वाष्प गतिकी: Difference between revisions
m (Arti Shah moved page गैस गतिकी to वाष्प गतिकी without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Study of the motion of gases}} | {{Short description|Study of the motion of gases}} | ||
गैस गतिकी द्रव गतिकी की शाखा में | गैस गतिकी द्रव गतिकी की शाखा में विज्ञान है, जो गैसों की गति और भौतिक प्रणालियों पर इसके प्रभावों के अध्ययन से संबंधित है। [[द्रव यांत्रिकी]] और [[ ऊष्मप्रवैगिकी |ऊष्मप्रवैगिकी]] के सिद्धांतों के आधार पर, [[ट्रांसोनिक]] और [[सुपरसोनिक उड़ान]]ों में गैस प्रवाह के अध्ययन से गैस गतिशीलता उत्पन्न होती है। द्रव गतिकी में अन्य विज्ञानों से खुद को अलग करने के लिए, गैस गतिकी में अध्ययन को अक्सर [[ध्वनि की गति]] के बराबर या उससे अधिक गति से भौतिक निकायों के चारों ओर या भीतर बहने वाली गैसों के साथ परिभाषित किया जाता है और [[तापमान]] और [[दबाव]] में महत्वपूर्ण परिवर्तन होता है।<ref name="E. Rahakrishnan 2006">{{Cite book | last = Rathakrishnan | first = E. | title = गैस गतिशीलता| year = 2006 | publisher = Prentice Hall of India Pvt. Ltd | isbn = 81-203-0952-9 }}</ref> इन अध्ययनों के कुछ उदाहरणों में शामिल हैं, लेकिन इन्हीं तक सीमित नहीं हैं: [[नलिका]] और [[वाल्व]]ों में [[अवरुद्ध प्रवाह]], [[जेट विमान]] के चारों ओर शॉक तरंगें, [[वायुमंडलीय प्रवेश]] पर वायुगतिकीय ताप और [[जेट इंजिन]] के भीतर [[रेले प्रवाह]]। आणविक स्तर पर, गैस गतिकी गैसों के गतिज सिद्धांत का अध्ययन है, जो अक्सर [[आणविक प्रसार]], [[सांख्यिकीय यांत्रिकी]], [[रासायनिक ऊष्मप्रवैगिकी]] और गैर-संतुलन थर्मोडायनामिक्स के अध्ययन की ओर ले जाता है।<ref name="Vincenti and Kruger 2002">{{Cite book | last = Vincenti | first = Walter G. |author2=Kruger, Charles H. Jr. | title = भौतिक गैस गतिशीलता का परिचय| origyear = 1965 | publisher = [[Krieger publishing company]] | year = 2002 | isbn = 0-88275-309-6 }}</ref> जब गैस क्षेत्र [[वायु]] हो और अध्ययन का विषय [[उड़ान]] हो तो गैस गतिकी [[वायुगतिकी]] का पर्याय है। यह विमान और [[अंतरिक्ष यान]] के डिजाइन और उनके संबंधित [[प्रणोदन]] में अत्यधिक प्रासंगिक है। | ||
==इतिहास== | ==इतिहास== | ||
गैस गतिशीलता में प्रगति ट्रांसोनिक और सुपरसोनिक उड़ानों के विकास के साथ मेल खाती है। जैसे-जैसे विमान तेजी से यात्रा करने लगे, हवा का [[घनत्व]] बदलने लगा, जैसे-जैसे हवा की गति ध्वनि की गति के करीब पहुंची, हवा का प्रतिरोध काफी बढ़ गया। इस घटना को बाद में पवन सुरंग प्रयोगों में विमान के चारों ओर सदमे तरंगों के गठन के कारण होने वाले तरंग खिंचाव के रूप में पहचाना गया। [[द्वितीय विश्व युद्ध]] के दौरान और उसके बाद के व्यवहार का वर्णन करने के लिए प्रमुख प्रगति की गई, और [[संपीड़ित प्रवाह]] और मच संख्या#वस्तुओं के चारों ओर उच्च गति प्रवाह पर नई समझ गैस गतिशीलता के सिद्धांत बन गए। | गैस गतिशीलता में प्रगति ट्रांसोनिक और सुपरसोनिक उड़ानों के विकास के साथ मेल खाती है। जैसे-जैसे विमान तेजी से यात्रा करने लगे, हवा का [[घनत्व]] बदलने लगा, जैसे-जैसे हवा की गति ध्वनि की गति के करीब पहुंची, हवा का प्रतिरोध काफी बढ़ गया। इस घटना को बाद में पवन सुरंग प्रयोगों में विमान के चारों ओर सदमे तरंगों के गठन के कारण होने वाले तरंग खिंचाव के रूप में पहचाना गया। [[द्वितीय विश्व युद्ध]] के दौरान और उसके बाद के व्यवहार का वर्णन करने के लिए प्रमुख प्रगति की गई, और [[संपीड़ित प्रवाह]] और मच संख्या#वस्तुओं के चारों ओर उच्च गति प्रवाह पर नई समझ गैस गतिशीलता के सिद्धांत बन गए। | ||
