अघुलनशील प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of group and algebra representation}} | {{Short description|Type of group and algebra representation}} | ||
{{Group theory sidebar}} | {{Group theory sidebar}} | ||
गणित में, विशेष रूप से [[समूह (गणित)|समूहों (गणित)]] और बीजगणित के [[प्रतिनिधित्व सिद्धांत]] में, '''अघुलनशील प्रतिनिधित्व''' <math>(\rho, V)</math> या बीजगणितीय संरचना का उल्लंघन <math>A</math> अशून्य प्रतिनिधित्व है जिसमें कोई उचित गैर-तुच्छ उप-प्रतिनिधित्व नहीं है <math>(\rho|_W,W)</math>, के साथ <math>W \subset V</math> | गणित में, विशेष रूप से [[समूह (गणित)|समूहों (गणित)]] और बीजगणित के [[प्रतिनिधित्व सिद्धांत]] में, '''अघुलनशील प्रतिनिधित्व''' <math>(\rho, V)</math> या बीजगणितीय संरचना का उल्लंघन <math>A</math> अशून्य प्रतिनिधित्व है जिसमें कोई उचित गैर-तुच्छ उप-प्रतिनिधित्व नहीं है <math>(\rho|_W,W)</math>, के साथ <math>W \subset V</math> एक्शन के अंतर्गत <math>\{ \rho(a) : a\in A \}</math> संवृत कर दिया गया। | ||
[[हिल्बर्ट स्थान]] पर प्रत्येक परिमित-आयामी [[एकात्मक प्रतिनिधित्व]] <math>V</math> अपरिवर्तनीय अभ्यावेदन का [[प्रत्यक्ष योग]] है। अघुलनशील अभ्यावेदन सदैव अविभाज्य होते हैं (अर्थात अभ्यावेदन के प्रत्यक्ष योग में इसे आगे विघटित नहीं किया जा सकता है), किंतु इसका विपरीत प्रभाव नहीं हो सकता है, उदाहरण के लिए ऊपरी त्रिकोणीय [[एकशक्तिशाली|यूनीपोटेंट]] आव्यूह द्वारा कार्य करने वाली वास्तविक संख्याओं का द्वि-आयामी प्रतिनिधित्व अविभाज्य किंतु कम करने योग्य है। | [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] पर प्रत्येक परिमित-आयामी [[एकात्मक प्रतिनिधित्व]] <math>V</math> अपरिवर्तनीय अभ्यावेदन का [[प्रत्यक्ष योग]] है। अघुलनशील अभ्यावेदन सदैव अविभाज्य होते हैं (अर्थात अभ्यावेदन के प्रत्यक्ष योग में इसे आगे विघटित नहीं किया जा सकता है), किंतु इसका विपरीत प्रभाव नहीं हो सकता है, उदाहरण के लिए ऊपरी त्रिकोणीय [[एकशक्तिशाली|यूनीपोटेंट]] आव्यूह द्वारा कार्य करने वाली वास्तविक संख्याओं का द्वि-आयामी प्रतिनिधित्व अविभाज्य किंतु कम करने योग्य है। | ||
==इतिहास== | ==इतिहास== | ||
Line 13: | Line 13: | ||
{{details|समूह प्रतिनिधित्व}} | {{details|समूह प्रतिनिधित्व}} | ||
मान लीजिये <math>\rho</math> | मान लीजिये <math>\rho</math> प्रतिनिधित्व अर्थात [[समरूपता]] <math>\rho: G \to GL(V)</math> समूह का <math>G</math> जहाँ <math>V</math> क्षेत्र के ऊपर सदिश समष्टि है, यदि हम कोई आधार <math>F</math> का चयन करते हैं तो <math>B</math> के लिए <math>V</math>, <math>\rho</math> को समूह से व्युत्क्रमणीय आव्यूह के सेट में फलन ( समरूपता) के रूप में सोचा जा सकता है और इस संदर्भ में इसे आव्यूह प्रतिनिधित्व कहा जाता है। चूँकि, यदि हम बिना किसी आधार <math>V</math> के समष्टि के बारे में सोचें तो यह चीजों को अधिक सरल बना देता है। | ||
