कार्य-कारण की स्थितियाँ: Difference between revisions
No edit summary |
No edit summary |
||
Line 30: | Line 30: | ||
== गैर-पूरी तरह से अनैतिक == | == गैर-पूरी तरह से अनैतिक == | ||
*कुछ बिंदुओं के लिए <math>p \in M</math> अपने पास <math>p \not\ll p | *कुछ बिंदुओं के लिए <math>p \in M</math> अपने पास <math>p \not\ll p</math> जो समान कालानुक्रमिक अतीत साझा करते हैं वे समान बिंदु हैं: | ||
:: <math>I^-(p) = I^-(q) \implies p = q </math> | :: <math>I^-(p) = I^-(q) \implies p = q </math> | ||
* <math>p \in M</math> के किसी भी निकट <math>U</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है, जिससे कि <math>p</math> से कोई भी अतीत-निर्देशित गैर-स्पेसलाइक वक्र <math>V</math> को एक से अधिक बार नहीं काटता है। | * <math>p \in M</math> के किसी भी निकट <math>U</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है, जिससे कि <math>p</math> से कोई भी अतीत-निर्देशित गैर-स्पेसलाइक वक्र <math>V</math> को एक से अधिक बार नहीं काटता है। | ||
Line 49: | Line 42: | ||
== प्रबल कारण == | == प्रबल कारण == | ||
*<math>p \in M</math> के किसी भी निकट <math>U</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है जैसे कि कोई समय-समान वक्र उपस्थित नहीं है जो <math>V</math> से एक से अधिक बार गुजरता है। | *<math>p \in M</math> के किसी भी निकट <math>U | ||
</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है जैसे कि कोई समय-समान वक्र उपस्थित नहीं है जो <math>V</math> से एक से अधिक बार गुजरता है। | |||
*<math>p \in M</math> के किसी भी निकट <math>U</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है जैसे कि <math>V</math>, <math>M</math>में कारणात्मक रूप से उत्तल है (और इस प्रकार <math>U</math> में)। | *<math>p \in M</math> के किसी भी निकट <math>U</math> के लिए एक निकट <math>V \subset U, p \in V</math> उपस्थित है जैसे कि <math>V</math>, <math>M</math>में कारणात्मक रूप से उत्तल है (और इस प्रकार <math>U</math> में)। | ||
* [[अलेक्जेंडर टोपोलॉजी]] मैनिफोल्ड टोपोलॉजी से सहमत है। | * [[अलेक्जेंडर टोपोलॉजी]] मैनिफोल्ड टोपोलॉजी से सहमत है। |
Revision as of 15:37, 9 August 2023
लोरेंट्ज़ियन मैनिफोल्ड सपेसटाइम के अध्ययन में कार्य-कारण स्थितियों का एक पदानुक्रम उपस्थित है जो ऐसे मैनिफोल्ड्स की वैश्विक संरचना के बारे में गणितीय प्रमेयों को सिद्ध करने में महत्वपूर्ण हैं। ये स्थितियाँ 1970 के दशक के अंत में एकत्र की गईं।[1]
स्पेसटाइम पर कार्य-कारण की स्थिति जितनी अशक्त होगी, स्पेसटाइम उतना ही अधिक अभौतिक होगा। उदाहरण के लिए, संवर्त समय-सदृश वक्रों वाला स्पेसटाइम, गंभीर व्याख्यात्मक कठिनाइयाँ प्रस्तुत करता है। ग्रैंड फादर विरोधाभास देखें.
यह विश्वास करना उचित है कि कोई भी भौतिक स्पेसटाइम सबसे शसक्त कार्य-कारण स्थिति को संतुष्ट करेगा: वैश्विक अतिशयोक्ति ऐसे स्पेसटाइम के लिए सामान्य सापेक्षता में समीकरणों को कॉची सतह पर प्रारंभिक मूल्य समस्या के रूप में प्रस्तुत किया जा सकता है।
पदानुक्रम
कार्य-कारण स्थितियों का एक पदानुक्रम है, जिनमें से प्रत्येक पिछले की तुलना में सख्ती से शसक्त है। इसे कभी-कभी कारण सीढ़ी भी कहा जाता है। सबसे अशक्त से सबसे शसक्त तक स्थितियाँ हैं:
- पूर्णतया दुष्ट नहीं
- कालानुक्रमिक
- कारण
- भेद करना
- प्रबल कारणात्मक
- स्थिर कारण
- कारणतः निरंतर
- कारणतः सरल
- विश्व स्तर पर अतिशयोक्तिपूर्ण
लोरेंत्ज़ियन मैनिफोल्ड के लिए इन कार्य-कारण स्थितियों की परिभाषाएँ दी गई हैं। जहां दो या दो से अधिक दिए गए हैं वे समतुल्य हैं।
संकेतन:
- कालानुक्रमिक संबंध को दर्शाता है.