चूंकि [[एक प्रकार कि गति]] में गैसें छोटे कण हैं, यह धारणा व्यापक रूप से स्वीकृत हो गई और कई मात्रात्मक अध्ययन यह पुष्टि करते हैं कि गैसों के [[स्थूल]] गुण, जैसे तापमान, दबाव और घनत्व, गतिमान कणों के टकराव के परिणाम हैं,<ref>{{citation | चूंकि [[एक प्रकार कि गति|प्रकार कि गति]] में गैसें छोटे कण हैं, यह धारणा व्यापक रूप से स्वीकृत हो गई और कई मात्रात्मक अध्ययन यह पुष्टि करते हैं कि गैसों के [[स्थूल]] गुण, जैसे तापमान, दबाव और घनत्व, गतिमान कणों के टकराव के परिणाम हैं,<ref>{{citation | ||
| author=Einstein, A. | | author=Einstein, A. | ||
| title =Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen | | title =Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen | ||
Line 14: | Line 14: | ||
| doi=10.1002/andp.19053220806|bibcode = 1905AnP...322..549E | | doi=10.1002/andp.19053220806|bibcode = 1905AnP...322..549E | ||
| issue=8 | doi-access=free | | issue=8 | doi-access=free | ||
}}</ref> गैसों के गतिज सिद्धांत का अध्ययन तेजी से गैस गतिशीलता का | }}</ref> गैसों के गतिज सिद्धांत का अध्ययन तेजी से गैस गतिशीलता का एकीकृत हिस्सा बन गया। गैस गतिकी पर आधुनिक किताबें और कक्षाएं अक्सर गतिज सिद्धांत के परिचय के साथ शुरू होती हैं।<ref name="Vincenti and Kruger 2002" /><ref name="Turrell 1997">{{Cite book | last = Turrell | first = George | title = Gas Dynamics: Theory and Applications | publisher = J. Wiley | year = 1997}}</ref> [[कंप्यूटर सिमुलेशन]] में [[आणविक मॉडलिंग]] के आगमन ने गतिज सिद्धांत को गैस गतिशीलता पर आज के शोध में अत्यधिक प्रासंगिक विषय बना दिया है।<ref> | ||
{{cite journal | {{cite journal | ||
| first = B. J. | | first = B. J. | ||
Line 53: | Line 53: | ||
==द्रव की परिभाषा== | ==द्रव की परिभाषा== | ||
तरल पदार्थ ऐसे पदार्थ हैं जो भारी मात्रा में तनाव के तहत स्थायी रूप से नहीं बदलते हैं। अत्यधिक तनाव के तहत संतुलन में बने रहने के लिए कोई ठोस पदार्थ विकृत हो जाता है। तरल पदार्थ को तरल और गैस दोनों के रूप में परिभाषित किया जाता है क्योंकि तरल के अंदर के अणु ठोस में मौजूद अणुओं की तुलना में बहुत कमजोर होते हैं। जब किसी द्रव के घनत्व को तरल के संदर्भ में संदर्भित किया जाता है, तो दबाव बढ़ने पर तरल के घनत्व में | तरल पदार्थ ऐसे पदार्थ हैं जो भारी मात्रा में तनाव के तहत स्थायी रूप से नहीं बदलते हैं। अत्यधिक तनाव के तहत संतुलन में बने रहने के लिए कोई ठोस पदार्थ विकृत हो जाता है। तरल पदार्थ को तरल और गैस दोनों के रूप में परिभाषित किया जाता है क्योंकि तरल के अंदर के अणु ठोस में मौजूद अणुओं की तुलना में बहुत कमजोर होते हैं। जब किसी द्रव के घनत्व को तरल के संदर्भ में संदर्भित किया जाता है, तो दबाव बढ़ने पर तरल के घनत्व में छोटा प्रतिशत परिवर्तन होता है। यदि तरल पदार्थ को गैस के रूप में संदर्भित किया जाता है, तो गैसों के लिए राज्य के समीकरण (पी = ρRT) के कारण लागू दबाव की मात्रा के आधार पर घनत्व काफी बदल जाएगा। द्रवों के प्रवाह के अध्ययन में घनत्व में थोड़े से परिवर्तन का उल्लेख करते समय प्रयुक्त शब्द को असम्पीड्य प्रवाह कहा जाता है। गैसों के प्रवाह के अध्ययन में दबाव बढ़ने के कारण होने वाली तीव्र वृद्धि को संपीड़ित प्रवाह कहा जाता है।<ref>John, James Edward Albert., and Theo G. Keith. Gas Dynamics. Harlow: Prentice Hall, 2006. 1-2. Print</ref> | ||
