संवेदी प्रवर्धक: Difference between revisions

From Vigyanwiki
(Created page with "आधुनिक कंप्यूटर मेमोरी में, सेंस एम्पलीफायर उन तत्वों में से एक है...")
 
(text)
Line 1: Line 1:
आधुनिक कंप्यूटर मेमोरी में, सेंस एम्पलीफायर उन तत्वों में से एक है जो [[ अर्धचालक [[स्मृति]] ]] चिप (एकीकृत सर्किट) पर सर्किटरी बनाते हैं; यह शब्द स्वयं चुंबकीय [[कोर मेमोरी]] के युग का है।<ref>[https://archive.org/stream/bitsavers_decpdp8pdpManualFeb66_21177111/F-87_PDP-8_Maintenance_Manual_Feb66#page/n117/mode/1up ''PDP-8 Maintenance Manual''], Digital Equipment Corporation, F-87, 2/66, 1966; pages 4-1 to 4-13.</ref> सेंस एम्पलीफायर रीड सर्किटरी का हिस्सा है जिसका उपयोग मेमोरी से डेटा पढ़ते समय किया जाता है; इसकी भूमिका एक बिटलाइन से कम पावर सिग्नल को समझना है जो [[कंप्यूटर डेटा भंडारण]] में संग्रहीत डेटा बाइनरी अंक (1 या 0) का प्रतिनिधित्व करता है, और छोटे वोल्टेज स्विंग को पहचानने योग्य [[तर्क स्तर]] तक बढ़ाता है ताकि डेटा को बाहर तर्क द्वारा ठीक से व्याख्या किया जा सके। यादाश्त।<ref>A Low-Power SRAM Using Bit-Line Charge-Recycling for Read and Write Operations [https://ieeexplore.ieee.org/document/5584956], IEEE Journal of Solid-State Circuits, 2010 IEEE</ref>
आधुनिक कंप्यूटर मेमोरी में, संवेदी प्रवर्धक उन तत्वों में है जो अर्धचालक [[स्मृति]] चिप (एकीकृत परिपथ) पर परिपथिकी बनाते हैं; यह शब्द स्वयं चुंबकीय [[कोर मेमोरी|क्रोड स्मृति]] के युग का है।<ref>[https://archive.org/stream/bitsavers_decpdp8pdpManualFeb66_21177111/F-87_PDP-8_Maintenance_Manual_Feb66#page/n117/mode/1up ''PDP-8 Maintenance Manual''], Digital Equipment Corporation, F-87, 2/66, 1966; pages 4-1 to 4-13.</ref> संवेदी प्रवर्धक अनूशीलन परिपथिकी का हिस्सा है जिसका उपयोग मेमोरी से डेटा पढ़ते समय किया जाता है; इसकी भूमिका एक ''बिटलाइन'' से कम पावर सिग्नल को समझना है जो [[कंप्यूटर डेटा भंडारण|मेमोरी सेल]] में संग्रहीत डेटा बिट (1 या 0) का प्रतिनिधित्व करती है, और छोटे वोल्टेज स्विंग को पहचानने योग्य [[तर्क स्तर]] तक बढ़ाती है ताकि डेटा को मेमोरी के बाहर तर्क द्वारा ठीक से व्याख्या किया जा सके। <ref>A Low-Power SRAM Using Bit-Line Charge-Recycling for Read and Write Operations [https://ieeexplore.ieee.org/document/5584956], IEEE Journal of Solid-State Circuits, 2010 IEEE</ref>
आधुनिक सेंस-एम्प्लीफायर सर्किट में दो से छह (आमतौर पर चार) [[ट्रांजिस्टर]] होते हैं, जबकि कोर मेमोरी के लिए शुरुआती सेंस एम्पलीफायरों में कभी-कभी 13 ट्रांजिस्टर होते हैं।<ref>[https://archive.org/stream/bitsavers_decpdp8pdpManualFeb66_21177111/F-87_PDP-8_Maintenance_Manual_Feb66#page/n242/mode/1up ''PDP-8 Maintenance Manual''], Digital Equipment Corporation, F-87, 2/66, 1966; page 10-9 drawing RS-B-G007.</ref> मेमोरी कोशिकाओं के प्रत्येक कॉलम के लिए एक सेंस एम्पलीफायर होता है, इसलिए आधुनिक मेमोरी चिप पर आमतौर पर सैकड़ों या हजारों समान सेंस एम्पलीफायर होते हैं। जैसे, सेंस एम्पलीफायर्स कंप्यूटर के मेमोरी सबसिस्टम में कुछ शेष [[एनालॉग सर्किट]]ों में से एक हैं।
 
