विग्नर-वेइल ट्रांसफॉर्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 42: Line 42:


== सामान्य अवलोकनीय के वेइल क्वांटाइजेशन की परिभाषा ==
== सामान्य अवलोकनीय के वेइल क्वांटाइजेशन की परिभाषा ==
निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक {{math|''(q,p)''}} हैं और {{math|''f''}} प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों p और q को उचित करते हैं। हम मानते हैं कि घातांक संकारक <math>e^{iaQ}</math> और <math>e^{ibP}</math> स्टोन-वॉन न्यूमैन प्रमेय का अघुलनशील प्रतिनिधित्व का गठन करें, ताकि स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता की गारंटी) कायम रहे।
निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक {{math|''(q,p)''}} हैं और {{math|''f''}} प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों P और Q को उचित करते हैं। हम मानते हैं कि घातांक संकारक <math>e^{iaQ}</math> और <math>e^{ibP}</math> वेइल संबंधों का अलघुकरणीय प्रतिनिधित्व बनाते हैं जिससे स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता का आश्वासन) स्थिर रहे।


===मूल सूत्र===
===मूल सूत्र===


फलन का वेइल रूपांतरण (या वेइल क्वांटाइजेशन)। {{mvar|f}} हिल्बर्ट स्पेस में निम्नलिखित संकारक द्वारा दिया गया है,<ref name="Zachos" />  
फलन {{mvar|f}} का '''वेइल ट्रांसफॉर्म''' (या '''वेइल क्वांटाइजेशन''') हिल्बर्ट समष्टि में निम्नलिखित संकारक द्वारा दिया गया है,<ref name="Zachos" />  
{{Equation box 1
{{Equation box 1
|indent =::
|indent =::
Line 55: Line 55:
|border colour = #0073CF
|border colour = #0073CF
|background colour=#F9FFF7}}
|background colour=#F9FFF7}}
कुल मिलाकर, ħ घटा हुआ प्लैंक स्थिरांक है।
पूर्णतया, ħ प्लैंक स्थिरांक है।


का पालन करना शिक्षाप्रद है {{mvar|p}} और {{mvar|q}} उपरोक्त सूत्र में पहले इंटीग्रल, जिसमें सामान्य फूरियर रूपांतरण की गणना का प्रभाव होता है <math>\tilde{f}</math> समारोह का {{mvar|f}}, संकारक को छोड़ते समय <math>e^{i(aQ+bP)}</math>. उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है<ref>{{harvnb|Hall|2013}} Section 13.3</ref>
उपरोक्त सूत्र में सर्वप्रथम {{mvar|p}} और {{mvar|q}} समाकलों को निष्पादित करना अनुदेशात्मक है, जिसमें ऑपरेटर <math>e^{i(aQ+bP)}</math> को त्यागते समय फलन {{mvar|f}} के सामान्य फूरियर ट्रांसफॉर्म <math>\tilde{f}</math> की गणना करने का प्रभाव होता है। उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है-<ref>{{harvnb|Hall|2013}} Section 13.3</ref>
:<math>\Phi [f] = \frac{1}{(2\pi)^2}\iint\tilde{f}(a,b)e^{iaQ+ibP}\,da\,db</math>.
:<math>\Phi [f] = \frac{1}{(2\pi)^2}\iint\tilde{f}(a,b)e^{iaQ+ibP}\,da\,db</math>.


इसलिए हम वेइल मैप के बारे में इस प्रकार सोच सकते हैं: हम फलन का सामान्य फूरियर रूपांतरण लेते हैं <math>f(p,q)</math>, लेकिन फिर फूरियर उलटा फॉर्मूला लागू करते समय, हम क्वांटम संकारकों को प्रतिस्थापित करते हैं <math>P</math> और <math>Q</math> मूल शास्त्रीय चर के लिए {{mvar|p}} और {{mvar|q}}, इस प्रकार क्वांटम संस्करण प्राप्त होता है {{mvar|f}}.
इसलिए हम वेइल मैप के संबंध में इस प्रकार विचार कर सकते हैं: हम फलन <math>f(p,q)</math> का सामान्य फूरियर ट्रांसफॉर्म लेते हैं, किन्तु फिर फूरियर व्युत्क्रम सूत्र प्रयुक्त करते समय, हम मूल वास्तविक चर {{mvar|p}} और {{mvar|q}} के लिए क्वांटम संकारकों <math>P</math> और <math>Q</math> को प्रतिस्थापित करते हैं, इस प्रकार {{mvar|f}} का क्वांटम संस्करण प्राप्त होता है।


