सहसंयोजक मौलिक क्षेत्र सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[गणितीय भौतिकी]] में, सहसंयोजक [[शास्त्रीय क्षेत्र सिद्धांत|मौलिक क्षेत्र सिद्धांत]] [[फाइबर बंडल|फाइबर बंडलों]] के खंड (फाइबर बंडल) द्वारा मौलिक क्षेत्र सिद्धांतों का प्रतिनिधित्व करता है, और उनकी गतिशीलता को [[क्षेत्र (भौतिकी)]] के एक [[परिमित-आयामी]] स्थान के संदर्भ में व्यक्त किया जाता है। वर्तमान में यह तो सर्वविदित है [[जेट बंडल]] और [[वैरिएबल बाइकॉम्प्लेक्स]] ऐसे विवरण के लिए सही डोमेन हैं। इस प्रकार से सहसंयोजक मौलिक क्षेत्र सिद्धांत का हैमिल्टनियन संस्करण [[सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत]] है जहां संवेग सभी विश्व निर्देशांक के संबंध में क्षेत्र वेरिएबल के व्युत्पन्न के अनुरूप है। [[गैर-स्वायत्त यांत्रिकी]] को समय अक्ष ℝ पर [[फाइबर बंडल|फाइबर बंडलों]] पर सहसंयोजक मौलिक क्षेत्र सिद्धांत के रूप में तैयार किया गया है।
[[गणितीय भौतिकी]] में, '''सहसंयोजक [[शास्त्रीय क्षेत्र सिद्धांत|मौलिक क्षेत्र सिद्धांत]]''' [[फाइबर बंडल|फाइबर बंडलों]] के खंड (फाइबर बंडल) द्वारा मौलिक क्षेत्र सिद्धांतों का प्रतिनिधित्व करता है, और उनकी गतिशीलता को [[क्षेत्र (भौतिकी)]] के एक [[परिमित-आयामी]] स्थान के संदर्भ में व्यक्त किया जाता है। वर्तमान में यह तो सर्वविदित है [[जेट बंडल]] और [[वैरिएबल बाइकॉम्प्लेक्स]] ऐसे विवरण के लिए सही डोमेन हैं। इस प्रकार से सहसंयोजक मौलिक क्षेत्र सिद्धांत का हैमिल्टनियन संस्करण [[सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत]] है जहां संवेग सभी विश्व निर्देशांक के संबंध में क्षेत्र वेरिएबल के व्युत्पन्न के अनुरूप है। [[गैर-स्वायत्त यांत्रिकी]] को समय अक्ष ℝ पर [[फाइबर बंडल|फाइबर बंडलों]] पर सहसंयोजक मौलिक क्षेत्र सिद्धांत के रूप में तैयार किया गया है।


== उदाहरण ==
== उदाहरण ==
Line 30: Line 30:
==== स्पेसटाइम पर संरचनाएं ====
==== स्पेसटाइम पर संरचनाएं ====
स्पेसटाइम अधिकांशतः अतिरिक्त संरचना के साथ आता है। इस प्रकार उदाहरण हैं
स्पेसटाइम अधिकांशतः अतिरिक्त संरचना के साथ आता है। इस प्रकार उदाहरण हैं
* मीट्रिक: एक (छद्म-)[[रीमैनियन मीट्रिक]] <math>\mathbf{g}</math> पर <math>M</math>.
* मीट्रिक: एक (छद्म-) [[रीमैनियन मीट्रिक]] <math>\mathbf{g}</math> पर <math>M</math>.
* अनुरूप तुल्यता तक मीट्रिक
* अनुरूप तुल्यता तक मीट्रिक
साथ ही एक अभिविन्यास की आवश्यक संरचना, सभी विविधताओं <math>M</math> में एकीकरण की धारणा के लिए आवश्यक है.
साथ ही एक अभिविन्यास की आवश्यक संरचना, सभी विविधताओं <math>M</math> में एकीकरण की धारणा के लिए आवश्यक है.
Line 51: Line 51:
<math>\mathcal{A}</math> नामित एक प्रमुख संबंध 'प्रक्षेपण' और 'सही-समतुल्यता' की 11 संतोषजनक तकनीकी स्थितियों पर एक <math>\mathfrak{g}</math>-प्रक्षेपण मान वाला 1-फॉर्म है: प्रमुख संबंध आलेख में पाए गए विवरण है।
<math>\mathcal{A}</math> नामित एक प्रमुख संबंध 'प्रक्षेपण' और 'सही-समतुल्यता' की 11 संतोषजनक तकनीकी स्थितियों पर एक <math>\mathfrak{g}</math>-प्रक्षेपण मान वाला 1-फॉर्म है: प्रमुख संबंध आलेख में पाए गए विवरण है।