[[रैखिक उपस्थान|रैखिक उपसमष्टि]] <math>W\subset V</math> को कहा जाता है। | [[रैखिक उपस्थान|रैखिक उपसमष्टि]] <math>W\subset V</math> को कहा जाता है। <math>G</math>-अपरिवर्तनीय यदि <math>\rho(g)w\in W</math> सभी के लिए <math>g\in G</math> और सभी <math> w\in W</math> का सह-प्रतिबंध <math>\rho</math> के सामान्य रैखिक समूह के लिए <math>G</math>-अपरिवर्तनीय उपसमष्टि <math>W\subset V</math> को उपनिरूपण के रूप में जाना जाता है। प्रतिनिधित्व <math>\rho: G \to GL(V)</math> इसे अलघुकरणीय कहा जाता है यदि इसमें केवल [[तुच्छ (गणित)]] उप-निरूपण हो (सभी अभ्यावेदन तुच्छ के साथ उप-निरूपण बना सकते हैं) <math>G</math>-अपरिवर्तनीय उप-समष्टि, उदा. संपूर्ण सदिश समष्टि <math>V</math>, और शून्य सदिश समष्टि {0} यदि कोई उचित गैर-तुच्छ अपरिवर्तनीय उप-समष्टि है, तो <math>\rho</math> को कम करने योग्य कहा जाता है। | ||
===समूह अभ्यावेदन का संकेतन और शब्दावली=== | ===समूह अभ्यावेदन का संकेतन और शब्दावली=== | ||
समूह तत्वों को [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] द्वारा दर्शाया जा सकता है, चूँकि इस संदर्भ में प्रतिनिधित्व शब्द का विशिष्ट और त्रुटिहीन अर्थ है। किसी समूह का प्रतिनिधित्व समूह के तत्वों से आव्यूहों के [[सामान्य रैखिक समूह]] तक का मानचित्रण है। संकेतन के रूप में, मान | समूह तत्वों को [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] द्वारा दर्शाया जा सकता है, चूँकि इस संदर्भ में प्रतिनिधित्व शब्द का विशिष्ट और त्रुटिहीन अर्थ है। किसी समूह का प्रतिनिधित्व समूह के तत्वों से आव्यूहों के [[सामान्य रैखिक समूह]] तक का मानचित्रण है। संकेतन के रूप में, मान लीजिये {{math|''a'', ''b'', ''c'', ...}} समूह {{math|''G''}} के तत्वों को बिना किसी प्रतीक के समूह उत्पाद के साथ दर्शाते हैं, इसलिए {{math|''ab''}}, {{math|''a''}} और {{math|''b''}} का समूह उत्पाद है और {{math|''G''}}, का तत्व भी है, और प्रतिनिधित्व को दर्शाया जाना चाहिए। {{math|''D''}} द्वारा a का निरूपण इस प्रकार लिखा जाता है: | ||
:<math>D(a) = \begin{pmatrix} | :<math>D(a) = \begin{pmatrix} | ||
Line 45: | Line 45: | ||
जहाँ <math>D^{(11)}(a)</math> गैरतुच्छ उपप्रतिनिधित्व है, यदि हम आव्यूह का परीक्षण करने में सक्षम हैं तो <math>P </math> बनाता है कि <math>D^{(12)}(a) = 0</math> फिर भी <math>D(a)</math> न केवल अपचयनीय है किंतु विघटित भी है। | जहाँ <math>D^{(11)}(a)</math> गैरतुच्छ उपप्रतिनिधित्व है, यदि हम आव्यूह का परीक्षण करने में सक्षम हैं तो <math>P </math> बनाता है कि <math>D^{(12)}(a) = 0</math> फिर भी <math>D(a)</math> न केवल अपचयनीय है किंतु विघटित भी है। | ||
सूचना: भले ही कोई प्रतिनिधित्व कम किया जा सके, फिर भी इसका आव्यूह प्रतिनिधित्व ऊपरी त्रिकोणीय ब्लॉक रूप नहीं हो सकता है। इसका यह रूप तभी होगा जब हम उपयुक्त आधार का चयन करेंगे, जिसे आव्यूह <math>P^{-1}</math> मानक आधार से ऊपर प्रारम्भ करके प्राप्त किया जा सकता है। | '''सूचना''': भले ही कोई प्रतिनिधित्व कम किया जा सके, फिर भी इसका आव्यूह प्रतिनिधित्व ऊपरी त्रिकोणीय ब्लॉक रूप नहीं हो सकता है। इसका यह रूप तभी होगा जब हम उपयुक्त आधार का चयन करेंगे, जिसे आव्यूह <math>P^{-1}</math> मानक आधार से ऊपर प्रारम्भ करके प्राप्त किया जा सकता है। | ||
===विघटित और अविघटित अभ्यावेदन=== | ===विघटित और अविघटित अभ्यावेदन=== | ||
Line 88: | Line 88: | ||
