक बहुपद में वास्तविक मूलों की एक विषम संख्या होती है (बहुपद की एक जड़ की बहुलता (गणित) # बहुलता की गिनती); इसी प्रकार, सम घात वाले वास्तविक बहुपद में वास्तविक मूलों की संख्या भी सम होनी चाहिए। नतीजतन, वास्तविक विषम बहुपदों में कम से कम एक वास्तविक रूट होना चाहिए (क्योंकि सबसे छोटी विषम पूर्ण संख्या 1 है), जबकि सम बहुपदों में कोई भी नहीं हो सकता है। इस सिद्धांत को [[मध्यवर्ती मूल्य प्रमेय]] के संदर्भ से सिद्ध किया जा सकता है: चूंकि बहुपद फलन सतत फलन हैं, इसलिए ऋणात्मक से धनात्मक या इसके विपरीत में बदलने की प्रक्रिया में, फलन मान को शून्य को पार करना होगा (जो हमेशा विषम कार्यों के लिए होता है)।


===बीजगणित का मौलिक प्रमेय===
===बीजगणित का फंडामेंटल प्रमेय ===
{{main|Fundamental theorem of algebra}}
{{main|Fundamental theorem of algebra}}
बीजगणित का मौलिक प्रमेय बताता है कि प्रत्येक बहुपद घात का होता है <math>n</math> है <math>n</math>  सम्मिश्र  जड़ें, उनकी बहुलता के साथ गिनी गईं। वास्तविक गुणांक वाले बहुपदों की अवास्तविक जड़ें  सम्मिश्र  संयुग्मी युग्मों में आती हैं।<ref name="Foerster" />विएटा के सूत्र एक बहुपद के गुणांकों को उसके मूलों के योग और उत्पादों से जोड़ते हैं।
बीजगणित का फंडामेंटल प्रमेय बताता है कि प्रत्येक बहुपद घात का होता है <math>n</math> है <math>n</math>  सम्मिश्र  जड़ें, उनकी बहुलता के साथ गिनी गईं। वास्तविक गुणांक वाले बहुपदों की अवास्तविक जड़ें  सम्मिश्र  संयुग्मी युग्मों में आती हैं।<ref name="Foerster" />विएटा के सूत्र एक बहुपद के गुणांकों को उसके मूलों के योग और उत्पादों से जोड़ते हैं।


== जड़ों की गणना ==
== रूट  की गणना ==
{{main|Root-finding algorithm|Real-root isolation|Equation solving}}
{{main|Root-finding algorithm|Real-root isolation|Equation solving}}
कार्यों की जड़ों की गणना, उदाहरण के लिए बहुपद कार्यों के लिए, अक्सर विशेष या [[सन्निकटन]] तकनीकों (उदाहरण के लिए, न्यूटन की विधि) के उपयोग की आवश्यकता होती है। हालाँकि, कुछ बहुपद फलन, जिनमें 4 से अधिक नहीं वाले बहुपद की सभी घातें शामिल हैं, उनके सभी मूल उनके गुणांकों के संदर्भ में बीजगणितीय फलन व्यक्त कर सकते हैं (अधिक जानकारी के लिए, [[बीजगणितीय समाधान]] देखें)।
कार्यों की रूट  की गणना, उदाहरण के लिए बहुपद कार्यों के लिए, अक्सर विशेष या [[सन्निकटन]] तकनीकों (उदाहरण के लिए, न्यूटन की विधि) के उपयोग की आवश्यकता होती है। हालाँकि, कुछ बहुपद फलन, जिनमें 4 से अधिक नहीं वाले बहुपद की सभी घातें शामिल हैं, उनके सभी रूट उनके गुणांकों के संदर्भ में बीजगणितीय फलन व्यक्त कर सकते हैं (अधिक जानकारी के लिए, [[बीजगणितीय समाधान]] देखें)।


==शून्य सेट==
==शून्य सेट==

Revision as of 11:55, 23 July 2023

A graph of the function '"`UNIQ--postMath-00000001-QINU`"' for '"`UNIQ--postMath-00000002-QINU`"' in '"`UNIQ--postMath-00000003-QINU`"', with zeros at '"`UNIQ--postMath-00000004-QINU`"', and '"`UNIQ--postMath-00000005-QINU`"' marked in red.
A graph of the function for in , with zeros at , and marked in red.