एक तुच्छीकरण के अधीन इसे स्थानीय गेज क्षेत्र <math>A_\mu(x)</math> के रूप में लिखा जा सकता है ,a <math>\mathfrak{g}</math>-एक तुच्छीकरण पैच <math>U\subset M</math> पर मूल्यांकित 1-फ़ॉर्म है. यह '''संबंध''' का यह स्थानीय रूप है जिसे भौतिकी में [[गेज क्षेत्र]] के साथ पहचाना जाता है। जब बेस मैनिफ़ोल्ड <math>M</math> समतल हो  जाता है, ऐसे सरलीकरण हैं जो इस सूक्ष्मता को दूर करते हैं।
एक नगण्यीकरण के अधीन इसे स्थानीय गेज क्षेत्र <math>A_\mu(x)</math> के रूप में लिखा जा सकता है ,a <math>\mathfrak{g}</math>-एक नगण्यीकरण पैच <math>U\subset M</math> पर मूल्यांकित 1-फ़ॉर्म है. यह '''संबंध''' का यह स्थानीय रूप है जिसे भौतिकी में [[गेज क्षेत्र]] के साथ पहचाना जाता है। जब बेस मैनिफ़ोल्ड <math>M</math> समतल हो  जाता है, ऐसे सरलीकरण हैं जो इस सूक्ष्मता को दूर करते हैं।


=== [[संबद्ध वेक्टर बंडल|संबद्ध सदिश बंडल]] और पदार्थ सामग्री ===
=== [[संबद्ध वेक्टर बंडल|संबद्ध सदिश बंडल]] और पदार्थ सामग्री ===
'''एक संबद्ध सदिश बंडल''' <math>E\xrightarrow{\pi}M</math> मुख्य बंडल से संबद्ध <math>P</math> एक प्रतिनिधित्व के माध्यम से <math>\rho.</math>
एक संबंधित सदिश बंडल <math>E\xrightarrow{\pi}M</math> एक प्रतिनिधित्व <math>\rho.</math> के माध्यम से मुख्य बंडल <math>P</math> से जुड़ा हुआ है पूर्णता के लिए, एक प्रतिनिधित्व <math>(V,G,\rho)</math> दिया गया है <math>E</math> का फाइबर <math>V</math> है
 
सम्पूर्णता हेतु एक प्रतिवेदन दिया गया <math>(V,G,\rho)</math>, का फाइबर <math>E</math> है <math>V</math>.


एक क्षेत्र या मैटर क्षेत्र संबंधित सदिश बंडल का अनुभाग (फाइबर बंडल) है। इनका संग्रह, गेज क्षेत्र के साथ, सिद्धांत की विषय सामग्री है।
एक क्षेत्र या मैटर क्षेत्र संबंधित सदिश बंडल का अनुभाग (फाइबर बंडल) है। इनका संग्रह, गेज क्षेत्र के साथ, सिद्धांत की विषय सामग्री है।


=== लैग्रेंजियन ===
=== लैग्रेंजियन ===
एक लैग्रेंजियन <math>L</math>: एक फाइबर बंडल दिया गया <math>E'\xrightarrow{\pi}M</math>, लैग्रेंजियन एक फ़ंक्शन है <math>L:E'\rightarrow \mathbb{R}</math>.
एक लैग्रेंजियन <math>L</math>: एक फाइबर बंडल <math>E'\xrightarrow{\pi}M</math> दिया गया , लैग्रेंजियन एक फलन <math>L:E'\rightarrow \mathbb{R}</math> है .