==वास्तविक गैसें== | ==वास्तविक गैसें== | ||
[[File:Gas Dynamics.png|thumb|महत्वपूर्ण बिंदु.]]वास्तविक गैसों को समीकरण PV = zn में उनकी संपीड़ितता (z) द्वारा दर्शाया जाता है<sub>0</sub>आरटी. जब दबाव पी को वॉल्यूम वी के | [[File:Gas Dynamics.png|thumb|महत्वपूर्ण बिंदु.]]वास्तविक गैसों को समीकरण PV = zn में उनकी संपीड़ितता (z) द्वारा दर्शाया जाता है<sub>0</sub>आरटी. जब दबाव पी को वॉल्यूम वी के फ़ंक्शन के रूप में सेट किया जाता है, जहां श्रृंखला निर्धारित तापमान टी, पी और वी द्वारा निर्धारित की जाती है, तो अतिशयोक्तिपूर्ण संबंध लेना शुरू हो जाता है जो आदर्श गैसों द्वारा प्रदर्शित होते हैं क्योंकि तापमान बहुत अधिक होना शुरू हो जाता है। महत्वपूर्ण बिंदु तब पहुँच जाता है जब ग्राफ़ का ढलान शून्य के बराबर होता है और तरल और वाष्प के बीच द्रव की स्थिति को बदल देता है। आदर्श गैसों के गुणों में चिपचिपापन, तापीय चालकता और प्रसार शामिल हैं।<ref name="Turrell 1997" /> | ||
===चिपचिपाहट=== | ===चिपचिपाहट=== | ||
गैसों की चिपचिपाहट गैस के प्रत्येक अणु के स्थानांतरण का परिणाम है क्योंकि वे | गैसों की चिपचिपाहट गैस के प्रत्येक अणु के स्थानांतरण का परिणाम है क्योंकि वे परत से परत तक दूसरे से गुजरते हैं। जैसे-जैसे गैसें एक-दूसरे से गुजरने की प्रवृत्ति रखती हैं, तेज गति से चलने वाले अणु का वेग, संवेग के रूप में, धीमी गति से चलने वाले अणु की गति को बढ़ा देता है। जैसे ही धीमी गति से चलने वाला अणु तेज गति से चलने वाले अणु से गुजरता है, धीमी गति से चलने वाले कण की गति तेज गति से चलने वाले कण की गति को धीमा कर देती है। अणु तब तक सक्रिय रहते हैं जब तक कि घर्षण के कारण दोनों अणु अपने वेग को बराबर नहीं कर लेते।<ref name="Turrell 1997" /> | ||
===थर्मल चालकता=== | ===थर्मल चालकता=== | ||
गैस की तापीय चालकता गैस की चिपचिपाहट के विश्लेषण के माध्यम से पाई जा सकती है, सिवाय इसके कि अणु स्थिर हैं जबकि केवल गैसों का तापमान बदल रहा है। तापीय चालकता को | गैस की तापीय चालकता गैस की चिपचिपाहट के विश्लेषण के माध्यम से पाई जा सकती है, सिवाय इसके कि अणु स्थिर हैं जबकि केवल गैसों का तापमान बदल रहा है। तापीय चालकता को विशिष्ट समय में विशिष्ट क्षेत्र में स्थानांतरित की गई गर्मी की मात्रा के रूप में कहा जाता है। तापीय चालकता हमेशा तापमान प्रवणता की दिशा के विपरीत बहती है।<ref name="Turrell 1997" /> | ||
===प्रसार=== | ===प्रसार=== | ||
गैसों का प्रसार गैसों की | गैसों का प्रसार गैसों की समान सांद्रता के साथ कॉन्फ़िगर किया गया है और जबकि गैसें स्थिर हैं। प्रसार दो गैसों के बीच कमजोर सांद्रता प्रवणता के कारण दो गैसों के बीच सांद्रता में परिवर्तन है। प्रसार समयावधि में द्रव्यमान का परिवहन है।<ref name="Turrell 1997" /> | ||
==झटका लहरें== | ==झटका लहरें== | ||