परिमित समूह G के अघुलनशील जटिल निरूपण को [[चरित्र सिद्धांत]] के परिणामों का उपयोग करके चित्रित किया जा सकता है। विशेष रूप से, सभी जटिल निरूपण इरेप्स के प्रत्यक्ष योग और इरेप्स की संख्या के रूप में विघटित होते हैं <math>G</math> के संयुग्मी वर्गों की संख्या <math>G</math> के समान है।<ref name="Serre">{{cite book| author-link=Jean-Pierre Serre| first=Jean-Pierre| last= Serre| title=परिमित समूहों का रैखिक निरूपण| url=https://archive.org/details/linearrepresenta1977serr| url-access=registration| publisher=Springer-Verlag | year=1977 | isbn=978-0-387-90190-9}}</ref> | परिमित समूह G के अघुलनशील जटिल निरूपण को [[चरित्र सिद्धांत]] के परिणामों का उपयोग करके चित्रित किया जा सकता है। विशेष रूप से, सभी जटिल निरूपण इरेप्स के प्रत्यक्ष योग और इरेप्स की संख्या के रूप में विघटित होते हैं <math>G</math> के संयुग्मी वर्गों की संख्या <math>G</math> के समान है।<ref name="Serre">{{cite book| author-link=Jean-Pierre Serre| first=Jean-Pierre| last= Serre| title=परिमित समूहों का रैखिक निरूपण| url=https://archive.org/details/linearrepresenta1977serr| url-access=registration| publisher=Springer-Verlag | year=1977 | isbn=978-0-387-90190-9}}</ref> | ||
* अप्रासंगिक जटिल निरूपण <math>\Z / n\Z</math> मानचित्रों द्वारा <math>1 \mapsto \gamma</math> दिए गए है, जहाँ <math>\gamma</math> एकता [[एकता की जड़|का रूट]] <math>n</math> है। | * अप्रासंगिक जटिल निरूपण <math>\Z / n\Z</math> मानचित्रों द्वारा <math>1 \mapsto \gamma</math> दिए गए है, जहाँ <math>\gamma</math> एकता [[एकता की जड़|का रूट]] <math>n</math> है। | ||
* मान लीजिये <math>V</math> एक है, <math>n</math>-आयामी जटिल प्रतिनिधित्व <math>S_n</math> आधार के साथ <math>\{v_i\}^n_{i=1}</math> तब <math>V</math> इरेप्स के प्रत्यक्ष योग के रूप में विघटित होता है:<math display="block">V_\text{triv} = \Complex \left ( \sum^n_{i=1} v_i \right )</math> और ओर्थोगोनल उप-समष्टि द्वारा दिया गया है:<math display="block">V_\text{std} = \left \{ \sum^n_{i=1} a_i v_i : a_i \in \Complex, \sum^n_{i=1} a_i = 0 \right \}.</math> पूर्व इररेप आयामी और तुच्छ प्रतिनिधित्व के लिए आइसोमोर्फिक है <math>S_n</math> उत्तरार्द्ध है <math>n-1</math> आयामी और मानक प्रतिनिधित्व <math>S_n</math> के रूप में जाना जाता है।<ref name="Serre"/> | * मान लीजिये <math>V</math> एक है, <math>n</math>-आयामी जटिल प्रतिनिधित्व <math>S_n</math>आधार के साथ <math>\{v_i\}^n_{i=1}</math> तब <math>V</math> इरेप्स के प्रत्यक्ष योग के रूप में विघटित होता है:<math display="block">V_\text{triv} = \Complex \left ( \sum^n_{i=1} v_i \right )</math> और ओर्थोगोनल उप-समष्टि द्वारा दिया गया है:<math display="block">V_\text{std} = \left \{ \sum^n_{i=1} a_i v_i : a_i \in \Complex, \sum^n_{i=1} a_i = 0 \right \}.</math> पूर्व इररेप आयामी और तुच्छ प्रतिनिधित्व के लिए आइसोमोर्फिक है <math>S_n</math> उत्तरार्द्ध है <math>n-1</math> आयामी और मानक प्रतिनिधित्व <math>S_n</math> के रूप में जाना जाता है।<ref name="Serre"/> | ||