कम सममित लेकिन अनुप्रयोगों के लिए उपयोगी रूप निम्नलिखित है,
कम सममित किन्तु अनुप्रयोगों के लिए उपयोगी रूप निम्नलिखित है-
:<math> \Phi [f]= \frac{2}{(2\pi \hbar)^{3/2}}\iint \!\!\!\iint\!\! dq\, dp\, d\tilde{x} \, d\tilde{p}  \ e^{ \frac{i}{\hbar} (\tilde {x} \tilde {p}  -2(\tilde{p}-p)(\tilde{x}-q))}~ f(q,p) ~ |\tilde{x}\rangle\langle \tilde{p}|.</math>
:<math> \Phi [f]= \frac{2}{(2\pi \hbar)^{3/2}}\iint \!\!\!\iint\!\! dq\, dp\, d\tilde{x} \, d\tilde{p}  \ e^{ \frac{i}{\hbar} (\tilde {x} \tilde {p}  -2(\tilde{p}-p)(\tilde{x}-q))}~ f(q,p) ~ |\tilde{x}\rangle\langle \tilde{p}|.</math>
'''स्थिति में प्रतिनिधित्व'''
:
'''स्थिति प्रतिनिधित्व में'''


वेइल मैप को इस संकारक के अभिन्न कर्नेल मैट्रिक्स तत्वों के संदर्भ में भी व्यक्त किया जा सकता है,<ref>{{harvnb|Hall|2013}} Definition 13.7</ref>
वेइल मैप को इस संकारक के समाकल कर्नेल आव्यूह अवयवों के संदर्भ में भी व्यक्त किया जा सकता है-<ref>{{harvnb|Hall|2013}} Definition 13.7</ref>
:<math>  \langle x| \Phi [f] |y \rangle = \int_{-\infty}^\infty {\text{d}p\over h} ~e^{ip(x-y)/\hbar}~ f\left({x+y\over2},p\right) .  </math>
:<math>  \langle x| \Phi [f] |y \rangle = \int_{-\infty}^\infty {\text{d}p\over h} ~e^{ip(x-y)/\hbar}~ f\left({x+y\over2},p\right) .  </math>


'''उलटा नक्शा'''
'''व्युत्क्रम मैप'''


उपरोक्त वेइल मैप का उलटा विग्नर मैप है, जो संकारक लेता है {{math|''Φ''}} मूल चरण-स्पेस कर्नेल फलन पर वापस जाएं {{math|''f''}},
उपरोक्त वेइल मैप का व्युत्क्रम विग्नर मैप है, जो संकारक लेता है {{math|''Φ''}} मूल चरण-स्पेस कर्नेल फलन पर वापस जाएं {{math|''f''}},
  {{Equation box 1
  {{Equation box 1
|indent =::
|indent =::
Line 99: Line 100:


जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर बहुत ही सामान्य अवलोकन योग्य वेइल क्वांटाइजेशन की अच्छी समझ देते हैं, वे सरल अवलोकनों पर गणना के लिए बहुत सुविधाजनक नहीं हैं, जैसे कि वे जो बहुपद हैं <math>q</math> और <math>p</math>. बाद के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल क्वांटाइजेशन गैर-कम्यूटिंग संकारकों के पूरी तरह से सममित क्रम का प्रतिनिधित्व करता है <math>Q</math> और <math>P</math>.
जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर बहुत ही सामान्य अवलोकन योग्य वेइल क्वांटाइजेशन की अच्छी समझ देते हैं, वे सरल अवलोकनों पर गणना के लिए बहुत सुविधाजनक नहीं हैं, जैसे कि वे जो बहुपद हैं <math>q</math> और <math>p</math>. बाद के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल क्वांटाइजेशन गैर-कम्यूटिंग संकारकों के पूरी तरह से सममित क्रम का प्रतिनिधित्व करता है <math>Q</math> और <math>P</math>.
उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक एल का विग्नर मैप<sup>2</sup> न केवल शास्त्रीय कोणीय गति का वर्ग है, बल्कि इसमें ऑफसेट शब्द भी शामिल है {{math|&minus;3''ħ''<sup>2</sup>/2}}, जो ग्राउंड-स्टेट [[बोह्र मॉडल]] के गैर-लुप्त होने वाले कोणीय गति के लिए जिम्मेदार है।
उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक एल का विग्नर मैप<sup>2</sup> न केवल शास्त्रीय कोणीय गति का वर्ग है, बल्कि इसमें ऑफसेट शब्द भी सम्मिलित है {{math|&minus;3''ħ''<sup>2</sup>/2}}, जो ग्राउंड-स्टेट [[बोह्र मॉडल]] के गैर-लुप्त होने वाले कोणीय गति के लिए जिम्मेदार है।


