लूप इंटीग्रल: Difference between revisions
(→उदाहरण) |
(→उदाहरण) |
||
Line 41: | Line 41: | ||
==== अदिश क्षेत्र सिद्धांत ==== | ==== अदिश क्षेत्र सिद्धांत ==== | ||
===== | ===== φ<sup>4</sup> सिद्धांत ===== | ||
आरंभिक बिंदु के लिए | आरंभिक बिंदु के लिए क्रिया <math>\phi^4</math> सिद्धांत में <math>\mathbb{R}^d</math> है। | ||
:<math>S[\phi_0]=\int d^dx\frac{1}{2}(\partial \phi_0)^2 + \frac{1}{2}m_0\phi_0^2 + \frac{1}{4!}\lambda_0\phi_0^4.</math> | :<math>S[\phi_0]=\int d^dx\frac{1}{2}(\partial \phi_0)^2 + \frac{1}{2}m_0\phi_0^2 + \frac{1}{4!}\lambda_0\phi_0^4.</math> | ||
जहाँ <math>(\partial\phi_0)^2 = \nabla\phi_0\cdot\nabla\phi_0 = \sum_{i = 1}^d \partial_i\phi_0\partial_i\phi_0</math>. डोमेन को | जहाँ <math>(\partial\phi_0)^2 = \nabla\phi_0\cdot\nabla\phi_0 = \sum_{i = 1}^d \partial_i\phi_0\partial_i\phi_0</math>. डोमेन को पर्यालोचित रूप में अस्पष्ट छोड़ दिया गया है, क्योंकि यह नियमितीकरण योजना के आधार पर भिन्न होता है। | ||
संवेग स्थान में यूक्लिडियन | संवेग स्थान में यूक्लिडियन सिग्नेचर [[प्रचारक]] है। | ||
:<math>\frac{1}{p^2 + m_0^2}.</math> | :<math>\frac{1}{p^2 + m_0^2}.</math> | ||
दो-बिंदु सहसंबंधक में एक-लूप योगदान <math>\langle \phi(x)\phi(y) \rangle</math> (या बल्कि, गति स्थान के लिए दो-बिंदु सहसंबंधक या दो-बिंदु सहसंबंधक का फूरियर रूपांतरण) एक एकल फेनमैन आरेख से आता है और | दो-बिंदु सहसंबंधक में एक-लूप योगदान <math>\langle \phi(x)\phi(y) \rangle</math> (या बल्कि, गति स्थान के लिए दो-बिंदु सहसंबंधक या दो-बिंदु सहसंबंधक का फूरियर रूपांतरण) एक एकल फेनमैन आरेख से आता है और <math>\frac{\lambda_0}{2}\int \frac{d^dk}{(2\pi)^d}\frac{1}{k^2 + m_0^2}.</math> यह लूप इंटीग्रल का एक उदाहरण है। | ||
यह लूप इंटीग्रल का एक उदाहरण है। | |||
अगर <math>d\geq 2</math> और एकीकरण का क्षेत्र | अगर <math>d\geq 2</math> और एकीकरण का क्षेत्र <math>\mathbb{R}^d</math> है, यह अभिन्न विचलन करता है। यह विचलन की पजल की विशेषता है जिसने ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत को प्रभावित किया है। सीमित परिणाम प्राप्त करने के लिए, हम एक नियमितीकरण योजना चुनते हैं। उदाहरण के लिए, हम दो योजनाएँ देते हैं। | ||
'''कटऑफ़ नियमितीकरण''': <math>\Lambda > 0</math> ठीक करें। नियमित लूप इंटीग्रल डोमेन <math>k = |\mathbf{k}| < \Lambda,</math>पर इंटीग्रल है, और इस इंटीग्रल को द्वारा निरूपित करना विशिष्ट है। | |||