मान लीजिए कि स्तिथि की सामग्री अनुभागों द्वारा दी गई है <math>E</math> फाइबर के साथ <math>V</math> उपर से। फिर उदाहरण के लिए, हम अधिक ठोस रूप से विचार कर सकते हैं <math>E'</math> बंडल बनने के लिए जहां फाइबर पर <math>p</math> है <math>V\otimes T_p^*M</math>. यह तब अनुमति देता है <math>L</math> किसी क्षेत्र की कार्यप्रणाली के रूप में देखा जाना।
मान लीजिए कि स्तिथि की सामग्री ऊपर से फाइबर <math>V</math> के साथ <math>E</math> के अनुभागों द्वारा दी गई है। फिर उदाहरण के लिए, अधिक ठोस रूप से हम <math>E'</math> को एक बंडल मान सकते हैं जहां <math>p</math> पर फाइबर <math>V\otimes T_p^*M</math> है। इसके बाद <math>L</math> को एक क्षेत्र के कार्यात्मक के रूप में देखा जा सकता है।


यह बड़ी संख्या में दिलचस्प सिद्धांतों के लिए गणितीय पूर्वापेक्षाएँ पूरी करता है, जिनमें ऊपर दिए गए उदाहरण अनुभाग में दिए गए सिद्धांत भी सम्मिलित हैं।
यह बड़ी संख्या में '''इंट्रेस्टिंग''' सिद्धांतों के लिए गणितीय पूर्वापेक्षाएँ पूरी करता है, जिनमें ऊपर दिए गए उदाहरण अनुभाग में दिए गए सिद्धांत भी सम्मिलित हैं।


== फ्लैट स्पेसटाइम पर सिद्धांत ==
== फ्लैट स्पेसटाइम पर सिद्धांत ==


जब आधार अनेक गुना हो जाता है <math>M</math> समतल है, यानी, (छद्म-यूक्लिडियन अंतरिक्ष-)यूक्लिडियन अंतरिक्ष, अनेक उपयोगी सरलीकरण हैं जो सिद्धांतों से निपटने के लिए वैचारिक रूप से कम कठिन बनाते हैं।
जब बेस मैनिफोल्ड<math>M</math> समतल हो जाता है , यानी, (छद्म-यूक्लिडियन स्पेस-), तब अनेक उपयोगी सरलीकरण हैं जो सिद्धांतों से निपटने के लिए वैचारिक रूप से कम कठिन बनाते हैं।


सरलीकरण इस अवलोकन से आता है कि फ्लैट स्पेसटाइम अनुबंध योग्य है: यह [[बीजगणितीय टोपोलॉजी]] में एक प्रमेय है कि फ्लैट पर कोई भी फाइबर बंडल <math>M</math> तुच्छ है.
सरलीकरण इस अवलोकन से आता है कि फ्लैट स्पेसटाइम अनुबंध योग्य है: यह [[बीजगणितीय टोपोलॉजी]] में एक प्रमेय है कि फ्लैट पर कोई भी फाइबर बंडल <math>M</math> नगण्य है.


विशेष रूप से, यह हमें वैश्विक तुच्छीकरण चुनने की अनुमति देता है <math>P</math>, और इसलिए वैश्विक स्तर पर गेज क्षेत्र के रूप में संबंध की पहचान करें <math>A_\mu.</math>
विशेष रूप से, यह हमें वैश्विक नगण्यीकरण <math>P</math> चुनने की अनुमति देता है , और इसलिए वैश्विक स्तर पर गेज क्षेत्र <math>A_\mu.</math> के रूप में संबंध की पहचान करते है।


इसके अलावा, तुच्छ संबंध भी है <math>A_{0,\mu}</math> जो हमें संबंधित सदिश बंडलों की पहचान करने की अनुमति देता है <math>E = M\times V</math>, और फिर हमें क्षेत्र को अनुभागों के रूप में नहीं बल्कि केवल फ़ंक्शन के रूप में देखने की आवश्यकता है <math>M\rightarrow V</math>. दूसरे शब्दों में, विभिन्न बिंदुओं पर सदिश बंडल तुलनीय हैं। इसके अलावा, फ्लैट स्पेसटाइम के लिए [[लेवी-सिविटा कनेक्शन|लेवी-सिविटा संबंध]] [[ फ़्रेम बंडल |फ़्रेम बंडल]] पर तुच्छ संबंध है।
इसके अतिरिक्त, नगण्य संबंध <math>A_{0,\mu}</math> भी है  जो हमें संबंधित सदिश बंडलों <math>E = M\times V</math> की पहचान करने की अनुमति देता है , और फिर हमें क्षेत्र को अनुभागों के रूप में नहीं बल्कि केवल फलन <math>M\rightarrow V</math> के रूप में देखने की आवश्यकता है . दूसरे शब्दों में, विभिन्न बिंदुओं पर सदिश बंडल तुलनीय हैं। इसके अतिरिक्त, फ्लैट स्पेसटाइम के लिए [[लेवी-सिविटा कनेक्शन|लेवी-सिविटा संबंध]] [[ फ़्रेम बंडल |फ़्रेम बंडल]] पर नगण्य संबंध है।