शॉक वेव को सुपरसोनिक प्रवाह क्षेत्र में | शॉक वेव को सुपरसोनिक प्रवाह क्षेत्र में संपीड़न मोर्चे के रूप में वर्णित किया जा सकता है, और सामने की ओर प्रवाह प्रक्रिया के परिणामस्वरूप द्रव गुणों में अचानक परिवर्तन होता है। शॉक वेव की मोटाई प्रवाह क्षेत्र में गैस अणुओं के औसत मुक्त पथ के बराबर है।<ref name="E. Rahakrishnan 2006"/>दूसरे शब्दों में, झटका पतला क्षेत्र है जहां तापमान, दबाव और वेग में बड़े उतार-चढ़ाव होते हैं, और जहां गति और ऊर्जा की परिवहन घटनाएं महत्वपूर्ण होती हैं। सामान्य शॉक वेव प्रवाह की दिशा के लिए सामान्य संपीड़न मोर्चा है। हालाँकि, विभिन्न प्रकार की भौतिक स्थितियों में, प्रवाह के कोण पर झुकी हुई संपीड़न तरंग उत्पन्न होती है। ऐसी तरंग को तिरछा झटका कहा जाता है। दरअसल, बाहरी प्रवाह में स्वाभाविक रूप से होने वाले सभी झटके तिरछे होते हैं।<ref name="E. Rahakrishnan 2019">{{Cite book | last = Rathakrishnan | first = E. | title = Applied Gas Dynamics, 2nd Edition | year = 2019 | publisher = Wiley | isbn = 978-1-119-50039-1 }}</ref> | ||
===स्थिर सामान्य आघात तरंगें=== | ===स्थिर सामान्य आघात तरंगें=== | ||
स्थिर सामान्य शॉक तरंग को प्रवाह दिशा की सामान्य दिशा में जाने के रूप में वर्गीकृत किया जाता है। उदाहरण के लिए, जब पिस्टन ट्यूब के अंदर स्थिर दर से चलता है, तो ट्यूब से नीचे जाने वाली ध्वनि तरंगें उत्पन्न होती हैं। जैसे-जैसे पिस्टन चलता रहता है, तरंगें साथ आने लगती हैं और ट्यूब के अंदर गैस को संपीड़ित करती हैं। सामान्य शॉक तरंगों के साथ आने वाली विभिन्न गणनाएं उन ट्यूबों के आकार के कारण भिन्न हो सकती हैं जिनमें वे समाहित हैं। बदलते क्षेत्रों के साथ अभिसरण-अपसारी नोजल और ट्यूब जैसी असामान्यताएं मात्रा, दबाव और मच संख्या जैसी गणनाओं को प्रभावित कर सकती हैं।<ref>John, James Edward Albert., and Theo G. Keith. Gas Dynamics. 3rd ed. Harlow: Prentice Hall, 2006. 107–149. Print.</ref> | |||
===सामान्य आघात तरंगों का चलना=== | ===सामान्य आघात तरंगों का चलना=== | ||
स्थिर सामान्य शॉकवेव्स के विपरीत, चलती सामान्य शॉकवेव्स भौतिक स्थितियों में अधिक सामान्यतः उपलब्ध होती हैं। उदाहरण के लिए, वायुमंडल में प्रवेश करने वाली | स्थिर सामान्य शॉकवेव्स के विपरीत, चलती सामान्य शॉकवेव्स भौतिक स्थितियों में अधिक सामान्यतः उपलब्ध होती हैं। उदाहरण के लिए, वायुमंडल में प्रवेश करने वाली कुंद वस्तु को झटके का सामना करना पड़ता है जो गैर-गतिशील गैस के माध्यम से आता है। चलती सामान्य शॉकवेव के माध्यम से आने वाली मूलभूत समस्या गतिहीन गैस के माध्यम से सामान्य शॉकवेव का क्षण है। चलती शॉकवेव्स का दृष्टिकोण इसे चलती या गैर-गतिशील शॉक वेव के रूप में दर्शाता है। वायुमंडल में प्रवेश करने वाली किसी वस्तु का उदाहरण वस्तु को शॉकवेव की विपरीत दिशा में यात्रा करते हुए दर्शाता है जिसके परिणामस्वरूप गतिशील शॉकवेव उत्पन्न होती है, लेकिन यदि वस्तु शॉकवेव के शीर्ष पर सवार होकर अंतरिक्ष में प्रक्षेपित हो रही है, तो यह स्थिर शॉकवेव प्रतीत होगी . चलती और स्थिर शॉकवेव्स की गति और शॉक अनुपात के साथ संबंधों और तुलनाओं की गणना व्यापक सूत्रों के माध्यम से की जा सकती है।<ref>John, James Edward Albert., and Theo G. Keith. Gas Dynamics. 3rd ed. Harlow: Prentice Hall, 2006. 157–184. Print.</ref> | ||
Line 93: | Line 93: | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
'''Important concepts''' | '''Important concepts''' | ||