आधुनिक संवेदी प्रवर्धक परिपथ में दो से छह (आमतौर पर चार) [[ट्रांजिस्टर]] होते हैं, जबकि क्रोड स्मृति के लिए प्रारंभिक संवेदी प्रवर्धक में कभी-कभी 13 ट्रांजिस्टर होते हैं।<ref>[https://archive.org/stream/bitsavers_decpdp8pdpManualFeb66_21177111/F-87_PDP-8_Maintenance_Manual_Feb66#page/n242/mode/1up ''PDP-8 Maintenance Manual''], Digital Equipment Corporation, F-87, 2/66, 1966; page 10-9 drawing RS-B-G007.</ref> मेमोरी सेल के प्रत्येक कॉलम के लिए संवेदी प्रवर्धक होता है, इसलिए आधुनिक मेमोरी चिप पर आमतौर पर सैकड़ों या हजारों समान संवेदी प्रवर्धक होते हैं। जैसे, संवेदी प्रवर्धक कंप्यूटर के मेमोरी उपप्रणाली में बचे कुछ [[एनालॉग सर्किट|अनुरूप परिपथ]] में से एक हैं।


== मूल संरचना ==
== मूल संरचना ==
[[File:Sense Amp position.jpg|thumb|170px|right|चित्र 1(ए)]]संबंधित मेमोरी से डेटा रीड और रिफ्रेश ऑपरेशन के दौरान सेंस एम्पलीफायर की आवश्यकता होती है।
[[File:Sense Amp position.jpg|thumb|170px|right|चित्र 1(ए)]]संबंधित मेमोरी से डेटा अनूशीलन और रिफ्रेश ऑपरेशन के दौरान संवेदी प्रवर्धक की आवश्यकता होती है।


{| class="wikitable"
{| class="wikitable"
Line 16: Line 17:


== मेमोरी चिप ऑपरेशन ==
== मेमोरी चिप ऑपरेशन ==
सेमीकंडक्टर मेमोरी चिप में डेटा को छोटे सर्किट में संग्रहीत किया जाता है जिसे कंप्यूटर डेटा स्टोरेज कहा जाता है। सेंस एम्प्लिफ़ायर मुख्य रूप से [[ अस्थिरमति ]] सेल्स में लगाए जाते हैं। मेमोरी सेल या तो [[ स्थैतिक रैंडम-एक्सेस मेमोरी ]] या [[गतिशील रैंडम-एक्सेस मेमोरी]] सेल होते हैं जो चिप पर पंक्तियों और स्तंभों में रखे जाते हैं। प्रत्येक पंक्ति पंक्ति के प्रत्येक कक्ष से जुड़ी होती है। पंक्तियों के साथ चलने वाली रेखाओं को वर्डलाइन कहा जाता है जिन पर वोल्टेज डालकर सक्रिय किया जाता है। स्तंभों के साथ चलने वाली रेखाओं को बिट-लाइन कहा जाता है और ऐसी दो पूरक बिटलाइनें सरणी के किनारे पर एक सेंस एम्पलीफायर से जुड़ी होती हैं। सेंस एम्पलीफायरों की संख्या चिप पर बिटलाइन की संख्या के बराबर होती है। प्रत्येक कोशिका एक विशेष वर्डलाइन और बिटलाइन के चौराहे पर स्थित होती है, जिसका उपयोग इसे संबोधित करने के लिए किया जा सकता है। कोशिकाओं में डेटा उन्हीं बिट-लाइनों द्वारा पढ़ा या लिखा जाता है जो पंक्तियों और स्तंभों के शीर्ष पर चलती हैं।<ref>Characterization of SRAM sense amplifier input offset for yield prediction in 28nm CMOS [https://ieeexplore.ieee.org/document/6055315], Custom Integrated Circuits Conference (CICC), 2011 IEEE</ref>
सेमीकंडक्टर मेमोरी चिप में डेटा को छोटे परिपथ में संग्रहीत किया जाता है जिसे कंप्यूटर डेटा स्टोरेज कहा जाता है। सेंस एम्प्लिफ़ायर मुख्य रूप से [[ अस्थिरमति ]] सेल्स में लगाए जाते हैं। मेमोरी सेल या तो [[ स्थैतिक रैंडम-एक्सेस मेमोरी ]] या [[गतिशील रैंडम-एक्सेस मेमोरी]] सेल होते हैं जो चिप पर पंक्तियों और स्तंभों में रखे जाते हैं। प्रत्येक पंक्ति पंक्ति के प्रत्येक कक्ष से जुड़ी होती है। पंक्तियों के साथ चलने वाली रेखाओं को वर्डलाइन कहा जाता है जिन पर वोल्टेज डालकर सक्रिय किया जाता है। स्तंभों के साथ चलने वाली रेखाओं को बिट-लाइन कहा जाता है और ऐसी दो पूरक बिटलाइनें सरणी के किनारे पर एक संवेदी प्रवर्धक से जुड़ी होती हैं। संवेदी प्रवर्धक की संख्या चिप पर बिटलाइन की संख्या के बराबर होती है। प्रत्येक कोशिका एक विशेष वर्डलाइन और बिटलाइन के चौराहे पर स्थित होती है, जिसका उपयोग इसे संबोधित करने के लिए किया जा सकता है। सेलमें डेटा उन्हीं बिट-लाइनों द्वारा पढ़ा या लिखा जाता है जो पंक्तियों और स्तंभों के शीर्ष पर चलती हैं।<ref>Characterization of SRAM sense amplifier input offset for yield prediction in 28nm CMOS [https://ieeexplore.ieee.org/document/6055315], Custom Integrated Circuits Conference (CICC), 2011 IEEE</ref>