फिर टेंसर या स्पिन-टेंसर क्षेत्र पर स्पेसटाइम सहसंयोजक व्युत्पन्न केवल फ्लैट निर्देशांक में आंशिक व्युत्पन्न है। हालाँकि गेज सहसंयोजक व्युत्पन्न को एक गैर-तुच्छ संबंध की आवश्यकता हो सकती है <math>A_\mu</math> जिसे सिद्धांत का गेज क्षेत्र माना जाता है।
पुनः टेंसर या स्पिन-टेंसर क्षेत्र पर स्पेसटाइम सहसंयोजक व्युत्पन्न केवल फ्लैट निर्देशांक में आंशिक व्युत्पन्न है। चूंकि गेज सहसंयोजक व्युत्पन्न को एक गैर-नगण्य संबंध <math>A_\mu</math> की आवश्यकता हो सकती है  जिसे सिद्धांत का गेज क्षेत्र माना जाता है।


=== भौतिक मॉडल के रूप में सटीकता ===
=== भौतिक मॉडल के रूप में स्पष्टतः ===


कमजोर गुरुत्वाकर्षण वक्रता में, समतल स्पेसटाइम अधिकांशतः कमजोर घुमावदार स्पेसटाइम के लिए एक अच्छे सन्निकटन के रूप में कार्य करता है। प्रयोग के लिए यह सन्निकटन अच्छा है. मानक मॉडल को फ्लैट स्पेसटाइम पर परिभाषित किया गया है, और इसने आज तक भौतिकी के सबसे सटीक सटीक परीक्षण तैयार किए हैं।
निर्बल गुरुत्वाकर्षण वक्रता में, समतल स्पेसटाइम अधिकांशतः निर्बल वक्र स्पेसटाइम के लिए एक उचित सन्निकटन के रूप में कार्य करता है। इस प्रकार से प्रयोग के लिए यह सन्निकटन उचित है. किन्तु मानक मॉडल को फ्लैट स्पेसटाइम पर परिभाषित किया गया है, और इसने वर्तमान तक भौतिकी के अधिक स्पष्ट परीक्षण तैयार किए हैं।


==यह भी देखें==
==यह भी देखें==
*मौलिक क्षेत्र सिद्धांत
*मौलिक क्षेत्र सिद्धांत
*[[बाहरी बीजगणित]]
*[[बाहरी बीजगणित|बाह्य बीजगणित]]
*[[लैग्रेंजियन प्रणाली]]
*[[लैग्रेंजियन प्रणाली]]
*वैरिएशनल बाइकॉम्प्लेक्स
*वैरिएशनल बाइकॉम्प्लेक्स

Revision as of 07:45, 29 November 2023

गणितीय भौतिकी में, सहसंयोजक मौलिक क्षेत्र सिद्धांत फाइबर बंडलों के खंड (फाइबर बंडल) द्वारा मौलिक क्षेत्र सिद्धांतों का प्रतिनिधित्व करता है, और उनकी गतिशीलता को क्षेत्र (भौतिकी) के एक परिमित-आयामी स्थान के संदर्भ में व्यक्त किया जाता है। वर्तमान में यह तो सर्वविदित है जेट बंडल और वैरिएबल बाइकॉम्प्लेक्स ऐसे विवरण के लिए सही डोमेन हैं। इस प्रकार से सहसंयोजक मौलिक क्षेत्र सिद्धांत का हैमिल्टनियन संस्करण सहसंयोजक हैमिल्टनियन क्षेत्र सिद्धांत है जहां संवेग सभी विश्व निर्देशांक के संबंध में क्षेत्र वेरिएबल के व्युत्पन्न के अनुरूप है। गैर-स्वायत्त यांत्रिकी को समय अक्ष ℝ पर फाइबर बंडलों पर सहसंयोजक मौलिक क्षेत्र सिद्धांत के रूप में तैयार किया गया है।

उदाहरण

इस प्रकार से क्वांटम क्षेत्र सिद्धांत में रुचि रखने वाले मौलिक क्षेत्र सिद्धांतों के अनेक महत्वपूर्ण उदाहरण नीचे दिए गए हैं। विशेष रूप से, ये वे सिद्धांत हैं जो की कण भौतिकी के मानक मॉडल का निर्माण करते हैं। इन उदाहरणों का उपयोग मौलिक क्षेत्र सिद्धांत के सामान्य गणितीय सूत्रीकरण की चर्चा में किया जाएगा।

अयुग्मित सिद्धांत

युग्मित सिद्धांत

अपेक्षित गणितीय संरचनाएँ

इस प्रकार से मौलिक क्षेत्र सिद्धांत तैयार करने के लिए निम्नलिखित संरचनाओं की आवश्यकता होती है:

स्पेसटाइम

एक स्मूथ विविधता .

