पार स्पेक्ट्रम: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[समय श्रृंखला विश्लेषण]] में '''क्रॉस-स्पेक्ट्रम''' का उपयोग दो समय श्रृंखलाओं के | [[समय श्रृंखला विश्लेषण]] में '''क्रॉस-स्पेक्ट्रम''' का उपयोग दो समय श्रृंखलाओं के मध्य क्रॉस-सहसंबंध या [[क्रॉस-सहप्रसरण]] के [[आवृत्ति डोमेन]] विश्लेषण के भाग के रूप में किया जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
Line 35: | Line 35: | ||
-\pi/2 & \text{if } \Psi_{xy}(f) < 0 \text{ and } \Lambda_{xy}(f) = 0 \\ | -\pi/2 & \text{if } \Psi_{xy}(f) < 0 \text{ and } \Lambda_{xy}(f) = 0 \\ | ||
\end{cases}</math> | \end{cases}</math> | ||
== वर्गाकार सुसंगति स्पेक्ट्रम == | == वर्गाकार सुसंगति स्पेक्ट्रम == | ||
वर्गाकार [[सुसंगतता (सिग्नल प्रोसेसिंग)]] द्वारा दी गई है | वर्गाकार [[सुसंगतता (सिग्नल प्रोसेसिंग)]] द्वारा दी गई है |
Revision as of 13:09, 16 August 2023
समय श्रृंखला विश्लेषण में क्रॉस-स्पेक्ट्रम का उपयोग दो समय श्रृंखलाओं के मध्य क्रॉस-सहसंबंध या क्रॉस-सहप्रसरण के आवृत्ति डोमेन विश्लेषण के भाग के रूप में किया जाता है।
परिभाषा
मान लीजिए स्टोकेस्टिक प्रक्रियाओं की जोड़ी का प्रतिनिधित्व करता है जो संयुक्त रूप से ऑटोकोवेरिएंस फलन और और क्रॉस-कोवेरिएंस फलन के साथ व्यापक अर्थ स्थिर हैं। जिसमे फिर क्रॉस-स्पेक्ट्रम को के फूरियर रूपांतरण के रूप में परिभाषित किया गया है।[1]
जहाँ
- .
क्रॉस-स्पेक्ट्रम का प्रतिनिधित्व (i) इसके वास्तविक भाग (सह-स्पेक्ट्रम) और (ii) इसके काल्पनिक भाग (चतुर्भुज स्पेक्ट्रम) में अपघटन के रूप में होता है।
और (ii) ध्रुवीय निर्देशांक में
यहाँ, आयाम स्पेक्ट्रम द्वारा दिया गया है
और फेज स्पेक्ट्रम द्वारा दिया गया है
वर्गाकार सुसंगति स्पेक्ट्रम
वर्गाकार सुसंगतता (सिग्नल प्रोसेसिंग) द्वारा दी गई है
जो आयामहीन इकाइयों में आयाम स्पेक्ट्रम को व्यक्त करता है।
यह भी देखें
- क्रॉस-कोवेरिएंस
- पावर स्पेक्ट्रम
- स्केल्ड सहसंबंध
संदर्भ
- ↑ von Storch, H.; F. W Zwiers (2001). Statistical analysis in climate research. Cambridge Univ Pr. ISBN 0-521-01230-9.