=== SRAM ऑपरेशन ===
=== SRAM ऑपरेशन ===
किसी विशेष मेमोरी सेल से कुछ पढ़ने के लिए, सेल की पंक्ति के साथ वर्डलाइन को चालू किया जाता है, जिससे पंक्ति के सभी सेल सक्रिय हो जाते हैं। सेल से संग्रहीत मान (लॉजिक 0 या 1) फिर उससे जुड़ी बिट-लाइनों पर आता है। दो पूरक बिट-लाइनों के अंत में सेंस एम्पलीफायर छोटे वोल्टेज को सामान्य तर्क स्तर तक बढ़ाता है। फिर वांछित सेल से बिट को सेल के सेंस एम्पलीफायर से एक बफर में ले जाया जाता है, और आउटपुट बस पर डाल दिया जाता है।<ref>Sense Amplifier for SRAM.[https://web.archive.org/web/20110124033153/http://soc.cs.nchu.edu.tw/upload_data/Sense%20Amplifier%20for%20SRAM.pdf], Prof: Der-Chen Huang, National Chung Hsing University</ref>
किसी विशेष मेमोरी सेल से कुछ पढ़ने के लिए, सेल की पंक्ति के साथ वर्डलाइन को चालू किया जाता है, जिससे पंक्ति के सभी सेल सक्रिय हो जाते हैं। सेल से संग्रहीत मान (लॉजिक 0 या 1) फिर उससे जुड़ी बिट-लाइनों पर आता है। दो पूरक बिट-लाइनों के अंत में संवेदी प्रवर्धक छोटे वोल्टेज को सामान्य तर्क स्तर तक बढ़ाता है। फिर वांछित सेल से बिट को सेल के संवेदी प्रवर्धक से एक बफर में ले जाया जाता है, और आउटपुट बस पर डाल दिया जाता है।<ref>Sense Amplifier for SRAM.[https://web.archive.org/web/20110124033153/http://soc.cs.nchu.edu.tw/upload_data/Sense%20Amplifier%20for%20SRAM.pdf], Prof: Der-Chen Huang, National Chung Hsing University</ref>