* [[Mach number]] | * [[Mach number]] | ||
* [[Mach wave]] | * [[Mach wave]] | ||
Line 101: | Line 101: | ||
* [[Prandtl–Meyer expansion fan]] | * [[Prandtl–Meyer expansion fan]] | ||
|valign="top"| | |valign="top"| | ||
'''Flows of interest''' | '''Flows of interest''' | ||
* [[Compressible flow]] | * [[Compressible flow]] | ||
* [[Transonic flow]] | * [[Transonic flow]] | ||
Line 111: | Line 111: | ||
* [[Rayleigh flow]] | * [[Rayleigh flow]] | ||
|valign="top"| | |valign="top"| | ||
'''Experimental techniques''' | '''Experimental techniques''' | ||
* [[Shock tube]] | * [[Shock tube]] | ||
* [[Subsonic and transonic wind tunnel#Transonic tunnel|Transonic]], [[Supersonic wind tunnel|supersonic]],<br />[[Hypersonic wind tunnel|hypersonic]] [[wind tunnel]]s. | * [[Subsonic and transonic wind tunnel#Transonic tunnel|Transonic]], [[Supersonic wind tunnel|supersonic]],<br />[[Hypersonic wind tunnel|hypersonic]] [[wind tunnel]]s. | ||
Line 121: | Line 121: | ||
* [[Mach–Zehnder interferometer]] | * [[Mach–Zehnder interferometer]] | ||
|valign="top"| | |valign="top"| | ||
'''Computational techniques''' | '''Computational techniques''' | ||
* [[Riemann solver]] | * [[Riemann solver]] | ||
* [[Smoothed particle hydrodynamics]] | * [[Smoothed particle hydrodynamics]] | ||
|'''[[Aerodynamics]]''' | |'''[[Aerodynamics]]''' | ||
* [[Wave drag]] | * [[Wave drag]] | ||
* [[Sonic boom]] | * [[Sonic boom]] |
Revision as of 18:40, 4 December 2023
गैस गतिकी द्रव गतिकी की शाखा में विज्ञान है, जो गैसों की गति और भौतिक प्रणालियों पर इसके प्रभावों के अध्ययन से संबंधित है। द्रव यांत्रिकी और ऊष्मप्रवैगिकी के सिद्धांतों के आधार पर, ट्रांसोनिक और सुपरसोनिक उड़ानों में गैस प्रवाह के अध्ययन से गैस गतिशीलता उत्पन्न होती है। द्रव गतिकी में अन्य विज्ञानों से खुद को अलग करने के लिए, गैस गतिकी में अध्ययन को अक्सर ध्वनि की गति के बराबर या उससे अधिक गति से भौतिक निकायों के चारों ओर या भीतर बहने वाली गैसों के साथ परिभाषित किया जाता है और तापमान और दबाव में महत्वपूर्ण परिवर्तन होता है।[1] इन अध्ययनों के कुछ उदाहरणों में शामिल हैं, लेकिन इन्हीं तक सीमित नहीं हैं: नलिका और वाल्वों में अवरुद्ध प्रवाह, जेट विमान के चारों ओर शॉक तरंगें, वायुमंडलीय प्रवेश पर वायुगतिकीय ताप और जेट इंजिन के भीतर रेले प्रवाह। आणविक स्तर पर, गैस गतिकी गैसों के गतिज सिद्धांत का अध्ययन है, जो अक्सर आणविक प्रसार, सांख्यिकीय यांत्रिकी, रासायनिक ऊष्मप्रवैगिकी और गैर-संतुलन थर्मोडायनामिक्स के अध्ययन की ओर ले जाता है।[2] जब गैस क्षेत्र वायु हो और अध्ययन का विषय उड़ान हो तो गैस गतिकी वायुगतिकी का पर्याय है। यह विमान और अंतरिक्ष यान के डिजाइन और उनके संबंधित प्रणोदन में अत्यधिक प्रासंगिक है।
इतिहास
गैस गतिशीलता में प्रगति ट्रांसोनिक और सुपरसोनिक उड़ानों के विकास के साथ मेल खाती है। जैसे-जैसे विमान तेजी से यात्रा करने लगे, हवा का घनत्व बदलने लगा, जैसे-जैसे हवा की गति ध्वनि की गति के करीब पहुंची, हवा का प्रतिरोध काफी बढ़ गया। इस घटना को बाद में पवन सुरंग प्रयोगों में विमान के चारों ओर सदमे तरंगों के गठन के कारण होने वाले तरंग खिंचाव के रूप में पहचाना गया। द्वितीय विश्व युद्ध के दौरान और उसके बाद के व्यवहार का वर्णन करने के लिए प्रमुख प्रगति की गई, और संपीड़ित प्रवाह और मच संख्या#वस्तुओं के चारों ओर उच्च गति प्रवाह पर नई समझ गैस गतिशीलता के सिद्धांत बन गए।
