क्वांटम सीमा: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:क्वांटम_सीमा) |
(No difference)
|
Latest revision as of 09:54, 1 December 2023
क्वांटम सीमा भौतिकी में क्वांटम परिमाण पर त्रुटिहीन माप की सीमा है।[1] संदर्भ के आधार पर, सीमा निरपेक्ष हो सकती है (जैसे कि हाइजेनबर्ग सीमा), या यह केवल तभी प्रयुक्त हो सकती है जब प्रयोग स्वाभाविक रूप से उत्पन्न होने वाली क्वांटम स्थितियों (उदाहरण के लिए इंटरफेरोमेट्री में मानक क्वांटम सीमा) के साथ किया जाता है और इसे उन्नत स्थिति पूर्वक और मापन योजनाओं के साथ टाला जा सकता है।
"मानक क्वांटम सीमा" या "एसक्यूएल" शब्द का उपयोग केवल इंटरफेरोमेट्री से अधिक व्यापक है। सिद्धांत रूप में, अध्ययन के अनुसार प्रणाली के अवलोकन योग्य क्वांटम मैकेनिकल का कोई भी रैखिक माप जो अलग-अलग समय पर स्वयं के साथ संचार नहीं करता है, ऐसी सीमाओं की ओर ले जाता है। संक्षेप में, यह अनिश्चितता सिद्धांत ही इसका कारण है।
यह अधिक विस्तृत व्याख्या यह होगी कि क्वांटम यांत्रिकी में किसी भी माप में कम से कम दो पक्ष "वस्तु" और "मीटर" सम्मलित होते हैं। पूर्व वह प्रणाली है जिसका अवलोकन, कहें , हम मापना चाहते हैं। उत्तरार्द्ध वह प्रणाली है जिसके मूल्य का अनुमान लगाने के लिए हम वस्तु को जोड़ते हैं कुछ चुने गए अवलोकनीय को अभिलेख करके, , इस प्रणाली का, (उदाहरण मीटर के परिमाण पर सूचक की स्थिति) संक्षेप में, यह भौतिकी में होने वाले अधिकांश मापों का नमूना है, जिसे अप्रत्यक्ष माप के रूप में जाना जाता है (पृष्ठ 38-42 देखें) [1]इसलिए कोई भी माप अंतःक्रिया का परिणाम है और वह दोनों विधियोंसे कार्य करता है। इसलिए, मीटर प्रत्येक माप के समय वस्तु पर कार्य करता है, सामान्यत मात्रा के माध्यम से, , पढ़ने योग्य अवलोकनीय से संयुग्मित , इस प्रकार मापे गए अवलोकनीय के मूल्य में अस्तव्यस्तता होती है और बाद के मापों के परिणामों को संशोधित करना। इसे माप के अनुसार प्रणाली पर मीटर की पश्च क्रिया (क्वांटम) के रूप में जाना जाता है।
साथ ही, क्वांटम यांत्रिकी यह निर्धारित करती है कि मीटर के अवलोकन योग्य रीडआउट में अंतर्निहित अनिश्चितता होनी चाहिए, , मापी गई मात्रा के मूल्य से योगात्मक और स्वतंत्र . इसे माप अशुद्धि या माप शोर के रूप में जाना जाता है। अनिश्चितता सिद्धांत के कारण, यह अशुद्धि अनेैतिक रूप से नहीं हो सकती है और अनिश्चितता सिद्धांत द्वारा बैक-एक्शन अस्तव्यस्तता से जुड़ी हुई है:
यहाँ अवलोकनीय का मानक विचलन है और की अपेक्षा मूल्य के लिए खड़ा है प्रणाली चाहे किसी भी क्वांटम अवस्था में हो। यदि प्रणाली न्यूनतम अनिश्चितता की स्थिति में है तो समानता पहुंच जाती है। हमारे स्थितियों का परिणाम यह है कि हमारा माप जितना अधिक सटीक होगा, अर्थात उतना ही छोटा होगा , मापे गए अवलोकन पर मीटर का प्रभाव जितना अधिक होगा, अस्तव्यस्तता उतनी ही अधिक होगी . इसलिए, मीटर के रीडआउट में, सामान्यतः, तीन पद सम्मलित होंगे:
यहाँ का मान वस्तु का होता है, यदि वह मीटर से जुड़ी नहीं होती, और " अस्तित्व की अशान्ति होती है, जो पश्च क्रिया बल . के कारण होती है। इसके अतिरिक्त, इसका उत्तरार्ध के अनिश्चितता . के अनुपात में है, जो दिखाता है कि इसमें सुधार की सीमा है जो कि और असंबंधित हैं।[2][3]
क्वांटम सीमा और मानक क्वांटम सीमा शब्द कभी-कभी एक दूसरे के स्थान पर उपयोग किए जाते हैं। सामान्यत, क्वांटम सीमा सामान्य शब्द है जो क्वांटम प्रभावों के कारण माप पर किसी भी प्रतिबंध को संदर्भित करता है, जबकि किसी भी संदर्भ में मानक क्वांटम सीमा क्वांटम सीमा को संदर्भित करती है जो उस संदर्भ में सर्वव्यापी है।
उदाहरण
विस्थापन माप
यह बहुत ही सरल माप योजना को विचार करें, जिसमें तथापि, सामान्य स्थिति मापन की सभी प्रमुख विशेषताओं को समाहित करती है। चित्र में दिखाई गई योजना में, जांच निकाय के विस्थापन की निगरानी के लिए बहुत कम प्रकाश दालों के अनुक्रम का उपयोग किया जाता है। . स्थिति का समय-समय पर समय अंतराल के साथ जांच की जाती है, हम द्रव्यमान मानते हैं । माप प्रक्रिया के समय नाड़ी नियमित (शास्त्रीय) विकिरण दबाव द्वारा किए गए विस्थापन की उपेक्षा करने के लिए पर्याप्त बड़ा है।
फिर प्रत्येक नाड़ी, जब प्रतिबिंबित होता है, तो परीक्षण-द्रव्यमान स्थिति के मूल्य के अनुपात में चरण बदलाव होता है प्रतिबिंब के क्षण में:
-
(1)
यहाँ , प्रकाश की आवृत्ति है, नाड़ी संख्या है और दिखाई गई नाड़ी की प्रारंभिक (रैंडम) दिशा है। हम मानते हैं कि इन सभी चरणों का माध्य मान शून्य के समान है, , और उनका मूल माध्य वर्ग (आरएमएस) अनिश्चितता = शून्य के समान है।
परावर्तित दालों का पता चरण-संवेदनशील उपकरण (चरण डिटेक्टर) द्वारा लगाया जाता है। ऑप्टिकल चरण संसूचक का कार्यान्वयन उदाहरण के लिए किया जा सकता है। होमोडाइन का पता लगाना या ऑप्टिकल हेटेरोडाइन का पता लगाना डिटेक्शन स्कीम (धारा 2.3 देखें)। [2]और उसमें संदर्भ), या अन्य ऐसी रीड-आउट विधि होती है।
इस उदाहरण में, प्रकाश नाड़ी चरण अवलोकन योग्य रीडआउट के रूप में कार्य करता है। तब हम मानते हैं कि संसूचक द्वारा प्रस्तुत की गई चरण मापन त्रुटि जो चरण के प्रारंभिक अनिश्चितता से कहीं अधिक नहीं है। इस स्थितियों में, प्रारंभिक अनिश्चितता स्थिति माप त्रुटि का एकमात्र स्रोत होगी:
-
(2)
सुविधा के लिए, हम समीकरण को पुनः सामान्यीकृत करते हैं। (1) समतुल्य परीक्षण-द्रव्यमान विस्थापन के रूप में:
-
(3)
यहाँ
समीकरण द्वारा दी गई आरएमएस अनिश्चितताओं के साथ स्वतंत्र यादृच्छिक मान हैं। (2).