इसे विभिन्न रूप से वर्ल्ड मैनिफोल्ड (मीट्रिक जैसी अतिरिक्त संरचनाओं के बिना मैनिफोल्ड पर जोर देने के लिए), स्पेसटाइम (जब लोरेंत्ज़ियन मेट्रिक से सुसज्जित), या अधिक ज्यामितीय दृष्टिकोण के लिए बेस मैनिफोल्ड के रूप में जाना जाता है।

स्पेसटाइम पर संरचनाएं

स्पेसटाइम अधिकांशतः अतिरिक्त संरचना के साथ आता है। इस प्रकार उदाहरण हैं

साथ ही एक अभिविन्यास की आवश्यक संरचना, सभी विविधताओं में एकीकरण की धारणा के लिए आवश्यक है.

स्पेसटाइम की समरूपता

स्पेसटाइम समरूपता स्वीकार कर सकते हैं. उदाहरण के लिए, यदि यह मीट्रिक से सुसज्जित है तो ये किलिंग सदिश क्षेत्र द्वारा उत्पन्न की आइसोमेट्री हैं। समरूपताएँ एक समूह , स्पेसटाइम की ऑटोमोर्फिज्म बनाती हैं। इस स्तिथि में सिद्धांत के क्षेत्रों को के प्रतिनिधित्व में परिवर्तित होना चाहिए.

इस प्रकार से उदाहरण के लिए, मिन्कोव्स्की अंतरिक्ष के लिए, समरूपताएं पोंकारे समूह हैं.

गेज, प्रमुख बंडल और संबंध

एक लाई समूह स्वतंत्रता की आंतरिक डिग्री की (निरंतर) समरूपता का वर्णन करना है। लाई समूह-लाई बीजगणित पत्राचार के माध्यम से संबंधित लाई बीजगणित को द्वारा दर्शाया गया है. इसे गेज समूह के रूप में जाना जाता है।

एक प्रमुख सजातीय स्थान -बंडल , अन्यथा -टोरसोर के रूप में जाना जाता है। इसे कभी-कभी इस प्रकार लिखा जाता है

जहाँ , पर विहित प्रक्षेपण मानचित्र है और आधार अनेक गुना है.

संबंध और गेज क्षेत्र

यहां हम संबंध को एक प्रमुख संबंध के रूप में देखते हैं। क्षेत्र सिद्धांत में इस संबंध को सहसंयोजक व्युत्पन्न के रूप में भी देखा जाता है जिनकी विभिन्न क्षेत्रों पर क्रिया बाद में परिभाषित की गई है।

नामित एक प्रमुख संबंध 'प्रक्षेपण' और 'सही-समतुल्यता' की 11 संतोषजनक तकनीकी स्थितियों पर एक -प्रक्षेपण मान वाला 1-फॉर्म है: प्रमुख संबंध आलेख में पाए गए विवरण है।

एक नगण्यीकरण के अधीन इसे स्थानीय गेज क्षेत्र के रूप में लिखा जा सकता है ,a -एक नगण्यीकरण पैच पर मूल्यांकित 1-फ़ॉर्म है. यह संबंध का यह स्थानीय रूप है जिसे भौतिकी में गेज क्षेत्र के साथ पहचाना जाता है। जब बेस मैनिफ़ोल्ड समतल हो जाता है, ऐसे सरलीकरण हैं जो इस सूक्ष्मता को दूर करते हैं।

संबद्ध सदिश बंडल और पदार्थ सामग्री

एक संबंधित सदिश बंडल एक प्रतिनिधित्व के माध्यम से मुख्य बंडल से जुड़ा हुआ है पूर्णता के लिए, एक प्रतिनिधित्व दिया गया है का फाइबर है

एक क्षेत्र या मैटर क्षेत्र संबंधित सदिश बंडल का अनुभाग (फाइबर बंडल) है। इनका संग्रह, गेज क्षेत्र के साथ, सिद्धांत की विषय सामग्री है।

लैग्रेंजियन

एक लैग्रेंजियन : एक फाइबर बंडल दिया गया , लैग्रेंजियन एक फलन है .