==गुण==
==गुण==
Line 109: Line 110:
उदाहरण के लिए, हमारे पास है
उदाहरण के लिए, हमारे पास है
:<math>6 p^2 q^2 ~~ \longmapsto ~~ P^2 Q^2 + Q^2  P^2 + PQPQ+PQ^2P+QPQP+QP^2Q.</math>
:<math>6 p^2 q^2 ~~ \longmapsto ~~ P^2 Q^2 + Q^2  P^2 + PQPQ+PQ^2P+QPQP+QP^2Q.</math>
हालाँकि यह परिणाम वैचारिक रूप से स्वाभाविक है, लेकिन यह गणना के लिए सुविधाजनक नहीं है <math>k</math> और <math>l</math> बड़े हैं. ऐसे मामलों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं<ref>McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", ''Proc Nat Acad Sci USA'' '''19''' 674, [https://www.jstor.org/stable/85974?seq=1#page_scan_tab_contents online] .</ref>
हालाँकि यह परिणाम वैचारिक रूप से स्वाभाविक है, किन्तु यह गणना के लिए सुविधाजनक नहीं है <math>k</math> और <math>l</math> बड़े हैं. ऐसे मामलों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं<ref>McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", ''Proc Nat Acad Sci USA'' '''19''' 674, [https://www.jstor.org/stable/85974?seq=1#page_scan_tab_contents online] .</ref>
:<math>  p^m q^n ~~ \longmapsto ~~ {1 \over 2^n}  
:<math>  p^m q^n ~~ \longmapsto ~~ {1 \over 2^n}  
\sum_{r=0}^{n} {n \choose r}  
\sum_{r=0}^{n} {n \choose r}  
Line 188: Line 189:
चरण-अंतरिक्ष परिमाणीकरण में प्रत्याशा मान संकारक अवलोकनों का पता लगाने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं {{mvar|Φ}} हिल्बर्ट अंतरिक्ष में घनत्व मैट्रिक्स के साथ: वे उपरोक्त जैसे अवलोकन योग्य वस्तुओं के चरण-अंतरिक्ष अभिन्न अंग द्वारा प्राप्त किए जाते हैं {{mvar|f}} विग्नर अर्ध-संभाव्यता वितरण प्रभावी ढंग से उपाय के रूप में कार्य कर रहा है।
चरण-अंतरिक्ष परिमाणीकरण में प्रत्याशा मान संकारक अवलोकनों का पता लगाने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं {{mvar|Φ}} हिल्बर्ट अंतरिक्ष में घनत्व मैट्रिक्स के साथ: वे उपरोक्त जैसे अवलोकन योग्य वस्तुओं के चरण-अंतरिक्ष अभिन्न अंग द्वारा प्राप्त किए जाते हैं {{mvar|f}} विग्नर अर्ध-संभाव्यता वितरण प्रभावी ढंग से उपाय के रूप में कार्य कर रहा है।


इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (शास्त्रीय यांत्रिकी के समान दायरे) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर के साथ शास्त्रीय यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. [[पत्राचार सिद्धांत]]) के रूप में क्वांटम यांत्रिकी की पहचान की सुविधा प्रदान करता है। {{math|''ħ''/''S''}}. (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर वी/सी के साथ सापेक्षतावादी यांत्रिकी में शास्त्रीय न्यूटोनियन का विरूपण शामिल है; या विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण शामिल है। इसके विपरीत, [[समूह संकुचन]] की ओर जाता है लुप्त-पैरामीटर अपरिवर्तित सिद्धांत-[[शास्त्रीय सीमा]]एं।)
इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (शास्त्रीय यांत्रिकी के समान दायरे) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर के साथ शास्त्रीय यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. [[पत्राचार सिद्धांत]]) के रूप में क्वांटम यांत्रिकी की पहचान की सुविधा प्रदान करता है। {{math|''ħ''/''S''}}. (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर वी/सी के साथ सापेक्षतावादी यांत्रिकी में शास्त्रीय न्यूटोनियन का विरूपण सम्मिलित है; या विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण सम्मिलित है। इसके विपरीत, [[समूह संकुचन]] की ओर जाता है लुप्त-पैरामीटर अपरिवर्तित सिद्धांत-[[शास्त्रीय सीमा]]एं।)