प्रति परावृत्ति, प्रत्येक प्रकाश नाड़ी परीक्षण द्रव्यमान को धक्का करता है, जिससे इसे एक पीछे-क्रिया गति प्रेषित होती है, जो इसके समान होती है।
-
(4)
यहाँ और प्रकाश नाड़ी परावर्तन के ठीक पहले और ठीक बाद परीक्षण-द्रव्यमान संवेग मान हैं, और की ऊर्जा है -नाड़ी, जो अवलोकनीय पश्च क्रिया की भूमिका निभाती है मीटर का. इस अस्तव्यस्तता का प्रमुख भाग शास्त्रीय विकिरण दबाव द्वारा योगदान देता है:
साथ दालों की औसत ऊर्जा. इसलिए, कोई इसके प्रभाव की उपेक्षा कर सकता है, क्योंकि इसे या तो माप परिणाम से घटाया जा सकता है या एक्चुएटर द्वारा भरपाई दिया जा सकता है। यादृच्छिक भाग, जिसकी भरपाई नहीं की जा सकती, नाड़ी ऊर्जा के विचलन के समानुपाती होता है:
और इसका आरएमएस अनिश्चित रूप से समान है
-
(5)
साथ नाड़ी ऊर्जा की आरएमएस अनिश्चितता रूप से समान है।
यह मानते हुए कि दर्पण मुक्त है (जो उचित अनुमान है यदि स्पन्दों के बीच का समय अंतराल निलंबित दर्पण दोलनों की अवधि से बहुत कम है, ), कोई इसकी पिछली कार्रवाई के कारण होने वाले अतिरिक्त विस्थापन का अनुमान लगा सकता है -वाँ नाड़ी जो बाद के माप की अनिश्चितता में योगदान देगा नाड़ी समय बाद में:
इसकी अनिश्चितता बस होगी
यदि अब हम यह अनुमान लगाना चाहें कि दर्पण इनके बीच कितना घूमा है और दालें, अर्थात इसका विस्थापन , हमें तीन अतिरिक्त अनिश्चितताओं से निपटना होगा जो हमारे अनुमान की त्रुटिहीन को सीमित करती हैं:
जहां हमने अपनी माप अनिश्चितता में सभी योगदानों को सांख्यिकीय रूप से स्वतंत्र मान लिया और इस प्रकार मानक विचलनों के योग द्वारा कुल अनिश्चितता प्राप्त की। यदि हम आगे यह मान लें कि सभी प्रकाश दालें समान हैं और उनकी चरण अनिश्चितता समान है, तो .
अब, यह राशि न्यूनतम क्या है और इस सरल अनुमान में न्यूनतम त्रुटि क्या हो सकती है? उत्तर क्वांटम यांत्रिकी से आता है, यदि हम याद रखें कि ऊर्जा और प्रत्येक नाड़ी का चरण विहित रूप से संयुग्मित अवलोकन योग्य हैं और इस प्रकार निम्नलिखित अनिश्चितता संबंध का पालन करते हैं:
इसलिए, यह Eqs से अनुसरण करता है। (2 और 5) कि स्थिति माप त्रुटि और गति अस्तव्यस्तता पश्च क्रिया के कारण अनिश्चितता संबंध भी संतुष्ट होता है:
इस संबंध को ध्यान में रखते हुए, न्यूनतम अनिश्चितता, दर्पण को अधिक चिन्तित न करने के लिए प्रकाश स्पंदन समान होना चाहिए दोनों के लिए उपज . इस प्रकार क्वांटम यांत्रिकी द्वारा निर्धारित न्यूनतम विस्थापन माप त्रुटि इस प्रकार है:
ऐसी 2-नाड़ी प्रक्रिया के लिए यह मानक क्वांटम सीमा है। सिद्धांत रूप में, यदि हम अपने माप को केवल दो नाड़ी तक सीमित रखते हैं और बाद में दर्पण की स्थिति में अस्तव्यस्तता की परवाह नहीं करते हैं, तो दूसरी नाड़ी माप अनिश्चितता, , सिद्धांत रूप में, 0 तक घटाया जा सकता है (निश्चित रूप से, इससे परिणाम मिलेगा, ) और विस्थापन माप त्रुटि की सीमा कम हो जाएगी:
जिसे मुक्त द्रव्यमान विस्थापन के मापन के लिए मानक क्वांटम सीमा के रूप में जाना जाता है।