गणित में, एक वास्तविक संख्या, सम्मिश्र संख्या या सामान्यतः सदिश फलन का मान शून्य होता है, जिसे कभी-कभी रूट भी कहा जाता है और इस प्रकार के डोमेन का एक सदस्य के रूप में है, जैसे कि ऐसा है कि पर वनिश हो जाता है अर्थात फलन , पर 0 का मान प्राप्त करता है , या समकक्ष, समीकरण का हल है.[1] इस प्रकार किसी फलन का शून्य एक इनपुट मान होता है, जो 0 का आउटपुट उत्पन्न करता है।[2]

एक बहुपद का रूट संगत बहुपद फलन शून्य होता है।[1] इस प्रकार बीजगणित के फंडामेंटल प्रमेय से पता चलता है कि किसी भी गैर-शून्य बहुपद में बहुपद की घात के बराबर रूट की संख्या होती है और जब कोई सम्मिश्र रूट पर कंसीडर करता है तो रूट की संख्या और घात बराबर होती है और इस प्रकार सामान्यतः बीजगणितीय क्लोज्ड एक्सटेंशन में जड़ें उनकी बहुलता (गणित) के साथ गिनी जाती हैं।[3] उदाहरण के लिए, द्वारा परिभाषित घात दो के बहुपद के दो रुट जो 2 और 3 के रूप में होते है या शून्य रूप में होते है।


यदि फलन वास्तविक संख्याओं को वास्तविक संख्याओं में मैप करता है, तो इसके शून्य उन बिंदुओं के - निर्देशांक होते हैं, जहां इस फलन का ग्राफ़ x-अक्ष से मिलता है। इस संदर्भ में ऐसे बिंदु के लिए एक वैकल्पिक नाम -इंटरसेप्ट के रूप में होता है

एक समीकरण का हल

अज्ञात में प्रत्येक समीकरण (गणित) के रूप में पुनः लिखा जा सकता है

बायीं ओर के सभी पदों को पुनः समूहित करके। इससे यह निष्कर्ष निकलता है कि ऐसे समीकरण के समाधान बिल्कुल फलन के शून्य होते हैं . दूसरे शब्दों में, किसी फलन का शून्य वास्तव में फलन को 0 के बराबर करके प्राप्त समीकरण का एक समाधान है, और फलन के शून्य का अध्ययन बिल्कुल समीकरणों के समाधान के अध्ययन के समान है।

बहुपद मूल

एक बहुपद की विषम घात वाले प्रत्येक वास्तविक बहुपद में वास्तविक मूलों की एक विषम संख्या होती है (बहुपद की एक जड़ की बहुलता (गणित) # बहुलता की गिनती); इसी प्रकार, सम घात वाले वास्तविक बहुपद में वास्तविक मूलों की संख्या भी सम होनी चाहिए। नतीजतन, वास्तविक विषम बहुपदों में कम से कम एक वास्तविक रूट होना चाहिए (क्योंकि सबसे छोटी विषम पूर्ण संख्या 1 है), जबकि सम बहुपदों में कोई भी नहीं हो सकता है। इस सिद्धांत को मध्यवर्ती मूल्य प्रमेय के संदर्भ से सिद्ध किया जा सकता है: चूंकि बहुपद फलन सतत फलन हैं, इसलिए ऋणात्मक से धनात्मक या इसके विपरीत में बदलने की प्रक्रिया में, फलन मान को शून्य को पार करना होगा (जो हमेशा विषम कार्यों के लिए होता है)।

