हार्मोनिक निर्देशांक स्थिति: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
हार्मोनिक | हार्मोनिक निर्देशांक स्थिति [[सामान्य सापेक्षता]] में कई निर्देशांक स्थितियों में से एक है, जो [[आइंस्टीन क्षेत्र समीकरण]]ों को हल करना संभव बनाती है। एक निर्देशांक प्रणाली को हार्मोनिक निर्देशांक स्थिति को संतुष्ट करने के लिए कहा जाता है यदि प्रत्येक निर्देशांक कार्य ''x'' करता है<sup>α</sup> (अदिश क्षेत्र के रूप में माना जाता है) वेव समीकरण|डी'अलेम्बर्ट के समीकरण को संतुष्ट करता है। [[रीमैनियन ज्यामिति]] में एक [[हार्मोनिक समन्वय प्रणाली|हार्मोनिक निर्देशांक प्रणाली]] की समानांतर धारणा एक निर्देशांक प्रणाली है जिसके निर्देशांक कार्य लाप्लास के समीकरण को संतुष्ट करते हैं। चूंकि वेव समीकरण|डी'अलेम्बर्ट का समीकरण लाप्लास के समीकरण का स्पेस-टाइम के लिए सामान्यीकरण है, इसलिए इसके समाधानों को हार्मोनिक भी कहा जाता है। | ||
==प्रेरणा== | ==प्रेरणा== | ||
भौतिकी के नियमों को सामान्यतः अपरिवर्तनीय रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में, वास्तविक दुनिया को हमारी | भौतिकी के नियमों को सामान्यतः अपरिवर्तनीय रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में, वास्तविक दुनिया को हमारी निर्देशांक प्रणालियों की परवाह नहीं है। हालाँकि, समीकरणों को हल करने में सक्षम होने के लिए, हमें एक विशेष निर्देशांक प्रणाली पर ध्यान केंद्रित करना होगा। एक निर्देशांक स्थितियाँ ऐसी निर्देशांक प्रणालियों में से एक (या छोटे समूह) का चयन करती है। विशेष सापेक्षता में प्रयुक्त कार्टेशियन निर्देशांक डी'अलेम्बर्ट के समीकरण को संतुष्ट करते हैं, इसलिए एक हार्मोनिक निर्देशांक प्रणाली विशेष सापेक्षता में संदर्भ के एक जड़त्वीय फ्रेम के लिए सामान्य सापेक्षता में उपलब्ध निकटतम सन्निकटन है। | ||
==व्युत्पत्ति== | ==व्युत्पत्ति== | ||
Line 8: | Line 8: | ||
:<math>0 = \left(x^\alpha\right)_{; \beta ; \gamma} g^{\beta \gamma} = \left(\left(x^\alpha\right)_{, \beta , \gamma} - \left(x^\alpha\right)_{, \sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} \,.</math> | :<math>0 = \left(x^\alpha\right)_{; \beta ; \gamma} g^{\beta \gamma} = \left(\left(x^\alpha\right)_{, \beta , \gamma} - \left(x^\alpha\right)_{, \sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} \,.</math> | ||
चूंकि निर्देशांक x<sup>α</sup> वास्तव में एक अदिश राशि नहीं है, यह एक टेंसर समीकरण नहीं है। अर्थात् यह सामान्यतः अपरिवर्तनीय नहीं है। लेकिन | चूंकि निर्देशांक x<sup>α</sup> वास्तव में एक अदिश राशि नहीं है, यह एक टेंसर समीकरण नहीं है। अर्थात् यह सामान्यतः अपरिवर्तनीय नहीं है। लेकिन निर्देशांक स्थितियाँ आम तौर पर अपरिवर्तनीय नहीं होनी चाहिए क्योंकि उनसे अपेक्षा की जाती है कि वे कुछ निर्देशांक प्रणालियों को चुनें (केवल उनके लिए काम करें) और अन्य को नहीं। चूँकि निर्देशांक का आंशिक व्युत्पन्न [[ क्रोनकर डेल्टा ]] है, हमें मिलता है: | ||