चूंकि प्रकार कि गति में गैसें छोटे कण हैं, यह धारणा व्यापक रूप से स्वीकृत हो गई और कई मात्रात्मक अध्ययन यह पुष्टि करते हैं कि गैसों के स्थूल गुण, जैसे तापमान, दबाव और घनत्व, गतिमान कणों के टकराव के परिणाम हैं,[3] गैसों के गतिज सिद्धांत का अध्ययन तेजी से गैस गतिशीलता का एकीकृत हिस्सा बन गया। गैस गतिकी पर आधुनिक किताबें और कक्षाएं अक्सर गतिज सिद्धांत के परिचय के साथ शुरू होती हैं।[2][4] कंप्यूटर सिमुलेशन में आणविक मॉडलिंग के आगमन ने गतिज सिद्धांत को गैस गतिशीलता पर आज के शोध में अत्यधिक प्रासंगिक विषय बना दिया है।[5][6]
परिचयात्मक शब्दावली
गैस गतिशीलता गैस के दो अणुओं के बीच की दूरी में औसत मूल्य का अवलोकन है जो उस संरचना को अनदेखा किए बिना टकराई है जिसमें अणु निहित हैं। इस क्षेत्र में गैसों के गतिज सिद्धांत के विचारों में बड़ी मात्रा में ज्ञान और व्यावहारिक उपयोग की आवश्यकता होती है, और गैस सतहों के साथ कैसे प्रतिक्रिया करती है, इसके अध्ययन के माध्यम से यह गैसों के गतिज सिद्धांत को ठोस अवस्था भौतिकी से जोड़ता है।[7]
द्रव की परिभाषा
तरल पदार्थ ऐसे पदार्थ हैं जो भारी मात्रा में तनाव के तहत स्थायी रूप से नहीं बदलते हैं। अत्यधिक तनाव के तहत संतुलन में बने रहने के लिए कोई ठोस पदार्थ विकृत हो जाता है। तरल पदार्थ को तरल और गैस दोनों के रूप में परिभाषित किया जाता है क्योंकि तरल के अंदर के अणु ठोस में मौजूद अणुओं की तुलना में बहुत कमजोर होते हैं। जब किसी द्रव के घनत्व को तरल के संदर्भ में संदर्भित किया जाता है, तो दबाव बढ़ने पर तरल के घनत्व में छोटा प्रतिशत परिवर्तन होता है। यदि तरल पदार्थ को गैस के रूप में संदर्भित किया जाता है, तो गैसों के लिए राज्य के समीकरण (पी = ρRT) के कारण लागू दबाव की मात्रा के आधार पर घनत्व काफी बदल जाएगा। द्रवों के प्रवाह के अध्ययन में घनत्व में थोड़े से परिवर्तन का उल्लेख करते समय प्रयुक्त शब्द को असम्पीड्य प्रवाह कहा जाता है। गैसों के प्रवाह के अध्ययन में दबाव बढ़ने के कारण होने वाली तीव्र वृद्धि को संपीड़ित प्रवाह कहा जाता है।[8]
वास्तविक गैसें
वास्तविक गैसों को समीकरण PV = zn में उनकी संपीड़ितता (z) द्वारा दर्शाया जाता है0आरटी. जब दबाव पी को वॉल्यूम वी के फ़ंक्शन के रूप में सेट किया जाता है, जहां श्रृंखला निर्धारित तापमान टी, पी और वी द्वारा निर्धारित की जाती है, तो अतिशयोक्तिपूर्ण संबंध लेना शुरू हो जाता है जो आदर्श गैसों द्वारा प्रदर्शित होते हैं क्योंकि तापमान बहुत अधिक होना शुरू हो जाता है। महत्वपूर्ण बिंदु तब पहुँच जाता है जब ग्राफ़ का ढलान शून्य के बराबर होता है और तरल और वाष्प के बीच द्रव की स्थिति को बदल देता है। आदर्श गैसों के गुणों में चिपचिपापन, तापीय चालकता और प्रसार शामिल हैं।[4]
चिपचिपाहट
गैसों की चिपचिपाहट गैस के प्रत्येक अणु के स्थानांतरण का परिणाम है क्योंकि वे परत से परत तक दूसरे से गुजरते हैं। जैसे-जैसे गैसें एक-दूसरे से गुजरने की प्रवृत्ति रखती हैं, तेज गति से चलने वाले अणु का वेग, संवेग के रूप में, धीमी गति से चलने वाले अणु की गति को बढ़ा देता है। जैसे ही धीमी गति से चलने वाला अणु तेज गति से चलने वाले अणु से गुजरता है, धीमी गति से चलने वाले कण की गति तेज गति से चलने वाले कण की गति को धीमा कर देती है। अणु तब तक सक्रिय रहते हैं जब तक कि घर्षण के कारण दोनों अणु अपने वेग को बराबर नहीं कर लेते।[4]