.<math>\frac{\lambda_0}{2}\int^\Lambda \frac{d^dk}{(2\pi)^d}\frac{1}{k^2 + m_0^2}.</math> | |||
यह अभिन्न अंग परिमित है और इस मामले में इसका मूल्यांकन किया जा सकता है। | यह अभिन्न अंग परिमित है और इस मामले में इसका मूल्यांकन किया जा सकता है। | ||
Revision as of 10:13, 24 November 2023
क्वांटम क्षेत्र सिद्धांत और सांख्यिकीय यांत्रिकी में, लूप इंटीग्रल इंटीग्रल होते हैं जो आंतरिक गति पर एक या अधिक लूप के साथ फेनमैन आरेख का मूल्यांकन करते समय दिखाई देते हैं।[1] इन इंटीग्रल्स का उपयोग काउंटरटर्म निर्धारित करने के लिए किया जाता है, जो बदले में बीटा फलन के मूल्यांकन की अनुमति देता है, जो ऊर्जा पैमाने पर इंटरैक्शन के लिए युग्मन की निर्भरता को एन्कोड करता है।
वन-लूप इंटीग्रल
सामान्य सूत्र
एक सामान्य वन-लूप इंटीग्रल, उदाहरण के लिए जो QED या QCD के एक-लूप पुनर्सामान्यीकरण में दिखाई देते हैं, उन्हें फॉर्म में शब्दों के रैखिक संयोजन के रूप में लिखा जा सकता है
जहां 4-संवेग हैं जो बाहरी संवेग के रैखिक संयोजन हैं, और परस्पर क्रिया करने वाले कणों के द्रव्यमान हैं। यह अभिव्यक्ति यूक्लिडियन सिग्नेचर का प्रयोग करती है। लोरेंट्ज़ियन सिग्नेचर में, हर इसके स्थान पर फॉर्म की अभिव्यक्तियों का एक गुणनफल होगा
फेनमैन पैरामीट्रिज़ेशन का उपयोग करके, इसे फॉर्म के अभिन्नों के रैखिक संयोजन के रूप में फिर से लिखा जा सकता है
जहां 4-वेक्टर और और फेनमैन पैरामीटर के फलन हैं। यह अभिन्न अंग फेनमैन मापदंडों के डोमेन पर भी एकीकृत है। इंटीग्रल एक आइसोट्रोपिक टेंसर है और इसलिए इसे निर्भरता के बिना (लेकिन संभवतः आयाम पर निर्भर) एक आइसोट्रोपिक टेंसर के रूप में लिखा जा सकता है, जिसे इंटीग्रल से गुणा किया जाता है
ध्यान दें कि यदि विषम था, तो पूर्णांक लुप्त हो जाता है, इसलिए हम को परिभाषित कर सकते हैं।
अभिन्न को नियमित करना
कटऑफ नियमितीकरण
विल्सनियन पुनर्सामान्यीकरण में, कटऑफ स्केल निर्दिष्ट करके इंटीग्रल को परिमित बनाया जाता है। मूल्यांकन किया जाने वाला अभिन्न अंग तब होता है।
जहाँ डोमेन पर एकीकरण के लिए आशुलिपि है ।अभिव्यक्ति सीमित है, लेकिन सामान्य तौर पर , अभिव्यक्ति अलग हो जाती है।
आयामी नियमितीकरण
संवेग कटऑफ के बिना इंटीग्रल का मूल्यांकन इस प्रकार किया जा सकता है
जहां बीटा फलन है QED या QCD के पुनर्सामान्यीकरण में गणना के लिए, और का मान लेता है।
QFT में लूप इंटीग्रल्स के लिए, के पास वास्तव में और के प्रासंगिक मानों के लिए एक पोल है। उदाहरण के लिए 4 आयामों में स्केलर सिद्धांत में, इंटरेक्शन वर्टेक्स के एक-लूप पुनर्सामान्यीकरण की गणना में लूप इंटीग्रल है। हम आयामी नियमितीकरण की 'ट्रिक' का उपयोग करते हैं, एक छोटे पैरामीटर के साथ विश्लेषणात्मक रूप से से को जारी रखते हैं।