बीजगणित का फंडामेंटल प्रमेय

बीजगणित का फंडामेंटल प्रमेय बताता है कि प्रत्येक बहुपद घात का होता है है सम्मिश्र जड़ें, उनकी बहुलता के साथ गिनी गईं। वास्तविक गुणांक वाले बहुपदों की अवास्तविक जड़ें सम्मिश्र संयुग्मी युग्मों में आती हैं।[2]विएटा के सूत्र एक बहुपद के गुणांकों को उसके मूलों के योग और उत्पादों से जोड़ते हैं।

रूट की गणना

कार्यों की रूट की गणना, उदाहरण के लिए बहुपद कार्यों के लिए, अक्सर विशेष या सन्निकटन तकनीकों (उदाहरण के लिए, न्यूटन की विधि) के उपयोग की आवश्यकता होती है। हालाँकि, कुछ बहुपद फलन, जिनमें 4 से अधिक नहीं वाले बहुपद की सभी घातें शामिल हैं, उनके सभी रूट उनके गुणांकों के संदर्भ में बीजगणितीय फलन व्यक्त कर सकते हैं (अधिक जानकारी के लिए, बीजगणितीय समाधान देखें)।

शून्य सेट

गणित के विभिन्न क्षेत्रों में, किसी फलन (गणित) का शून्य सेट उसके सभी शून्यों का सेट होता है। अधिक सटीक रूप से, यदि एक वास्तविक-मूल्यवान फलन है (या, अधिक सामान्यतः, कुछ एबेलियन समूह में मान लेने वाला फलन ), इसका शून्य सेट है , की उलटी छवि में .

फलन के कोडोमेन पर समान परिकल्पना के तहत, फलन का एक स्तर सेट फलन का शून्य सेट है कुछ के लिए के कोडोमेन में एक रेखीय मानचित्र के शून्य सेट को उसके कर्नेल (बीजगणित) के रूप में भी जाना जाता है।

फलन का कोज़ेरो सेट के शून्य समुच्चय का पूरक (सेट सिद्धांत) है (अर्थात्, का उपसमुच्चय जिस पर शून्येतर है)।

अनुप्रयोग

बीजगणितीय ज्यामिति में, बीजीय विविधता की पहली परिभाषा शून्य सेट के माध्यम से होती है। विशेष रूप से, एक एफ़िन बीजगणितीय सेट एक बहुपद वलय में कई बहुपदों के शून्य सेटों का सेट प्रतिच्छेदन है एक क्षेत्र पर (गणित)। इस संदर्भ में, शून्य सेट को कभी-कभी शून्य लोकस कहा जाता है।

गणितीय विश्लेषण और ज्यामिति में, कोई भी बंद सेट सभी पर परिभाषित एक सुचारु कार्य का शून्य सेट है . यह पैराकॉम्पैक्टनेस के परिणाम के रूप में किसी भी चिकनी विविधता तक विस्तारित होता है। विभेदक ज्यामिति में, शून्य सेट का उपयोग अक्सर कई गुना ्स को परिभाषित करने के लिए किया जाता है। एक महत्वपूर्ण विशेष मामला यह है कि से एक सुचारू कार्य है को . यदि शून्य एक नियमित मान है , फिर शून्य सेट आयाम का एक सहज अनेक गुना है सबमर्शन_(गणित)#स्थानीय_सामान्य_फॉर्म द्वारा।

उदाहरण के लिए, इकाई -गोले में वास्तविक-मूल्यवान फलन का शून्य सेट है .

यह भी देखें

संदर्भ

  1. 1.0 1.1 "Algebra - Zeroes/Roots of Polynomials". tutorial.math.lamar.edu. Retrieved 2019-12-15.
  2. 2.0 2.1 Foerster, Paul A. (2006). Algebra and Trigonometry: Functions and Applications, Teacher's Edition (Classics ed.). Upper Saddle River, NJ: Prentice Hall. p. 535. ISBN 0-13-165711-9.
  3. "Roots and zeros (Algebra 2, Polynomial functions)". Mathplanet (in English). Retrieved 2019-12-15.


अग्रिम पठन