थर्मल चालकता
गैस की तापीय चालकता गैस की चिपचिपाहट के विश्लेषण के माध्यम से पाई जा सकती है, सिवाय इसके कि अणु स्थिर हैं जबकि केवल गैसों का तापमान बदल रहा है। तापीय चालकता को विशिष्ट समय में विशिष्ट क्षेत्र में स्थानांतरित की गई गर्मी की मात्रा के रूप में कहा जाता है। तापीय चालकता हमेशा तापमान प्रवणता की दिशा के विपरीत बहती है।[4]
प्रसार
गैसों का प्रसार गैसों की समान सांद्रता के साथ कॉन्फ़िगर किया गया है और जबकि गैसें स्थिर हैं। प्रसार दो गैसों के बीच कमजोर सांद्रता प्रवणता के कारण दो गैसों के बीच सांद्रता में परिवर्तन है। प्रसार समयावधि में द्रव्यमान का परिवहन है।[4]
झटका लहरें
शॉक वेव को सुपरसोनिक प्रवाह क्षेत्र में संपीड़न मोर्चे के रूप में वर्णित किया जा सकता है, और सामने की ओर प्रवाह प्रक्रिया के परिणामस्वरूप द्रव गुणों में अचानक परिवर्तन होता है। शॉक वेव की मोटाई प्रवाह क्षेत्र में गैस अणुओं के औसत मुक्त पथ के बराबर है।[1]दूसरे शब्दों में, झटका पतला क्षेत्र है जहां तापमान, दबाव और वेग में बड़े उतार-चढ़ाव होते हैं, और जहां गति और ऊर्जा की परिवहन घटनाएं महत्वपूर्ण होती हैं। सामान्य शॉक वेव प्रवाह की दिशा के लिए सामान्य संपीड़न मोर्चा है। हालाँकि, विभिन्न प्रकार की भौतिक स्थितियों में, प्रवाह के कोण पर झुकी हुई संपीड़न तरंग उत्पन्न होती है। ऐसी तरंग को तिरछा झटका कहा जाता है। दरअसल, बाहरी प्रवाह में स्वाभाविक रूप से होने वाले सभी झटके तिरछे होते हैं।[9]
स्थिर सामान्य आघात तरंगें
स्थिर सामान्य शॉक तरंग को प्रवाह दिशा की सामान्य दिशा में जाने के रूप में वर्गीकृत किया जाता है। उदाहरण के लिए, जब पिस्टन ट्यूब के अंदर स्थिर दर से चलता है, तो ट्यूब से नीचे जाने वाली ध्वनि तरंगें उत्पन्न होती हैं। जैसे-जैसे पिस्टन चलता रहता है, तरंगें साथ आने लगती हैं और ट्यूब के अंदर गैस को संपीड़ित करती हैं। सामान्य शॉक तरंगों के साथ आने वाली विभिन्न गणनाएं उन ट्यूबों के आकार के कारण भिन्न हो सकती हैं जिनमें वे समाहित हैं। बदलते क्षेत्रों के साथ अभिसरण-अपसारी नोजल और ट्यूब जैसी असामान्यताएं मात्रा, दबाव और मच संख्या जैसी गणनाओं को प्रभावित कर सकती हैं।[10]
सामान्य आघात तरंगों का चलना
स्थिर सामान्य शॉकवेव्स के विपरीत, चलती सामान्य शॉकवेव्स भौतिक स्थितियों में अधिक सामान्यतः उपलब्ध होती हैं। उदाहरण के लिए, वायुमंडल में प्रवेश करने वाली कुंद वस्तु को झटके का सामना करना पड़ता है जो गैर-गतिशील गैस के माध्यम से आता है। चलती सामान्य शॉकवेव के माध्यम से आने वाली मूलभूत समस्या गतिहीन गैस के माध्यम से सामान्य शॉकवेव का क्षण है। चलती शॉकवेव्स का दृष्टिकोण इसे चलती या गैर-गतिशील शॉक वेव के रूप में दर्शाता है। वायुमंडल में प्रवेश करने वाली किसी वस्तु का उदाहरण वस्तु को शॉकवेव की विपरीत दिशा में यात्रा करते हुए दर्शाता है जिसके परिणामस्वरूप गतिशील शॉकवेव उत्पन्न होती है, लेकिन यदि वस्तु शॉकवेव के शीर्ष पर सवार होकर अंतरिक्ष में प्रक्षेपित हो रही है, तो यह स्थिर शॉकवेव प्रतीत होगी . चलती और स्थिर शॉकवेव्स की गति और शॉक अनुपात के साथ संबंधों और तुलनाओं की गणना व्यापक सूत्रों के माध्यम से की जा सकती है।[11]