*मान लीजिये <math>G</math> समूह हो, [[नियमित प्रतिनिधित्व]] <math>G</math> आधार पर मुक्त सम्मिश्र सदिश समष्टि है <math>\{e_g\}_{g \in G}</math> समूह क्रिया के साथ <math>g \cdot e_{g'} = e_{gg'}</math>, निरूपित <math>\Complex G.</math> के सभी अघुलनशील प्रतिनिधित्व <math>G</math> के विघटन में प्रकट होते हैं <math>\Complex G</math> इर्रेप्स के प्रत्यक्ष योग के रूप में है। | *मान लीजिये <math>G</math> समूह हो, [[नियमित प्रतिनिधित्व]] <math>G</math> आधार पर मुक्त सम्मिश्र सदिश समष्टि है <math>\{e_g\}_{g \in G}</math> समूह क्रिया के साथ <math>g \cdot e_{g'} = e_{gg'}</math>, निरूपित <math>\Complex G.</math> के सभी अघुलनशील प्रतिनिधित्व <math>G</math> के विघटन में प्रकट होते हैं <math>\Complex G</math> इर्रेप्स के प्रत्यक्ष योग के रूप में है। | ||
==={{math|'''F'''<sub>''p''</sub>}} पर अघुलनशील प्रतिनिधित्व का उदाहरण === | ==={{math|'''F'''<sub>''p''</sub>}} पर अघुलनशील प्रतिनिधित्व का उदाहरण === | ||
*मान लीजिये <math>G</math>, <math>p</math> समूह और <math>V = \mathbb{F}_p^{n}</math> G का परिमित आयामी अघुलनशील प्रतिनिधित्व <math>\mathbb{F}_p</math> है। कक्षा-स्थिरीकरण प्रमेय द्वारा, प्रत्येक की कक्षा <math>V</math> तत्व द्वारा कार्य किया गया। <math>p</math> समूह <math>G</math> का आकार घात <math>p</math> है। चूँकि इन सभी कक्षाओं के आकार का योग होता है <math>G</math>, और | *मान लीजिये <math>G</math>, <math>p</math> समूह और <math>V = \mathbb{F}_p^{n}</math> G का परिमित आयामी अघुलनशील प्रतिनिधित्व <math>\mathbb{F}_p</math> है। कक्षा-स्थिरीकरण प्रमेय द्वारा, प्रत्येक की कक्षा <math>V</math> तत्व द्वारा कार्य किया गया। <math>p</math> समूह <math>G</math> का आकार घात <math>p</math> है। चूँकि इन सभी कक्षाओं के आकार का योग होता है <math>G</math>, और <math>0 \in V</math> आकार 1 की कक्षा में केवल स्वयं ही समाहित है, योग के मिलान के लिए आकार 1 की अन्य कक्षाएँ भी होनी चाहिए। अर्थात कुछ उपस्थित है <math>v\in V</math> ऐसा है कि <math>gv = v</math> सभी के लिए <math>g \in G</math> यह प्रत्येक अघुलनशील प्रतिनिधित्व को बाध्य करता है <math>p</math> समूह समाप्त <math> \mathbb{F}_p</math> आयामी होना चाहिए। | ||
==सैद्धांतिक भौतिकी और रसायन विज्ञान में अनुप्रयोग== | ==सैद्धांतिक भौतिकी और रसायन विज्ञान में अनुप्रयोग== | ||
Line 98: | Line 98: | ||
{{see also|क्वांटम यांत्रिकी में समरूपता|आणविक समरूपता|जाह्न-टेलर प्रभाव}} | {{see also|क्वांटम यांत्रिकी में समरूपता|आणविक समरूपता|जाह्न-टेलर प्रभाव}} | ||
[[क्वांटम भौतिकी]] और क्वांटम रसायन विज्ञान में, [[हैमिल्टनियन ऑपरेटर]] | [[क्वांटम भौतिकी]] और क्वांटम रसायन विज्ञान में, [[हैमिल्टनियन ऑपरेटर]] के पतित ईजेनस्टेट्स के प्रत्येक सेट में हैमिल्टनियन के समरूपता समूह के प्रतिनिधित्व के लिए सदिश समष्टि {{mvar|V}} सम्मिलित होता है। मल्टीप्लेट, जिसका सबसे उत्तम अध्ययन इसके अपरिवर्तनीय भागों में कमी के माध्यम से किया गया है। अत: अघुलनशील अभ्यावेदन की पहचान करने से किसी को व्यवस्थित लेबल करने की अनुमति मिलती है, यह अनुमान लगाया जा सकता है कि व्यवस्थित के अंतर्गत वे ऊर्जा स्तर को कैसे विभाजित करेंगे; या अन्य अवस्था में ट्रांजीशन इस प्रकार, {{mvar|V}} क्वांटम यांत्रिकी में, सिस्टम के समरूपता समूह के अपरिवर्तनीय प्रतिनिधित्व आंशिक रूप से या पूर्ण रूप से सिस्टम के ऊर्जा स्तर को लेबल करते हैं, जिससे [[चयन नियम|चयन नियमों]] को निर्धारित करने की अनुमति मिलती है।<ref>{{cite web|publisher=Oxford Dictionary of Chemistry|title=रसायन शास्त्र का एक शब्दकोश, उत्तर.कॉम| edition=6th |url= http://www.answers.com/topic/irreducible-representation}}</ref> | ||