:<math>0 = \left(\delta^\alpha_{\beta , \gamma} - \delta^\alpha_{\sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} = \left(0 - \Gamma^{\alpha}_{\beta \gamma}\right) g^{\beta \gamma} = - \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math> | :<math>0 = \left(\delta^\alpha_{\beta , \gamma} - \delta^\alpha_{\sigma} \Gamma^{\sigma}_{\beta \gamma}\right) g^{\beta \gamma} = \left(0 - \Gamma^{\alpha}_{\beta \gamma}\right) g^{\beta \gamma} = - \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math> | ||
और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक | और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक निर्देशांक स्थिति प्राप्त होती है (जिसे थियोफाइल डी डोनर के बाद डी डोनर गेज के रूप में भी जाना जाता है)<ref> [John Stewart (1991), "Advanced General Relativity", Cambridge University Press, {{ISBN|0-521-44946-4}} ]</ref>): | ||
:<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math> | :<math>0 = \Gamma^{\alpha}_{\beta \gamma} g^{\beta \gamma} \,.</math> | ||
Line 21: | Line 21: | ||
:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{; \rho} = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \rho} + g^{\sigma \nu} \Gamma^{\mu}_{\sigma \rho} \sqrt {-g} + g^{\mu \sigma} \Gamma^{\nu}_{\sigma \rho} \sqrt {-g} - g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} \,.</math> | :<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{; \rho} = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \rho} + g^{\sigma \nu} \Gamma^{\mu}_{\sigma \rho} \sqrt {-g} + g^{\mu \sigma} \Gamma^{\nu}_{\sigma \rho} \sqrt {-g} - g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} \,.</math> | ||
अंतिम कार्यकाल <math> - g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} </math> उभरता है क्योंकि <math> \sqrt {-g}</math> एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। की अपेक्षा, <math> \sqrt {-g}_{; \rho} = 0 \!</math> क्योंकि <math> g^{\mu \nu}_{; \rho} = 0 \!</math>, जबकि <math> \sqrt {-g}_{, \rho} = \sqrt {-g} \Gamma^{\sigma}_{\sigma \rho} \,.</math> | अंतिम कार्यकाल <math> - g^{\mu \nu} \Gamma^{\sigma}_{\sigma \rho} \sqrt {-g} </math> उभरता है क्योंकि <math> \sqrt {-g}</math> एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। की अपेक्षा, <math> \sqrt {-g}_{; \rho} = 0 \!</math> क्योंकि <math> g^{\mu \nu}_{; \rho} = 0 \!</math>, जबकि <math> \sqrt {-g}_{, \rho} = \sqrt {-g} \Gamma^{\sigma}_{\sigma \rho} \,.</math> | ||
ν को ρ के साथ अनुबंधित करने और हार्मोनिक | ν को ρ के साथ अनुबंधित करने और हार्मोनिक निर्देशांक स्थिति को दूसरे पद पर लागू करने पर, हमें मिलता है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 27: | Line 27: | ||