शास्त्रीय अभिव्यक्तियाँ, अवलोकन और संचालन (जैसे पॉइसन कोष्ठक) द्वारा संशोधित किए जाते हैं {{mvar|ħ}}-निर्भर क्वांटम सुधार, जैसा कि शास्त्रीय यांत्रिकी में लागू होने वाले पारंपरिक कम्यूटेटिव गुणन को क्वांटम यांत्रिकी की विशेषता वाले गैर-अनुवांशिक स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।
शास्त्रीय अभिव्यक्तियाँ, अवलोकन और संचालन (जैसे पॉइसन कोष्ठक) द्वारा संशोधित किए जाते हैं {{mvar|ħ}}-निर्भर क्वांटम सुधार, जैसा कि शास्त्रीय यांत्रिकी में लागू होने वाले पारंपरिक कम्यूटेटिव गुणन को क्वांटम यांत्रिकी की विशेषता वाले गैर-अनुवांशिक स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।
Line 197: Line 198:


==सामान्यीकरण==
==सामान्यीकरण==
अधिक व्यापकता में, वेइल क्वांटाइजेशन का अध्ययन उन मामलों में किया जाता है जहां प्रावस्था-समष्‍टि [[सिंपलेक्टिक मैनिफ़ोल्ड]] है, या संभवतः पॉइसन मैनिफोल्ड है। संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित शामिल हैं।
अधिक व्यापकता में, वेइल क्वांटाइजेशन का अध्ययन उन स्थितियों में किया जाता है जहां प्रावस्था-समष्‍टि [[सिंपलेक्टिक मैनिफ़ोल्ड]] है, या संभवतः पॉइसन मैनिफोल्ड है। संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित सम्मिलित हैं।


==यह भी देखें==
==यह भी देखें==

Revision as of 00:33, 24 November 2023

क्वांटम यांत्रिकी में, विग्नर-वेइल ट्रांसफॉर्म या वेइल-विग्नर ट्रांसफॉर्म (हरमन वेइल और यूजीन विग्नर के पश्चात्) श्रोडिंगर चित्र में क्वांटम प्रावस्था-समष्टि सूत्रीकरण और हिल्बर्ट समष्टि संकारकों (गणित) में फलनों के मध्य व्युत्क्रम मैपिंग है।

अधिकांशतः प्रावस्था-समष्‍टि पर फलनों से लेकर संकारकों तक की मैपिंग को वेइल ट्रांसफॉर्म या वेइल क्वांटाइजेशन कहा जाता है, जबकि प्रावस्था-समष्‍टि पर संकारकों से फलनों तक की व्युत्क्रम मैपिंग को विग्नर ट्रांसफॉर्म कहा जाता है। यह मैपिंग मूल रूप से 1927 में हरमन वेइल द्वारा संकारकों के लिए सममित प्रावस्था-समष्‍टि फलनों को मैप करने के प्रयास में प्रस्तुत की गई थी, जिसे वेइल क्वांटाइजेशन के रूप में भी जाना जाता है।[1] अब यह अध्ययन किया जाता है कि वेइल क्वांटाइजेशन उन सभी गुणों को संतुष्ट नहीं करता है जिनकी निरंतर क्वांटाइजेशन के लिए आवश्यकता होती है और इसलिए कभी-कभी अभौतिक परिणाम प्राप्त होते हैं। दूसरी ओर, नीचे वर्णित कुछ उत्तम गुणों से ज्ञात होता है कि यदि कोई संकारकों के लिए प्रावस्था-समष्‍टि पर एकल सुसंगत प्रक्रिया मैपिंग फलनों को ज्ञात करता है, तो वेइल क्वांटाइजेशन उत्तम विकल्प है: इस प्रकार के मैप के सामान्य निर्देशांक का प्रकार भी होता है (ग्रोएनवॉल्ड के प्रमेय का आशय है कि ऐसे किसी भी मैप में वे सभी आदर्श गुण नहीं हो सकते जो कोई चाहता है।)

वेइल-विग्नर ट्रांसफॉर्म प्रावस्था-समष्‍टि और संकारक अभ्यावेदन के मध्य उचित रूप से परिभाषित इंटीग्रल ट्रांसफॉर्म है, और क्वांटम यांत्रिकी के कार्यचालन में अंतर्दृष्टि प्रदान करता है। अत्यंत महत्वपूर्ण तथ्य यह है कि विग्नर अर्ध-संभाव्यता वितरण क्वांटम घनत्व आव्यूह का विग्नर ट्रांसफॉर्म है, और, इसके विपरीत, घनत्व आव्यूह विग्नर फलन का वेइल ट्रांसफॉर्म है।