घर्षण और संपीड़ित प्रवाह
घर्षण बल नलिकाओं में संपीड़ित प्रवाह के प्रवाह गुणों को निर्धारित करने में भूमिका निभाते हैं। गणना में, घर्षण को या तो समावेशी या अनन्य के रूप में लिया जाता है। यदि घर्षण समावेशी है, तो संपीड़ित प्रवाह का विश्लेषण अधिक जटिल हो जाता है जैसे कि घर्षण समावेशी नहीं है। यदि घर्षण विश्लेषण के लिए विशेष है, तो कुछ प्रतिबंध लगाए जाएंगे। जब संपीड़ित प्रवाह पर घर्षण शामिल होता है, तो घर्षण उन क्षेत्रों को सीमित कर देता है जिनमें विश्लेषण के परिणाम लागू होते हैं। जैसा कि पहले उल्लेख किया गया है, वाहिनी का आकार, जैसे अलग-अलग आकार या नोजल, घर्षण और संपीड़ित प्रवाह के बीच विभिन्न गणनाओं को प्रभावित करते हैं।[12]
यह भी देखें
Important concepts |
Flows of interest |
Experimental techniques |
Visualisation methods |
Computational techniques |
Aerodynamics |
संदर्भ
- Specific
- ↑ 1.0 1.1 Rathakrishnan, E. (2006). गैस गतिशीलता. Prentice Hall of India Pvt. Ltd. ISBN 81-203-0952-9.
- ↑ 2.0 2.1 Vincenti, Walter G.; Kruger, Charles H. Jr. (2002) [1965]. भौतिक गैस गतिशीलता का परिचय. Krieger publishing company. ISBN 0-88275-309-6.
- ↑ Einstein, A. (1905), "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik, 17 (8): 549–560, Bibcode:1905AnP...322..549E, doi:10.1002/andp.19053220806
- ↑ 4.0 4.1 4.2 4.3 4.4 Turrell, George (1997). Gas Dynamics: Theory and Applications. J. Wiley.
- ↑ Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method" (PDF). J. Chem. Phys. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376. S2CID 44487491.
- ↑ A. Rahman (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405-A411. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
- ↑ Cercignani, Carlo. Preface. Rarefied Gas Dynamics: from Basic Concepts to Actual Calculations. Cambridge UP, 2000. Xiii. Print.
- ↑ John, James Edward Albert., and Theo G. Keith. Gas Dynamics. Harlow: Prentice Hall, 2006. 1-2. Print
- ↑ Rathakrishnan, E. (2019). Applied Gas Dynamics, 2nd Edition. Wiley. ISBN 978-1-119-50039-1.
- ↑ John, James Edward Albert., and Theo G. Keith. Gas Dynamics. 3rd ed. Harlow: Prentice Hall, 2006. 107–149. Print.
- ↑ John, James Edward Albert., and Theo G. Keith. Gas Dynamics. 3rd ed. Harlow: Prentice Hall, 2006. 157–184. Print.
- ↑ John, James Edward Albert., and Theo G. Keith. Gas Dynamics. 3rd ed. Harlow: Prentice Hall, 2006. 283–336. Print.
- General
- Liepmann, Hans W.; Roshko, A. (2001) [1957]. Elements of Gasdynamics. Dover Publications. ISBN 0-486-41963-0.
- Anderson, John D. Jr. (January 2001) [1984]. Fundamentals of Aerodynamics (3rd ed.). McGraw-Hill Science/Engineering/Math. ISBN 0-07-237335-0.
- Shapiro, Ascher H. (1953). The Dynamics and Thermodynamics of Compressible Fluid Flow, Volume 1. Ronald Press. ISBN 978-0-471-06691-0.
- Zucker, Robert D.; Biblarz O. (July 2002). Fundamentals of Gas Dynamics. John Wiley & Sons. ISBN 0-471-05967-6.
- Anderson, John D. Jr. (2000) [1989]. hypersonic and High Temperature Gas Dynamics. AIAA. ISBN 1-56347-459-X.