&= \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} + 0 + g^{\mu \alpha} \Gamma^{\beta}_{\alpha \beta} \sqrt {-g} - g^{\mu \alpha} \Gamma^{\beta}_{\beta \alpha} \sqrt {-g} \,. | &= \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} + 0 + g^{\mu \alpha} \Gamma^{\beta}_{\alpha \beta} \sqrt {-g} - g^{\mu \alpha} \Gamma^{\beta}_{\beta \alpha} \sqrt {-g} \,. | ||
\end{align}</math> | \end{align}</math> | ||
इस प्रकार, हम पाते हैं कि हार्मोनिक | इस प्रकार, हम पाते हैं कि हार्मोनिक निर्देशांक स्थिति को व्यक्त करने का एक वैकल्पिक तरीका है: | ||
:<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} \,.</math> | :<math>0 = \left(g^{\mu \nu} \sqrt {-g}\right)_{, \nu} \,.</math> | ||
Line 43: | Line 43: | ||
h_{\alpha \beta , \gamma} \, \eta^{\beta \gamma} &= \frac12 h_{\beta \gamma , \alpha} \, \eta^{\beta \gamma} \,. | h_{\alpha \beta , \gamma} \, \eta^{\beta \gamma} &= \frac12 h_{\beta \gamma , \alpha} \, \eta^{\beta \gamma} \,. | ||
\end{align}</math> | \end{align}</math> | ||
हालाँकि, जब आप h में दूसरे क्रम पर जाते हैं तो अंतिम दो एक अलग | हालाँकि, जब आप h में दूसरे क्रम पर जाते हैं तो अंतिम दो एक अलग निर्देशांक स्थिति होती हैं। | ||
==तरंग समीकरण पर प्रभाव== | ==तरंग समीकरण पर प्रभाव== | ||
Line 52: | Line 52: | ||
:<math>A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} = A_{\alpha ; \beta , \gamma} g^{\beta \gamma} - A_{\sigma ; \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} - A_{\alpha ; \sigma} \Gamma^{\sigma}_{\beta \gamma} g^{\beta \gamma} \,.</math> | :<math>A_{\alpha ; \beta ; \gamma} g^{\beta \gamma} = A_{\alpha ; \beta , \gamma} g^{\beta \gamma} - A_{\sigma ; \beta} \Gamma^{\sigma}_{\alpha \gamma} g^{\beta \gamma} - A_{\alpha ; \sigma} \Gamma^{\sigma}_{\beta \gamma} g^{\beta \gamma} \,.</math> | ||
हार्मोनिक | हार्मोनिक निर्देशांक स्थिति का उपयोग करके हम सबसे सही पद को समाप्त कर सकते हैं और फिर निम्नानुसार मूल्यांकन जारी रख सकते हैं: | ||
:<math>\begin{align} | :<math>\begin{align} |
Revision as of 07:13, 1 December 2023
हार्मोनिक निर्देशांक स्थिति सामान्य सापेक्षता में कई निर्देशांक स्थितियों में से एक है, जो आइंस्टीन क्षेत्र समीकरणों को हल करना संभव बनाती है। एक निर्देशांक प्रणाली को हार्मोनिक निर्देशांक स्थिति को संतुष्ट करने के लिए कहा जाता है यदि प्रत्येक निर्देशांक कार्य x करता हैα (अदिश क्षेत्र के रूप में माना जाता है) वेव समीकरण|डी'अलेम्बर्ट के समीकरण को संतुष्ट करता है। रीमैनियन ज्यामिति में एक हार्मोनिक निर्देशांक प्रणाली की समानांतर धारणा एक निर्देशांक प्रणाली है जिसके निर्देशांक कार्य लाप्लास के समीकरण को संतुष्ट करते हैं। चूंकि वेव समीकरण|डी'अलेम्बर्ट का समीकरण लाप्लास के समीकरण का स्पेस-टाइम के लिए सामान्यीकरण है, इसलिए इसके समाधानों को हार्मोनिक भी कहा जाता है।
प्रेरणा