कंसिस्टेंट क्वांटाइजेशन योजना के अन्वेषण में वेइल के मूल विचारों के विपरीत, यह मैप केवल क्वांटम यांत्रिकी के भीतर अभ्यावेदन में परिवर्तन के समान है; इसे क्लासिकल को क्वांटम राशियों से संयोजित करने की आवश्यकता नहीं है। उदाहरण के लिए, प्रावस्था-समष्‍टि फलन स्पष्ट रूप से प्लैंक के स्थिरांक ħ पर निर्भर हो सकता है, जैसा कि कोणीय गति से संयोजित कुछ परिचित स्थितियों में होता है। यह व्युत्क्रम अभ्यावेदन परिवर्तन किसी को प्रावस्था-समष्‍टि में क्वांटम यांत्रिकी को व्यक्त करने की अनुमति देता है, जिस प्रकार 1940 के दशक में हिलब्रांड जे. ग्रोएनवॉल्ड और जोस एनरिक मोयल द्वारा इसकी सराहना की गयी थी।[2][3][4]

सामान्य अवलोकनीय के वेइल क्वांटाइजेशन की परिभाषा

निम्नलिखित सरलतम, द्विविमीय यूक्लिडियन प्रावस्था-समष्‍टि पर वेइल ट्रांसफॉर्मेशन की व्याख्या करता है। मान लीजिए कि प्रावस्था-समष्‍टि पर निर्देशांक (q,p) हैं और f प्रावस्था-समष्‍टि पर प्रत्येक स्थान परिभाषित फलन है। निम्नलिखित में, हम श्रोडिंगर अभ्यावेदन में सामान्य स्थिति और गति संकारकों जैसे विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले संकारकों P और Q को उचित करते हैं। हम मानते हैं कि घातांक संकारक और वेइल संबंधों का अलघुकरणीय प्रतिनिधित्व बनाते हैं जिससे स्टोन-वॉन न्यूमैन प्रमेय (विहित कम्यूटेशन संबंधों की विशिष्टता का आश्वासन) स्थिर रहे।

मूल सूत्र

फलन f का वेइल ट्रांसफॉर्म (या वेइल क्वांटाइजेशन) हिल्बर्ट समष्टि में निम्नलिखित संकारक द्वारा दिया गया है,[5]

पूर्णतया, ħ प्लैंक स्थिरांक है।

उपरोक्त सूत्र में सर्वप्रथम p और q समाकलों को निष्पादित करना अनुदेशात्मक है, जिसमें ऑपरेटर को त्यागते समय फलन f के सामान्य फूरियर ट्रांसफॉर्म की गणना करने का प्रभाव होता है। उस स्थिति में, वेइल ट्रांसफॉर्म को इस प्रकार लिखा जा सकता है-[6]

.

इसलिए हम वेइल मैप के संबंध में इस प्रकार विचार कर सकते हैं: हम फलन का सामान्य फूरियर ट्रांसफॉर्म लेते हैं, किन्तु फिर फूरियर व्युत्क्रम सूत्र प्रयुक्त करते समय, हम मूल वास्तविक चर p और q के लिए क्वांटम संकारकों और को प्रतिस्थापित करते हैं, इस प्रकार f का क्वांटम संस्करण प्राप्त होता है।

कम सममित किन्तु अनुप्रयोगों के लिए उपयोगी रूप निम्नलिखित है-

स्थिति प्रतिनिधित्व में

वेइल मैप को इस संकारक के समाकल कर्नेल आव्यूह अवयवों के संदर्भ में भी व्यक्त किया जा सकता है-[7]

व्युत्क्रम मैप

उपरोक्त वेइल मैप का व्युत्क्रम विग्नर मैप है, जो संकारक लेता है Φ मूल चरण-स्पेस कर्नेल फलन पर वापस जाएं f,

उदाहरण के लिए, ऑसिलेटर थर्मल डिस्ट्रीब्यूशन संकारक का विग्नर मैप है[5]

यदि कोई प्रतिस्थापित करता है उपरोक्त अभिव्यक्ति में मनमाना संकारक के साथ, परिणामी फलन f प्लैंक स्थिरांक पर निर्भर हो सकता है ħ, और क्वांटम-मैकेनिकल प्रक्रियाओं का अच्छी तरह से वर्णन कर सकता है, बशर्ते कि यह नीचे दिए गए मोयल उत्पाद के माध्यम से ठीक से बना हो।[8] बदले में, विग्नर मैप के वेइल मैप को ग्रोएनवॉल्ड के सूत्र द्वारा संक्षेपित किया गया है,[5]:

बहुपद वेधशालाओं का वेइल क्वांटाइजेशन

जबकि उपरोक्त सूत्र प्रावस्था-समष्‍टि पर बहुत ही सामान्य अवलोकन योग्य वेइल क्वांटाइजेशन की अच्छी समझ देते हैं, वे सरल अवलोकनों पर गणना के लिए बहुत सुविधाजनक नहीं हैं, जैसे कि वे जो बहुपद हैं और . बाद के अनुभागों में, हम देखेंगे कि ऐसे बहुपदों पर, वेइल क्वांटाइजेशन गैर-कम्यूटिंग संकारकों के पूरी तरह से सममित क्रम का प्रतिनिधित्व करता है और . उदाहरण के लिए, क्वांटम कोणीय-गति-वर्ग संकारक एल का विग्नर मैप2 न केवल शास्त्रीय कोणीय गति का वर्ग है, बल्कि इसमें ऑफसेट शब्द भी सम्मिलित है −3ħ2/2, जो ग्राउंड-स्टेट बोह्र मॉडल के गैर-लुप्त होने वाले कोणीय गति के लिए जिम्मेदार है।

गुण

बहुपदों का वेइल क्वांटाइजेशन

के बहुपद फलनों पर वेइल क्वांटाइजेशन की क्रिया और निम्नलिखित सममित सूत्र द्वारा पूरी तरह से निर्धारित किया जाता है:[9]

सभी सम्मिश्र संख्याओं के लिए और . इस सूत्र से, यह दिखाना कठिन नहीं है कि प्रपत्र के किसी फलन पर वेइल क्वांटाइजेशन होता है के सभी संभावित ऑर्डरों का औसत देता है के कारक और के कारक . उदाहरण के लिए, हमारे पास है

हालाँकि यह परिणाम वैचारिक रूप से स्वाभाविक है, किन्तु यह गणना के लिए सुविधाजनक नहीं है और बड़े हैं. ऐसे मामलों में, हम इसके स्थान पर मैककॉय के सूत्र का उपयोग कर सकते हैं[10]

यह अभिव्यक्ति इस मामले के लिए स्पष्ट रूप से भिन्न उत्तर देती है उपरोक्त पूरी तरह से सममित अभिव्यक्ति से। हालाँकि, इसमें कोई विरोधाभास नहीं है, क्योंकि विहित रूपान्तरण संबंध ही संकारक के लिए से अधिक अभिव्यक्ति की अनुमति देते हैं। (पाठक को इस मामले के लिए पूरी तरह से सममित सूत्र को फिर से लिखने के लिए कम्यूटेशन संबंधों का उपयोग करना शिक्षाप्रद लग सकता है संकारकों के संदर्भ में , , और और मैककॉय के सूत्र में पहली अभिव्यक्ति को सत्यापित करें .)

यह व्यापक रूप से माना जाता है कि वेइल क्वांटाइजेशन, सभी परिमाणीकरण योजनाओं के मध्य, क्वांटम पक्ष पर कम्यूटेटर के शास्त्रीय पक्ष पर पॉइसन ब्रैकेट को मैप करने के जितना संभव हो उतना करीब आता है। (कैनोनिकल_क्वांटाइज़ेशन#इश्यूज़_एंड_लिमिटेशन्स|ग्रोएनवॉल्ड के प्रमेय के प्रकाश में, सटीक पत्राचार असंभव है।) उदाहरण के लिए, मोयल ने दिखाया

प्रमेय: यदि अधिकतम 2 और घात वाला बहुपद है मनमाना बहुपद है, तो हमारे पास है .

सामान्य कार्यों का वेइल क्वांटाइजेशन

  • अगर f वास्तविक-मूल्यवान फलन है, फिर इसकी वेइल-मैप छवि Φ[f] स्व-सहायक है।
  • अगर f तो श्वार्ट्ज स्थान का तत्व है Φ[f] ट्रेस-वर्ग है।
  • आम तौर पर अधिक, Φ[f] सघन रूप से परिभाषित अनबाउंड संकारक है।
  • वो नक्शा Φ[f] श्वार्ट्ज स्पेस पर -से- है (वर्ग-अभिन्न कार्यों के उप-स्थान के रूप में)।

विरूपण परिमाणीकरण

सहज रूप से, गणितीय वस्तु का विरूपण सिद्धांत समान प्रकार की वस्तुओं का परिवार है जो कुछ मापदंडों पर निर्भर करता है। यहां, यह नियम प्रदान करता है कि वेधशालाओं के शास्त्रीय क्रमविनिमेय बीजगणित को वेधशालाओं के क्वांटम गैर-कम्यूटेटिव बीजगणित में कैसे विकृत किया जाए।

