फील्ड कॉइल: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[File:Universalmotor 3.JPG|thumb|वैक्यूम क्लीनर से आधुनिक कम निवेश वाली सार्वभौमिक मोटर। फील्ड वाइंडिंग्स गहरे तांबे के रंग की होती हैं, दोनों पक्ष पीछे की ओर। रोटर का लैमिनेटेड कोर ग्रे मैटेलिक है, जिसमें कॉइल को वाइंडिंग करने के लिए डार्क स्लॉट हैं। कम्यूटेटर (आंशिक रूप से छिपा हुआ) उपयोग से काला हो गया है; यह सामने की ओर है। अग्रभूमि में बड़ा भूरा स्लोप-प्लास्टिक का टुकड़ा ब्रश गाइड और ब्रश (दोनों तरफ), साथ ही सामने मोटर अनुभव का समर्थन करता है।]]'''फील्ड कॉइल''' इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, सामान्यतः विद्युत मोटर या विद्युत जनरेटर जैसी घूर्णन विद्युत मशीन का तार होता है जिसके माध्यम से धारा प्रवाहित होता है। | [[File:Universalmotor 3.JPG|thumb|वैक्यूम क्लीनर से आधुनिक कम निवेश वाली सार्वभौमिक मोटर। फील्ड वाइंडिंग्स गहरे तांबे के रंग की होती हैं, दोनों पक्ष पीछे की ओर। रोटर का लैमिनेटेड कोर ग्रे मैटेलिक है, जिसमें कॉइल को वाइंडिंग करने के लिए डार्क स्लॉट हैं। कम्यूटेटर (आंशिक रूप से छिपा हुआ) उपयोग से काला हो गया है; यह सामने की ओर है। अग्रभूमि में बड़ा भूरा स्लोप-प्लास्टिक का टुकड़ा ब्रश गाइड और ब्रश (दोनों तरफ), साथ ही सामने मोटर अनुभव का समर्थन करता है।]]'''फील्ड कॉइल''' इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, सामान्यतः विद्युत मोटर या विद्युत जनरेटर जैसी घूर्णन विद्युत मशीन का तार होता है जिसके माध्यम से धारा प्रवाहित होता है। | ||
घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; स्टेटर जो स्थिर होता है, और रोटर (इलेक्ट्रिक), जो इसके अन्दर घूमता है। इस प्रकार चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से निरंतर लूप या चुंबकीय परिपथ में निकलती हैं और पुनः से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं। | इस प्रकार घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; स्टेटर जो स्थिर होता है, और रोटर (इलेक्ट्रिक), जो इसके अन्दर घूमता है। इस प्रकार चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से निरंतर लूप या चुंबकीय परिपथ में निकलती हैं और पुनः से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं। | ||
इस प्रकार चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से निकलती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर पोल के साथ फील्ड कॉइल का उपयोग किया जाता है। | इस प्रकार चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से निकलती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर पोल के साथ फील्ड कॉइल का उपयोग किया जाता है। | ||
Line 9: | Line 9: | ||
== फिक्स्ड और रोटेटिंग फील्ड्स == | == फिक्स्ड और रोटेटिंग फील्ड्स == | ||
अधिकांश डायरेक्ट धारा फील्ड कॉइल स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। अधिकांश तीन चरण विद्युत विद्युत् तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के भाग के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। इस प्रकार सिंगल-फेज अल्टरनेटिंग धारा मोटर्स इनमें से किसी भी क्रम का अनुसरण कर सकती हैं: छोटी मोटरें सामान्यतः यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, किन्तु एसी से चलती हैं। बड़े एसी मोटर्स सामान्यतः इंडक्शन मोटर्स होते हैं, इस प्रकार यह तीन- सिंगल-फेज होंते है। | अधिकांश डायरेक्ट धारा फील्ड कॉइल स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। इस प्रकार अधिकांश तीन चरण विद्युत विद्युत् तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के भाग के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। इस प्रकार सिंगल-फेज अल्टरनेटिंग धारा मोटर्स इनमें से किसी भी क्रम का अनुसरण कर सकती हैं: छोटी मोटरें सामान्यतः यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, किन्तु एसी से चलती हैं। बड़े एसी मोटर्स सामान्यतः इंडक्शन मोटर्स होते हैं, इस प्रकार यह तीन- सिंगल-फेज होंते है। | ||
== स्टेटर और रोटर्स == | == स्टेटर और रोटर्स == | ||