काउंटरटर्म्स की गणना के लिए, लूप इंटीग्रल को में लॉरेंट श्रृंखला के रूप में व्यक्त किया जाना चाहिए। ऐसा करने के लिए, गामा फ़ंक्शन के लॉरेन विस्तार का उपयोग करना आवश्यक है,
जहां यूलर-माशेरोनी स्थिरांक है। व्यवहार में लूप इंटीग्रल आम तौर पर के रूप में विचलन करता है फेनमैन आरेख के पूर्ण मूल्यांकन के लिए, बीजगणितीय कारक हो सकते हैं जिनका मूल्यांकन किया जाना चाहिए। उदाहरण के लिए QED में, इंटीग्रल के टेंसर सूचकांकों को गामा मैट्रिक्स के साथ अनुबंधित किया जा सकता है, और इंटीग्रल का मूल्यांकन करने के लिए इनसे जुड़ी पहचान की आवश्यकता होती है।
क्यूसीडी में, अतिरिक्त लाई बीजगणित कारक हो सकते हैं, जैसे कि आसन्न प्रतिनिधित्व के द्विघात कासिमिर के साथ-साथ सिद्धांत परिवर्तन में मायने रखने वाले किसी भी प्रतिनिधित्व (स्केलर या स्पिनर फ़ील्ड)।
उदाहरण
अदिश क्षेत्र सिद्धांत
φ4 सिद्धांत
आरंभिक बिंदु के लिए क्रिया सिद्धांत में है।
जहाँ . डोमेन को पर्यालोचित रूप में अस्पष्ट छोड़ दिया गया है, क्योंकि यह नियमितीकरण योजना के आधार पर भिन्न होता है।
संवेग स्थान में यूक्लिडियन सिग्नेचर प्रचारक है।
दो-बिंदु सहसंबंधक में एक-लूप योगदान (या बल्कि, गति स्थान के लिए दो-बिंदु सहसंबंधक या दो-बिंदु सहसंबंधक का फूरियर रूपांतरण) एक एकल फेनमैन आरेख से आता है और यह लूप इंटीग्रल का एक उदाहरण है।
अगर और एकीकरण का क्षेत्र है, यह अभिन्न विचलन करता है। यह विचलन की पजल की विशेषता है जिसने ऐतिहासिक रूप से क्वांटम क्षेत्र सिद्धांत को प्रभावित किया है। सीमित परिणाम प्राप्त करने के लिए, हम एक नियमितीकरण योजना चुनते हैं। उदाहरण के लिए, हम दो योजनाएँ देते हैं।
कटऑफ़ नियमितीकरण: ठीक करें। नियमित लूप इंटीग्रल डोमेन पर इंटीग्रल है, और इस इंटीग्रल को द्वारा निरूपित करना विशिष्ट है।
.
यह अभिन्न अंग परिमित है और इस मामले में इसका मूल्यांकन किया जा सकता है।
आयामी नियमितीकरण: हम सभी को एकीकृत करते हैं , लेकिन विचार करने के बजाय एक सकारात्मक पूर्णांक होने के लिए, हम विश्लेषणात्मक रूप से जारी रखते हैं को , जहाँ छोटा है। उपरोक्त गणना से, हमने दिखाया कि अभिन्न को उन अभिव्यक्तियों के संदर्भ में लिखा जा सकता है जिनमें पूर्णांकों से एक अच्छी तरह से परिभाषित विश्लेषणात्मक निरंतरता होती है पर कार्य करने के लिए : विशेष रूप से गामा फलन में एक विश्लेषणात्मक निरंतरता और शक्तियाँ होती हैं, , एक ऑपरेशन है जिसे विश्लेषणात्मक रूप से जारी रखा जा सकता है।
संदर्भ
- ↑ Peskin, Michael E.; Schroeder, Daniel V. (1995). क्वांटम फील्ड सिद्धांत का एक परिचय. ISBN 9780201503975.