विरूपण सिद्धांत में मूल सेटअप बीजगणितीय संरचना ( झूठ बीजगणित कहें) से शुरू करना है और पूछना है: क्या समान संरचनाओं का या अधिक पैरामीटर परिवार मौजूद है, जैसे कि पैरामीटर के प्रारंभिक मूल्य के लिए किसी की संरचना वही है (झूठ बीजगणित) जिसके साथ शुरुआत हुई थी? (इसका सबसे पुराना उदाहरण प्राचीन दुनिया में एराटोस्थनीज की यह अनुभूति हो सकती है कि चपटी पृथ्वी गोलाकार पृथ्वी के रूप में विकृत हो सकती है, विरूपण पैरामीटर 1/आर के साथ.) उदाहरण के लिए, कोई गैर-अनुवांशिक ज्यामिति को विरूपण परिमाणीकरण के रूप में परिभाषित कर सकता है -उत्पाद सभी अभिसरण सूक्ष्मताओं को स्पष्ट रूप से संबोधित करने के लिए (आमतौर पर औपचारिक विरूपण परिमाणीकरण में संबोधित नहीं किया जाता है)। जहाँ तक किसी स्थान पर कार्यों का बीजगणित उस स्थान की ज्यामिति को निर्धारित करता है, तारा उत्पाद के अध्ययन से उस स्थान के गैर-कम्यूटेटिव ज्यामिति विरूपण का अध्ययन होता है।

उपरोक्त फ्लैट प्रावस्था-समष्‍टि उदाहरण के संदर्भ में, स्टार उत्पाद (मोयल उत्पाद, वास्तव में ग्रोएनवॉल्ड द्वारा 1946 में पेश किया गया था), ħ, कार्यों की जोड़ी में f1, f2C(ℜ2), द्वारा निर्दिष्ट किया गया है

तारा उत्पाद सामान्य रूप से क्रमविनिमेय नहीं है, बल्कि की सीमा में कार्यों के सामान्य क्रमविनिमेय उत्पाद तक चला जाता है ħ → 0. इस प्रकार, यह क्रमविनिमेय बीजगणित के विरूपण सिद्धांत को परिभाषित करने के लिए कहा जाता है C(ℜ2).

उपरोक्त वेइल-मैप उदाहरण के लिए, -उत्पाद को पॉइसन ब्रैकेट के संदर्भ में लिखा जा सकता है

यहां, Π पॉइसन मैनिफोल्ड है#द पॉइसन बाइवेक्टर, संकारक को इस तरह परिभाषित किया गया है कि इसकी शक्तियां हैं

और

कहां {एफ1, एफ2} पॉइसन ब्रैकेट है। आम तौर पर अधिक,

कहाँ द्विपद गुणांक है.

इस प्रकार, उदा.,[5] गॉसियन हाइपरबोलिक फलन की रचना करते हैं#वृत्ताकार त्रिकोणमितीय कार्यों के साथ तुलना,

या

वगैरह। ये सूत्र उन निर्देशांकों पर आधारित हैं जिनमें पॉइसन बायवेक्टर स्थिर है (सादा सपाट पॉइसन कोष्ठक)। मनमाने ढंग से पॉइसन मैनिफ़ोल्ड पर सामान्य सूत्र के लिए, सीएफ। कोंटसेविच परिमाणीकरण सूत्र।

इसका प्रतिसममितिकरण -उत्पाद मोयल ब्रैकेट, पॉइसन ब्रैकेट का उचित क्वांटम विरूपण, और क्वांटम यांत्रिकी के अधिक सामान्य हिल्बर्ट-स्पेस फॉर्मूलेशन में क्वांटम कम्यूटेटर के चरण-स्पेस आइसोमोर्फ (विग्नर ट्रांसफॉर्म) उत्पन्न करता है। इस प्रकार, यह इस प्रावस्था-समष्‍टि सूत्रीकरण में अवलोकन योग्य वस्तुओं के गतिशील समीकरणों की आधारशिला प्रदान करता है।

इसके परिणामस्वरूप क्वांटम यांत्रिकी का पूर्ण प्रावस्था-समष्‍टि सूत्रीकरण होता है, पूरी तरह से हिल्बर्ट-स्पेस संकारक प्रतिनिधित्व के बराबर, जिसमें स्टार-गुणन संकारक गुणन को आइसोमोर्फिक रूप से समानांतर करता है।[5]