इस प्रकार अनेक रोटरी इलेक्ट्रिकल मशीनों को सामान्यतः स्लाइडिंग संपर्कों के माध्यम से: कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। यह संपर्क अधिकांशतः ऐसी मशीन का सबसे सम्मिश्र और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम धारा वाले वाइंडिंग्स को सामान्यतः रोटर पर रखा जाता है और स्टेटर पर उच्चतम धारा वाले पर रखा जाता है। | इस प्रकार अनेक रोटरी इलेक्ट्रिकल मशीनों को सामान्यतः स्लाइडिंग संपर्कों के माध्यम से: कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। यह संपर्क अधिकांशतः ऐसी मशीन का सबसे सम्मिश्र और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम धारा वाले वाइंडिंग्स को सामान्यतः रोटर पर रखा जाता है और स्टेटर पर उच्चतम धारा वाले पर रखा जाता है। | ||
फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक निवेश प्रभावी है। | इस प्रकार फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक निवेश प्रभावी है। | ||
ब्रश डीसी मोटर में क्षेत्र स्थिर होता है किन्तु आर्मेचर धारा को कम्यूटेट किया जाना चाहिए, जिससे निरंतर घूमता रहता है। यह कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है। | ब्रश डीसी मोटर में क्षेत्र स्थिर होता है किन्तु आर्मेचर धारा को कम्यूटेट किया जाना चाहिए, जिससे निरंतर घूमता रहता है। यह कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है। | ||
जनरेटर के लिए, फील्ड धारा आउटपुट धारा से छोटा होता है। तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करेंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट धारा लिया जाता है। डीसी जनरेटर में, जो अब सामान्यतः रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का कारण है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और सम्मिश्र ब्रशगियर की आवश्यकता हो सकती है। | इस प्रकार जनरेटर के लिए, फील्ड धारा आउटपुट धारा से छोटा होता है। तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करेंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट धारा लिया जाता है। डीसी जनरेटर में, जो अब सामान्यतः रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का कारण है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और सम्मिश्र ब्रशगियर की आवश्यकता हो सकती है। | ||
== द्विध्रुवी और बहुध्रुवीय क्षेत्र == | == द्विध्रुवी और बहुध्रुवीय क्षेत्र == | ||
Line 31: | Line 31: | ||
इस प्रकार जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एकल द्विध्रुवी विद्युत मोटर क्षेत्र से पश्चात के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया था। | इस प्रकार जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एकल द्विध्रुवी विद्युत मोटर क्षेत्र से पश्चात के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया था। | ||
1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे किन्तु पश्चात के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा परिवर्तित कर दिया गया था। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।<ref name="Hawkins">''[[Hawkins Electrical Guide]]'', Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182</ref> इस प्रकार इन दो प्रमुख प्रकार के मध्य स्टोन परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर रिंग में दो फील्ड कॉइल व्यवस्थित थे। | इस प्रकार 1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे किन्तु पश्चात के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा परिवर्तित कर दिया गया था। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।<ref name="Hawkins">''[[Hawkins Electrical Guide]]'', Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182</ref> इस प्रकार इन दो प्रमुख प्रकार के मध्य स्टोन परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर रिंग में दो फील्ड कॉइल व्यवस्थित थे। | ||
यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से विद्युत् संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, डायरेक्ट धारा जनरेटर को तेजी से घूमना चाहिए, किन्तु निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है। | यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से विद्युत् संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, डायरेक्ट धारा जनरेटर को तेजी से घूमना चाहिए, किन्तु निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है। | ||
Line 37: | Line 37: | ||