=== DRAM ऑपरेशन ===
=== DRAM ऑपरेशन ===
[[गतिशील रैंडम एक्सेस मेमोरी]] में सेंस एम्पलीफायर ऑपरेशन काफी हद तक SRAM के समान है, लेकिन यह एक अतिरिक्त कार्य करता है। DRAM चिप्स में डेटा को मेमोरी कोशिकाओं में छोटे [[ संधारित्र ]] में [[ बिजली का आवेश ]] के रूप में संग्रहीत किया जाता है। रीड ऑपरेशन सेल में चार्ज को कम कर देता है, डेटा को नष्ट कर देता है, इसलिए डेटा को पढ़ने के बाद सेंस एम्पलीफायर को कैपेसिटर को रिचार्ज करके, उस पर वोल्टेज लागू करके तुरंत इसे सेल में वापस लिखना होगा। इसे [[ स्मृति ताज़ा ]] कहा जाता है।
[[गतिशील रैंडम एक्सेस मेमोरी]] में संवेदी प्रवर्धक ऑपरेशन काफी हद तक SRAM के समान है, लेकिन यह एक अतिरिक्त कार्य करता है। DRAM चिप्स में डेटा को मेमोरी सेलमें छोटे [[ संधारित्र ]] में [[ बिजली का आवेश ]] के रूप में संग्रहीत किया जाता है। अनूशीलन ऑपरेशन सेल में चार्ज को कम कर देता है, डेटा को नष्ट कर देता है, इसलिए डेटा को पढ़ने के बाद संवेदी प्रवर्धक को कैपेसिटर को रिचार्ज करके, उस पर वोल्टेज लागू करके तुरंत इसे सेल में वापस लिखना होगा। इसे [[ स्मृति ताज़ा ]] कहा जाता है।


=== डिज़ाइन उद्देश्य ===
=== डिज़ाइन उद्देश्य ===
उनके डिज़ाइन के हिस्से के रूप में, सेंस एम्पलीफायरों का लक्ष्य न्यूनतम सेंस विलंब, आवश्यक स्तर का प्रवर्धन, न्यूनतम बिजली की खपत, प्रतिबंधित लेआउट क्षेत्रों में फिट होना और उच्च विश्वसनीयता और सहनशीलता है।
उनके डिज़ाइन के हिस्से के रूप में, संवेदी प्रवर्धक का लक्ष्य न्यूनतम सेंस विलंब, आवश्यक स्तर का प्रवर्धन, न्यूनतम बिजली की खपत, प्रतिबंधित लेआउट क्षेत्रों में फिट होना और उच्च विश्वसनीयता और सहनशीलता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 11:59, 8 October 2023

आधुनिक कंप्यूटर मेमोरी में, संवेदी प्रवर्धक उन तत्वों में है जो अर्धचालक स्मृति चिप (एकीकृत परिपथ) पर परिपथिकी बनाते हैं; यह शब्द स्वयं चुंबकीय क्रोड स्मृति के युग का है।[1] संवेदी प्रवर्धक अनूशीलन परिपथिकी का हिस्सा है जिसका उपयोग मेमोरी से डेटा पढ़ते समय किया जाता है; इसकी भूमिका एक बिटलाइन से कम पावर सिग्नल को समझना है जो मेमोरी सेल में संग्रहीत डेटा बिट (1 या 0) का प्रतिनिधित्व करती है, और छोटे वोल्टेज स्विंग को पहचानने योग्य तर्क स्तर तक बढ़ाती है ताकि डेटा को मेमोरी के बाहर तर्क द्वारा ठीक से व्याख्या किया जा सके। [2]

आधुनिक संवेदी प्रवर्धक परिपथ में दो से छह (आमतौर पर चार) ट्रांजिस्टर होते हैं, जबकि क्रोड स्मृति के लिए प्रारंभिक संवेदी प्रवर्धक में कभी-कभी 13 ट्रांजिस्टर होते हैं।[3] मेमोरी सेल के प्रत्येक कॉलम के लिए संवेदी प्रवर्धक होता है, इसलिए आधुनिक मेमोरी चिप पर आमतौर पर सैकड़ों या हजारों समान संवेदी प्रवर्धक होते हैं। जैसे, संवेदी प्रवर्धक कंप्यूटर के मेमोरी उपप्रणाली में बचे कुछ अनुरूप परिपथ में से एक हैं।

मूल संरचना

चित्र 1(ए)

संबंधित मेमोरी से डेटा अनूशीलन और रिफ्रेश ऑपरेशन के दौरान संवेदी प्रवर्धक की आवश्यकता होती है।

Classification
Circuit Types Operation Mode
Differential Voltage-mode
Nondifferential Current-mode