चरण-अंतरिक्ष परिमाणीकरण में प्रत्याशा मान संकारक अवलोकनों का पता लगाने के लिए आइसोमोर्फिक रूप से प्राप्त किए जाते हैं Φ हिल्बर्ट अंतरिक्ष में घनत्व मैट्रिक्स के साथ: वे उपरोक्त जैसे अवलोकन योग्य वस्तुओं के चरण-अंतरिक्ष अभिन्न अंग द्वारा प्राप्त किए जाते हैं f विग्नर अर्ध-संभाव्यता वितरण प्रभावी ढंग से उपाय के रूप में कार्य कर रहा है।

इस प्रकार, क्वांटम यांत्रिकी को प्रावस्था-समष्‍टि (शास्त्रीय यांत्रिकी के समान दायरे) में व्यक्त करके, उपरोक्त वेइल मैप विरूपण पैरामीटर के साथ शास्त्रीय यांत्रिकी के विरूपण सिद्धांत (सामान्यीकरण, सीएफ. पत्राचार सिद्धांत) के रूप में क्वांटम यांत्रिकी की पहचान की सुविधा प्रदान करता है। ħ/S. (भौतिकी में अन्य परिचित विकृतियों में विरूपण पैरामीटर वी/सी के साथ सापेक्षतावादी यांत्रिकी में शास्त्रीय न्यूटोनियन का विरूपण सम्मिलित है; या विरूपण पैरामीटर श्वार्ज़स्चिल्ड-त्रिज्या/विशेषता-आयाम के साथ न्यूटोनियन गुरुत्वाकर्षण का सामान्य सापेक्षता में विरूपण सम्मिलित है। इसके विपरीत, समूह संकुचन की ओर जाता है लुप्त-पैरामीटर अपरिवर्तित सिद्धांत-शास्त्रीय सीमाएं।)

शास्त्रीय अभिव्यक्तियाँ, अवलोकन और संचालन (जैसे पॉइसन कोष्ठक) द्वारा संशोधित किए जाते हैं ħ-निर्भर क्वांटम सुधार, जैसा कि शास्त्रीय यांत्रिकी में लागू होने वाले पारंपरिक कम्यूटेटिव गुणन को क्वांटम यांत्रिकी की विशेषता वाले गैर-अनुवांशिक स्टार-गुणन के लिए सामान्यीकृत किया जाता है और इसके अनिश्चितता सिद्धांत को अंतर्निहित किया जाता है।

इसके नाम के बावजूद, आमतौर पर विरूपण क्वांटाइजेशन सफल क्वांटाइजेशन_(भौतिकी) का गठन नहीं करता है, अर्थात् शास्त्रीय से क्वांटम सिद्धांत उत्पन्न करने की विधि। आजकल, यह हिल्बर्ट स्पेस से चरण स्पेस में मात्र प्रतिनिधित्व परिवर्तन के बराबर है।

सामान्यीकरण

अधिक व्यापकता में, वेइल क्वांटाइजेशन का अध्ययन उन स्थितियों में किया जाता है जहां प्रावस्था-समष्‍टि सिंपलेक्टिक मैनिफ़ोल्ड है, या संभवतः पॉइसन मैनिफोल्ड है। संबंधित संरचनाओं में पॉइसन-लाई समूह और केएसी-मूडी बीजगणित सम्मिलित हैं।

यह भी देखें

संदर्भ

  1. Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID 121036548.
  2. Groenewold, H. J. (1946). "On the Principles of elementary quantum mechanics". Physica. 12 (7): 405–446. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
  3. Moyal, J. E.; Bartlett, M. S. (1949). "Quantum mechanics as a statistical theory". Mathematical Proceedings of the Cambridge Philosophical Society. 45 (1): 99–124. Bibcode:1949PCPS...45...99M. doi:10.1017/S0305004100000487. S2CID 124183640.
  4. Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 1: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
  5. 5.0 5.1 5.2 5.3 5.4 Curtright, T. L.; Fairlie, D. B.; Zachos, C. K. (2014). A Concise Treatise on Quantum Mechanics in Phase Space. World Scientific. ISBN 9789814520430.
  6. Hall 2013 Section 13.3
  7. Hall 2013 Definition 13.7
  8. Kubo, R. (1964). "Wigner Representation of Quantum Operators and Its Applications to Electrons in a Magnetic Field". Journal of the Physical Society of Japan. 19 (11): 2127–2139. Bibcode:1964JPSJ...19.2127K. doi:10.1143/JPSJ.19.2127.
  9. Hall 2013 Proposition 13.3
  10. McCoy, Neal (1932). "On the Function in Quantum Mechanics which Corresponds to a Given Function in Classical Mechanics", Proc Nat Acad Sci USA 19 674, online .

अग्रिम पठन