इस प्रकार ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, रिंग को मूल दो-ध्रुव जनरेटर की तुलना में क्रांति में बल की अधिक चुंबकीय रेखाओं में कमी करने के लिए बनाया जा सकता है। परिणाम स्वरुप, चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी।यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है। | इस प्रकार ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, रिंग को मूल दो-ध्रुव जनरेटर की तुलना में क्रांति में बल की अधिक चुंबकीय रेखाओं में कमी करने के लिए बनाया जा सकता है। परिणाम स्वरुप, चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी।यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है। | ||
बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें विद्युत्, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के लाभ हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।<ref name="Hawkins" /> | इस प्रकार बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें विद्युत्, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के लाभ हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।<ref name="Hawkins" /> | ||
== वाइंडिंग मैटेरिअल == | == वाइंडिंग मैटेरिअल == | ||
{{main article|वाइंडिंग्स}} | {{main article|वाइंडिंग्स}} | ||
इस प्रकार कॉइल सामान्यतः चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई विद्युत् को कम करने के लिए वाइंडिंग मैटेरिअल में कम प्रतिरोध होना चाहिए, किन्तु ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट ऊष्मा को कम करने के लिए अधिक महत्वपूर्ण है। वाइंडिंग्स में अत्यधिक ऊष्मा विफलता का सामान्य कारण है। तांबे की बढ़ती निवेश के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है। | इस प्रकार कॉइल सामान्यतः चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई विद्युत् को कम करने के लिए वाइंडिंग मैटेरिअल में कम प्रतिरोध होना चाहिए, किन्तु ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट ऊष्मा को कम करने के लिए अधिक महत्वपूर्ण है। इस प्रकार वाइंडिंग्स में अत्यधिक ऊष्मा विफलता का सामान्य कारण है। तांबे की बढ़ती निवेश के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है। | ||
इस प्रकार तांबे की तुलना में उत्तम पदार्थ, इसकी उच्च निवेश को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। इस प्रकार चांदी का उपयोग विरल स्थितियों में किया गया है। द्वितीय विश्व युद्ध के समय मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया गया था। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।<ref>{{cite journal | इस प्रकार तांबे की तुलना में उत्तम पदार्थ, इसकी उच्च निवेश को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। इस प्रकार चांदी का उपयोग विरल स्थितियों में किया गया है। इस प्रकार द्वितीय विश्व युद्ध के समय मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया गया था। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।<ref>{{cite journal | ||
|title = The Silver Lining of the Calutrons | |title = The Silver Lining of the Calutrons | ||
|year = 2002 | |year = 2002 |
Revision as of 06:09, 23 November 2023
फील्ड कॉइल इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, सामान्यतः विद्युत मोटर या विद्युत जनरेटर जैसी घूर्णन विद्युत मशीन का तार होता है जिसके माध्यम से धारा प्रवाहित होता है।
इस प्रकार घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; स्टेटर जो स्थिर होता है, और रोटर (इलेक्ट्रिक), जो इसके अन्दर घूमता है। इस प्रकार चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से निरंतर लूप या चुंबकीय परिपथ में निकलती हैं और पुनः से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं।
इस प्रकार चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से निकलती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर पोल के साथ फील्ड कॉइल का उपयोग किया जाता है।
चूंकि फील्ड कॉइल सामान्यतः घूमने वाली मशीनों में पाए जाते हैं, उनका उपयोग भी किया जाता है, चूंकि सदैव ही शब्दावली के साथ, विभिन्न अन्य विद्युत चुम्बकीय मशीनों में नहीं उप्तोग किया जाता है। इनमें मास स्पेक्ट्रोमीटर और परमाणु चुंबकीय अनुनाद जैसे सम्मिश्र प्रयोगशाला उपकरणों के माध्यम से सरल विद्युत चुम्बक सम्मिलित हैं। इस प्रकार हल्के स्थायी चुम्बकों की सामान्य उपलब्धता से पहले कभी लाउडस्पीकरों में फील्ड कॉइल का व्यापक रूप से उपयोग किया जाता था (अधिक के लिए फील्ड कॉइल लाउडस्पीकर देखें)।
फिक्स्ड और रोटेटिंग फील्ड्स