मेमोरी चिप ऑपरेशन

सेमीकंडक्टर मेमोरी चिप में डेटा को छोटे परिपथ में संग्रहीत किया जाता है जिसे कंप्यूटर डेटा स्टोरेज कहा जाता है। सेंस एम्प्लिफ़ायर मुख्य रूप से अस्थिरमति सेल्स में लगाए जाते हैं। मेमोरी सेल या तो स्थैतिक रैंडम-एक्सेस मेमोरी या गतिशील रैंडम-एक्सेस मेमोरी सेल होते हैं जो चिप पर पंक्तियों और स्तंभों में रखे जाते हैं। प्रत्येक पंक्ति पंक्ति के प्रत्येक कक्ष से जुड़ी होती है। पंक्तियों के साथ चलने वाली रेखाओं को वर्डलाइन कहा जाता है जिन पर वोल्टेज डालकर सक्रिय किया जाता है। स्तंभों के साथ चलने वाली रेखाओं को बिट-लाइन कहा जाता है और ऐसी दो पूरक बिटलाइनें सरणी के किनारे पर एक संवेदी प्रवर्धक से जुड़ी होती हैं। संवेदी प्रवर्धक की संख्या चिप पर बिटलाइन की संख्या के बराबर होती है। प्रत्येक कोशिका एक विशेष वर्डलाइन और बिटलाइन के चौराहे पर स्थित होती है, जिसका उपयोग इसे संबोधित करने के लिए किया जा सकता है। सेलमें डेटा उन्हीं बिट-लाइनों द्वारा पढ़ा या लिखा जाता है जो पंक्तियों और स्तंभों के शीर्ष पर चलती हैं।[4]


SRAM ऑपरेशन

किसी विशेष मेमोरी सेल से कुछ पढ़ने के लिए, सेल की पंक्ति के साथ वर्डलाइन को चालू किया जाता है, जिससे पंक्ति के सभी सेल सक्रिय हो जाते हैं। सेल से संग्रहीत मान (लॉजिक 0 या 1) फिर उससे जुड़ी बिट-लाइनों पर आता है। दो पूरक बिट-लाइनों के अंत में संवेदी प्रवर्धक छोटे वोल्टेज को सामान्य तर्क स्तर तक बढ़ाता है। फिर वांछित सेल से बिट को सेल के संवेदी प्रवर्धक से एक बफर में ले जाया जाता है, और आउटपुट बस पर डाल दिया जाता है।[5]


DRAM ऑपरेशन

गतिशील रैंडम एक्सेस मेमोरी में संवेदी प्रवर्धक ऑपरेशन काफी हद तक SRAM के समान है, लेकिन यह एक अतिरिक्त कार्य करता है। DRAM चिप्स में डेटा को मेमोरी सेलमें छोटे संधारित्र में बिजली का आवेश के रूप में संग्रहीत किया जाता है। अनूशीलन ऑपरेशन सेल में चार्ज को कम कर देता है, डेटा को नष्ट कर देता है, इसलिए डेटा को पढ़ने के बाद संवेदी प्रवर्धक को कैपेसिटर को रिचार्ज करके, उस पर वोल्टेज लागू करके तुरंत इसे सेल में वापस लिखना होगा। इसे स्मृति ताज़ा कहा जाता है।

डिज़ाइन उद्देश्य

उनके डिज़ाइन के हिस्से के रूप में, संवेदी प्रवर्धक का लक्ष्य न्यूनतम सेंस विलंब, आवश्यक स्तर का प्रवर्धन, न्यूनतम बिजली की खपत, प्रतिबंधित लेआउट क्षेत्रों में फिट होना और उच्च विश्वसनीयता और सहनशीलता है।

यह भी देखें

  • विभेदक प्रवर्धक
  • शंट (इलेक्ट्रिकल)#सुरक्षित_हाई-साइड_करंट_शंट_माप|शंट (इलेक्ट्रिकल)

संदर्भ

  1. PDP-8 Maintenance Manual, Digital Equipment Corporation, F-87, 2/66, 1966; pages 4-1 to 4-13.
  2. A Low-Power SRAM Using Bit-Line Charge-Recycling for Read and Write Operations [1], IEEE Journal of Solid-State Circuits, 2010 IEEE
  3. PDP-8 Maintenance Manual, Digital Equipment Corporation, F-87, 2/66, 1966; page 10-9 drawing RS-B-G007.
  4. Characterization of SRAM sense amplifier input offset for yield prediction in 28nm CMOS [2], Custom Integrated Circuits Conference (CICC), 2011 IEEE
  5. Sense Amplifier for SRAM.[3], Prof: Der-Chen Huang, National Chung Hsing University


बाहरी संबंध