मान लीजिए कि स्तिथि की सामग्री ऊपर से फाइबर के साथ के अनुभागों द्वारा दी गई है। फिर उदाहरण के लिए, अधिक ठोस रूप से हम को एक बंडल मान सकते हैं जहां पर फाइबर है। इसके बाद को एक क्षेत्र के कार्यात्मक के रूप में देखा जा सकता है।

यह बड़ी संख्या में इंट्रेस्टिंग सिद्धांतों के लिए गणितीय पूर्वापेक्षाएँ पूरी करता है, जिनमें ऊपर दिए गए उदाहरण अनुभाग में दिए गए सिद्धांत भी सम्मिलित हैं।

फ्लैट स्पेसटाइम पर सिद्धांत

जब बेस मैनिफोल्ड समतल हो जाता है , यानी, (छद्म-यूक्लिडियन स्पेस-), तब अनेक उपयोगी सरलीकरण हैं जो सिद्धांतों से निपटने के लिए वैचारिक रूप से कम कठिन बनाते हैं।

सरलीकरण इस अवलोकन से आता है कि फ्लैट स्पेसटाइम अनुबंध योग्य है: यह बीजगणितीय टोपोलॉजी में एक प्रमेय है कि फ्लैट पर कोई भी फाइबर बंडल नगण्य है.

विशेष रूप से, यह हमें वैश्विक नगण्यीकरण चुनने की अनुमति देता है , और इसलिए वैश्विक स्तर पर गेज क्षेत्र के रूप में संबंध की पहचान करते है।

इसके अतिरिक्त, नगण्य संबंध भी है जो हमें संबंधित सदिश बंडलों की पहचान करने की अनुमति देता है , और फिर हमें क्षेत्र को अनुभागों के रूप में नहीं बल्कि केवल फलन के रूप में देखने की आवश्यकता है . दूसरे शब्दों में, विभिन्न बिंदुओं पर सदिश बंडल तुलनीय हैं। इसके अतिरिक्त, फ्लैट स्पेसटाइम के लिए लेवी-सिविटा संबंध फ़्रेम बंडल पर नगण्य संबंध है।

पुनः टेंसर या स्पिन-टेंसर क्षेत्र पर स्पेसटाइम सहसंयोजक व्युत्पन्न केवल फ्लैट निर्देशांक में आंशिक व्युत्पन्न है। चूंकि गेज सहसंयोजक व्युत्पन्न को एक गैर-नगण्य संबंध की आवश्यकता हो सकती है जिसे सिद्धांत का गेज क्षेत्र माना जाता है।

भौतिक मॉडल के रूप में स्पष्टतः

निर्बल गुरुत्वाकर्षण वक्रता में, समतल स्पेसटाइम अधिकांशतः निर्बल वक्र स्पेसटाइम के लिए एक उचित सन्निकटन के रूप में कार्य करता है। इस प्रकार से प्रयोग के लिए यह सन्निकटन उचित है. किन्तु मानक मॉडल को फ्लैट स्पेसटाइम पर परिभाषित किया गया है, और इसने वर्तमान तक भौतिकी के अधिक स्पष्ट परीक्षण तैयार किए हैं।

यह भी देखें

संदर्भ

  • Saunders, D.J., "The Geometry of Jet Bundles", Cambridge University Press, 1989, ISBN 0-521-36948-7
  • Bocharov, A.V. [et al.] "Symmetries and conservation laws for differential equations of mathematical physics", Amer. Math. Soc., Providence, RI, 1999, ISBN 0-8218-0958-X
  • De Leon, M., Rodrigues, P.R., "Generalized Classical Mechanics and Field Theory", Elsevier Science Publishing, 1985, ISBN 0-444-87753-3
  • Griffiths, P.A., "Exterior Differential Systems and the Calculus of Variations", Boston: Birkhäuser, 1983, ISBN 3-7643-3103-8
  • Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery R., Momentum Maps and Classical Fields Part I: Covariant Field Theory, November 2003 arXiv:physics/9801019
  • Echeverria-Enriquez, A., Munoz-Lecanda, M.C., Roman-Roy, M., Geometry of Lagrangian First-order Classical Field Theories, May 1995 arXiv:dg-ga/9505004
  • Giachetta, G., Mangiarotti, L., Sardanashvily, G., "Advanced Classical Field Theory", World Scientific, 2009, ISBN 978-981-283-895-7 (arXiv:0811.0331)