अधिकांश डायरेक्ट धारा फील्ड कॉइल स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। इस प्रकार अधिकांश तीन चरण विद्युत विद्युत् तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के भाग के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। इस प्रकार सिंगल-फेज अल्टरनेटिंग धारा मोटर्स इनमें से किसी भी क्रम का अनुसरण कर सकती हैं: छोटी मोटरें सामान्यतः यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, किन्तु एसी से चलती हैं। बड़े एसी मोटर्स सामान्यतः इंडक्शन मोटर्स होते हैं, इस प्रकार यह तीन- सिंगल-फेज होंते है।
स्टेटर और रोटर्स
इस प्रकार अनेक रोटरी इलेक्ट्रिकल मशीनों को सामान्यतः स्लाइडिंग संपर्कों के माध्यम से: कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। यह संपर्क अधिकांशतः ऐसी मशीन का सबसे सम्मिश्र और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम धारा वाले वाइंडिंग्स को सामान्यतः रोटर पर रखा जाता है और स्टेटर पर उच्चतम धारा वाले पर रखा जाता है।
इस प्रकार फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक निवेश प्रभावी है।
ब्रश डीसी मोटर में क्षेत्र स्थिर होता है किन्तु आर्मेचर धारा को कम्यूटेट किया जाना चाहिए, जिससे निरंतर घूमता रहता है। यह कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है।
इस प्रकार जनरेटर के लिए, फील्ड धारा आउटपुट धारा से छोटा होता है। तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करेंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट धारा लिया जाता है। डीसी जनरेटर में, जो अब सामान्यतः रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का कारण है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और सम्मिश्र ब्रशगियर की आवश्यकता हो सकती है।
द्विध्रुवी और बहुध्रुवीय क्षेत्र
इस प्रकार जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एकल द्विध्रुवी विद्युत मोटर क्षेत्र से पश्चात के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया था।
इस प्रकार 1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे किन्तु पश्चात के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा परिवर्तित कर दिया गया था। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।[1] इस प्रकार इन दो प्रमुख प्रकार के मध्य स्टोन परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर रिंग में दो फील्ड कॉइल व्यवस्थित थे।
यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से विद्युत् संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, डायरेक्ट धारा जनरेटर को तेजी से घूमना चाहिए, किन्तु निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है।
इस प्रकार ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, रिंग को मूल दो-ध्रुव जनरेटर की तुलना में क्रांति में बल की अधिक चुंबकीय रेखाओं में कमी करने के लिए बनाया जा सकता है। परिणाम स्वरुप, चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी।यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है।
इस प्रकार बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें विद्युत्, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के लाभ हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।[1]
वाइंडिंग मैटेरिअल
इस प्रकार कॉइल सामान्यतः चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई विद्युत् को कम करने के लिए वाइंडिंग मैटेरिअल में कम प्रतिरोध होना चाहिए, किन्तु ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट ऊष्मा को कम करने के लिए अधिक महत्वपूर्ण है। इस प्रकार वाइंडिंग्स में अत्यधिक ऊष्मा विफलता का सामान्य कारण है। तांबे की बढ़ती निवेश के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है।
इस प्रकार तांबे की तुलना में उत्तम पदार्थ, इसकी उच्च निवेश को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। इस प्रकार चांदी का उपयोग विरल स्थितियों में किया गया है। इस प्रकार द्वितीय विश्व युद्ध के समय मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया गया था। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।[2][3]
यह भी देखें
- उत्तेजना (चुंबकीय)
संदर्भ
- ↑ 1.0 1.1 Hawkins Electrical Guide, Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182
- ↑ "The Silver Lining of the Calutrons". ORNL Review. Oak Ridge National Lab. 2002. Archived from the original on 2008-12-06.
- ↑ Smith, D. Ray (2006). "Miller, key to obtaining 14,700 tons of silver Manhattan Project". Oak Ridger. Archived from the original on 2007-12-17.