भौतिकी के नियमों को सामान्यतः अपरिवर्तनीय रूप में व्यक्त किया जा सकता है। दूसरे शब्दों में, वास्तविक दुनिया को हमारी निर्देशांक प्रणालियों की परवाह नहीं है। हालाँकि, समीकरणों को हल करने में सक्षम होने के लिए, हमें एक विशेष निर्देशांक प्रणाली पर ध्यान केंद्रित करना होगा। एक निर्देशांक स्थितियाँ ऐसी निर्देशांक प्रणालियों में से एक (या छोटे समूह) का चयन करती है। विशेष सापेक्षता में प्रयुक्त कार्टेशियन निर्देशांक डी'अलेम्बर्ट के समीकरण को संतुष्ट करते हैं, इसलिए एक हार्मोनिक निर्देशांक प्रणाली विशेष सापेक्षता में संदर्भ के एक जड़त्वीय फ्रेम के लिए सामान्य सापेक्षता में उपलब्ध निकटतम सन्निकटन है।
व्युत्पत्ति
सामान्य सापेक्षता में, हमें डी'अलेम्बर्ट के समीकरण में आंशिक व्युत्पन्न के बजाय सहसंयोजक व्युत्पन्न का उपयोग करना होगा, इसलिए हमें मिलता है:
चूंकि निर्देशांक xα वास्तव में एक अदिश राशि नहीं है, यह एक टेंसर समीकरण नहीं है। अर्थात् यह सामान्यतः अपरिवर्तनीय नहीं है। लेकिन निर्देशांक स्थितियाँ आम तौर पर अपरिवर्तनीय नहीं होनी चाहिए क्योंकि उनसे अपेक्षा की जाती है कि वे कुछ निर्देशांक प्रणालियों को चुनें (केवल उनके लिए काम करें) और अन्य को नहीं। चूँकि निर्देशांक का आंशिक व्युत्पन्न क्रोनकर डेल्टा है, हमें मिलता है:
और इस प्रकार, ऋण चिह्न को हटाने पर, हमें हार्मोनिक निर्देशांक स्थिति प्राप्त होती है (जिसे थियोफाइल डी डोनर के बाद डी डोनर गेज के रूप में भी जाना जाता है)[1]):
गुरुत्वाकर्षण तरंगों के साथ काम करते समय यह स्थिति विशेष रूप से उपयोगी होती है।
वैकल्पिक रूप
मीट्रिक टेंसर के व्युत्क्रम के टेंसर घनत्व के सहसंयोजक व्युत्पन्न पर विचार करें:
अंतिम कार्यकाल उभरता है क्योंकि एक अपरिवर्तनीय अदिश राशि नहीं है, और इसलिए इसका सहसंयोजक व्युत्पन्न इसके सामान्य व्युत्पन्न के समान नहीं है। की अपेक्षा, क्योंकि , जबकि ν को ρ के साथ अनुबंधित करने और हार्मोनिक निर्देशांक स्थिति को दूसरे पद पर लागू करने पर, हमें मिलता है:
इस प्रकार, हम पाते हैं कि हार्मोनिक निर्देशांक स्थिति को व्यक्त करने का एक वैकल्पिक तरीका है:
अधिक भिन्न रूप
यदि कोई क्रिस्टोफ़ेल प्रतीक को मीट्रिक टेंसर के रूप में व्यक्त करता है, तो उसे प्राप्त होता है
के कारक को त्यागना और कुछ सूचकांकों और शर्तों को पुनर्व्यवस्थित करने पर, कोई भी प्राप्त कर सकता है
रैखिक गुरुत्वाकर्षण के संदर्भ में, यह इन अतिरिक्त रूपों से अप्रभेद्य है:
हालाँकि, जब आप h में दूसरे क्रम पर जाते हैं तो अंतिम दो एक अलग निर्देशांक स्थिति होती हैं।
तरंग समीकरण पर प्रभाव
उदाहरण के लिए, विद्युत चुम्बकीय वेक्टर क्षमता पर लागू तरंग समीकरण पर विचार करें
आइए दाहिनी ओर का मूल्यांकन करें:
हार्मोनिक निर्देशांक स्थिति का उपयोग करके हम सबसे सही पद को समाप्त कर सकते हैं और फिर निम्नानुसार मूल्यांकन जारी रख सकते हैं:
यह भी देखें
- क्रिस्टोफ़ेल प्रतीक
- सहसंयोजक व्युत्पन्न
- गेज सिद्धांत
- सामान्य सापेक्षता
- सामान्य सहप्रसरण
- होलोनोमिक आधार
- क्रोनकर डेल्टा
- लाप्लास का समीकरण
- लाप्लास ऑपरेटर
- घुंघराले कलन
- तरंग समीकरण
संदर्भ
- ↑ [John Stewart (1991), "Advanced General Relativity", Cambridge University Press, ISBN 0-521-44946-4 ]
- P.A.M.Dirac (1975), General Theory of Relativity, Princeton University Press, ISBN 0-691-01146-X, chapter 22