- कारण संबंध को दर्शाता है.
(परिभाषाओं के लिए कारण संरचना , और , कारण संबंध देखें
गैर-पूरी तरह से अनैतिक
- कुछ बिंदुओं के लिए अपने पास जो समान कालानुक्रमिक अतीत साझा करते हैं वे समान बिंदु हैं:
- के किसी भी निकट के लिए एक निकट उपस्थित है, जिससे कि से कोई भी अतीत-निर्देशित गैर-स्पेसलाइक वक्र को एक से अधिक बार नहीं काटता है।
भविष्य-भेद
- दो बिंदु जो समान कालानुक्रमिक भविष्य साझा करते हैं वे समान बिंदु हैं:
- के किसी भी निकट के लिए एक निकट उपस्थित है, जिससे कि से कोई भी भविष्य-निर्देशित गैर-स्पेसलाइक वक्र को एक से अधिक बार नहीं काटता है।
प्रबल कारण
- के किसी भी निकट के लिए एक निकट उपस्थित है जैसे कि कोई समय-समान वक्र उपस्थित नहीं है जो से एक से अधिक बार गुजरता है।
- के किसी भी निकट के लिए एक निकट उपस्थित है जैसे कि , में कारणात्मक रूप से उत्तल है (और इस प्रकार में)।
- अलेक्जेंडर टोपोलॉजी मैनिफोल्ड टोपोलॉजी से सहमत है।
स्थिर कारण
यदि मीट्रिक को एक छोटा अस्पष्ट सिद्धांत दिया जाता है, तो ऊपर परिभाषित किसी भी अशक्त कार्य-कारण की स्थिति को संतुष्ट करने वाला मैनिफोल्ड ऐसा करने में विफल हो सकता है। एक स्पेसटाइम स्थिर रूप से कारणात्मक होता है यदि इसे मीट्रिक के इच्छित रूप से छोटे अस्पष्ट द्वारा संवर्त कारण वक्र को सम्मिलित करने के लिए नहीं बनाया जा सकता है। स्टीफन हॉकिंग ने दिखाया[2] यह इसके समान है:
पर एक वैश्विक समय फलन उपस्थित है। यह पर एक अदिश क्षेत्र है जिसका ग्रेडिएंट हर जगह समय जैसा और भविष्य-निर्देशित है। यह वैश्विक समय फलन हमें स्पेसटाइम के प्रत्येक बिंदु के लिए भविष्य और अतीत के बीच अंतर करने का एक स्थिर विधि देता है (और इसलिए हमारे पास कोई कारणात्मक उल्लंघन नहीं है)।
विश्व स्तर पर अतिशयोक्तिपूर्ण
- दृढ़ता से कारणात्मक है और प्रत्येक सेट (बिंदु के लिए) सघन है।
रॉबर्ट गेरोच ने दिखाया[3] कि एक स्पेसटाइम विश्व स्तर पर अतिशयोक्तिपूर्ण है यदि और केवल तभी जब के लिए एक कॉची सतह उपस्थित हो। इसका अर्थ यह है कि:
- , कुछ कॉची सतह के लिए स्थलाकृतिक रूप से के समतुल्य है (यहां वास्तविक रेखा को दर्शाता है)।
यह भी देखें
- सपेस टाइम
- लोरेंट्ज़ियन मैनिफोल्ड
- कारण संरचना
- विश्व स्तर पर अतिपरवलयिक विविधता
- संवर्त समय जैसा वक्र
संदर्भ
- ↑ E. Minguzzi and M. Sanchez, The causal hierarchy of spacetimes in H. Baum and D. Alekseevsky (eds.), vol. Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., (Eur. Math. Soc. Publ. House, Zurich, 2008), pp. 299–358, ISBN 978-3-03719-051-7, arXiv:gr-qc/0609119
- ↑ S.W. Hawking, The existence of cosmic time functions Proc. R. Soc. Lond. (1969), A308, 433
- ↑ R. Geroch, Domain of Dependence Archived 2013-02-24 at archive.today J. Math. Phys. (1970) 11, 437–449
- S.W. Hawking, G.F.R. Ellis (1973). The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press. ISBN 0-521-20016-4.
- S.W. Hawking, W. Israel (1979). General Relativity, an Einstein Centenary Survey. Cambridge University Press. ISBN 0-521-22285-0.