यह उदाहरण रैखिक माप के साधारण विशेष स्थितियों का प्रतिनिधित्व करता है।इस मापन योजना की पूर्ण विवरण दो रैखिक समीकरणों द्वारा पूरी प्रकार से वर्णित किया जा सकता है जो रूप ~(3) और (4),के दो रैखिक समीकरणों द्वारा पूरी तरह से वर्णित किया जा सकता है, बशर्ते कि माप अनिश्चितता और ऑब्जेक्ट बैक-एक्शन अस्तव्यस्तता दोनों ( और इस स्थितियों में) परीक्षण वस्तु की प्रारंभिक क्वांटम स्थिति से सांख्यिकीय रूप से स्वतंत्र हैं और मापे गए अवलोकन योग्य और इसके विहित रूप से संयुग्मित समकक्ष (इस स्थितियों में वस्तु की स्थिति और गति) के समान अनिश्चितता संबंध को संतुष्ट करते हैं।
क्वांटम प्रकाशिकी में उपयोग
इंटरफेरोमेट्री या अन्य ऑप्टिकल माप के संदर्भ में, मानक क्वांटम सीमा सामान्यत क्वांटम शोर के न्यूनतम स्तर को संदर्भित करती है जो निचोड़ सुसंगत स्थिति के बिना प्राप्त करने योग्य है।[4]
चरण शोर के लिए अतिरिक्त क्वांटम सीमा है, जो केवल उच्च शोर आवृत्तियों पर लेज़र द्वारा पहुंच योग्य है।
स्पेक्ट्रोस्कोपी में, एक्स-रे स्पेक्ट्रम में सबसे छोटी तरंग दैर्ध्य को क्वांटम सीमा कहा जाता है। [5]
शास्त्रीय सीमा से भ्रामक संबंध
ध्यान दें कि शब्द "सीमा" की अत्यधिक उपयोग के कारण, शास्त्रीय सीमा क्वांटम सीमा के विपरीत नहीं है। "क्वांटम सीमा में", "सीमा" का उपयोग भौतिक सीमा (उदाहरण के लिए, आर्मस्ट्रांग सीमा) के अर्थ में किया जा रहा है। "शास्त्रीय सीमा" में, "सीमा" का उपयोग सीमांत (गणित) प्रक्रिया के संदर्भ में हो रहा है।(ध्यान दें कि कोई सरल कठोर गणितीय सीमा नहीं है जो क्वांटम यांत्रिकी से शास्त्रीय यांत्रिकी को पूरी प्रकार से पुनर्प्राप्त करती है, इह्रेनफेस्ट प्रमेय के अतिरिक्त । फिर भी, क्वांटम यांत्रिकी के चरण अंतरिक्ष निर्माण में, ऐसी सीमाएं अधिक व्यवस्थित और व्यावहारिक हैं।)
यह भी देखें
- शास्त्रीय सीमा
- हाइजेनबर्ग सीमा
- अति सापेक्षतावादी सीमा
संदर्भ और नोट्स
- ↑ 1.0 1.1 Braginsky, V. B.; Khalili, F. Ya. (1992). क्वांटम मापन. Cambridge University Press. ISBN 978-0521484138.
- ↑ 2.0 2.1 Danilishin, S. L.; Khalili F. Ya. (2012). "गुरुत्वाकर्षण-तरंग डिटेक्टरों में क्वांटम मापन सिद्धांत". Living Reviews in Relativity. 15 (5): 60. arXiv:1203.1706. Bibcode:2012LRR....15....5D. doi:10.12942/lrr-2012-5. PMC 5256003. PMID 28179836.
- ↑ Chen, Yanbei (2013). "Macroscopic quantum mechanics: theory and experimental concepts of optomechanics". J. Phys. B: At. Mol. Opt. Phys. 46 (10): 104001. arXiv:1302.1924. Bibcode:2013JPhB...46j4001C. doi:10.1088/0953-4075/46/10/104001. S2CID 118570800.
- ↑ Jaekel, M. T.; Reynaud, S. (1990). "Quantum Limits in Interferometric Measurements". Europhysics Letters. 13 (4): 301–306. arXiv:quant-ph/0101104. Bibcode:1990EL.....13..301J. doi:10.1209/0295-5075/13/4/003. S2CID 250851585.
- ↑ Piston, D. S. (1936). "The Polarization of X-Rays from Thin Targets". Physical Review. 49 (4): 275–279. Bibcode:1936PhRv...49..275P. doi:10.1103/PhysRev.49.275.
श्रेणी:क्वांटम यांत्रिकी