== ली समूह == | == ली समूह == |
Revision as of 19:47, 4 December 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में, विशेष रूप से समूहों (गणित) और बीजगणित के प्रतिनिधित्व सिद्धांत में, अघुलनशील प्रतिनिधित्व या बीजगणितीय संरचना का उल्लंघन अशून्य प्रतिनिधित्व है जिसमें कोई उचित गैर-तुच्छ उप-प्रतिनिधित्व नहीं है , के साथ एक्शन के अंतर्गत संवृत कर दिया गया।
हिल्बर्ट समष्टि पर प्रत्येक परिमित-आयामी एकात्मक प्रतिनिधित्व अपरिवर्तनीय अभ्यावेदन का प्रत्यक्ष योग है। अघुलनशील अभ्यावेदन सदैव अविभाज्य होते हैं (अर्थात अभ्यावेदन के प्रत्यक्ष योग में इसे आगे विघटित नहीं किया जा सकता है), किंतु इसका विपरीत प्रभाव नहीं हो सकता है, उदाहरण के लिए ऊपरी त्रिकोणीय यूनीपोटेंट आव्यूह द्वारा कार्य करने वाली वास्तविक संख्याओं का द्वि-आयामी प्रतिनिधित्व अविभाज्य किंतु कम करने योग्य है।
इतिहास
मॉड्यूलर प्रतिनिधित्व सिद्धांत देने के लिए 1940 के दशक में रिचर्ड ब्रौएर द्वारा समूह प्रतिनिधित्व सिद्धांत को सामान्यीकृत किया गया था, जिसमें आव्यूह ऑपरेटर क्षेत्र (गणित) पर सदिश समष्टि पर कार्य करते हैं। वास्तविक संख्याओं के क्षेत्र में या सम्मिश्र संख्याओं के क्षेत्र में सदिश स्थान के अतिरिक्त स्वेछानुसार विशेषता (बीजगणित) का परिणामी सिद्धांत में अपरिवर्तनीय प्रतिनिधित्व के अनुरूप संरचना का सरल मॉड्यूल है।
अवलोकन
मान लीजिये प्रतिनिधित्व अर्थात समरूपता समूह का जहाँ क्षेत्र के ऊपर सदिश समष्टि है, यदि हम कोई आधार का चयन करते हैं तो के लिए , को समूह से व्युत्क्रमणीय आव्यूह के सेट में फलन ( समरूपता) के रूप में सोचा जा सकता है और इस संदर्भ में इसे आव्यूह प्रतिनिधित्व कहा जाता है। चूँकि, यदि हम बिना किसी आधार के समष्टि के बारे में सोचें तो यह चीजों को अधिक सरल बना देता है।
रैखिक उपसमष्टि को कहा जाता है। -अपरिवर्तनीय यदि सभी के लिए और सभी का सह-प्रतिबंध के सामान्य रैखिक समूह के लिए -अपरिवर्तनीय उपसमष्टि को उपनिरूपण के रूप में जाना जाता है। प्रतिनिधित्व इसे अलघुकरणीय कहा जाता है यदि इसमें केवल तुच्छ (गणित) उप-निरूपण हो (सभी अभ्यावेदन तुच्छ के साथ उप-निरूपण बना सकते हैं) -अपरिवर्तनीय उप-समष्टि, उदा. संपूर्ण सदिश समष्टि , और शून्य सदिश समष्टि {0} यदि कोई उचित गैर-तुच्छ अपरिवर्तनीय उप-समष्टि है, तो को कम करने योग्य कहा जाता है।
समूह अभ्यावेदन का संकेतन और शब्दावली
समूह तत्वों को आव्यूह (गणित) द्वारा दर्शाया जा सकता है, चूँकि इस संदर्भ में प्रतिनिधित्व शब्द का विशिष्ट और त्रुटिहीन अर्थ है। किसी समूह का प्रतिनिधित्व समूह के तत्वों से आव्यूहों के सामान्य रैखिक समूह तक का मानचित्रण है। संकेतन के रूप में, मान लीजिये a, b, c, ... समूह G के तत्वों को बिना किसी प्रतीक के समूह उत्पाद के साथ दर्शाते हैं, इसलिए ab, a और b का समूह उत्पाद है और G, का तत्व भी है, और प्रतिनिधित्व को दर्शाया जाना चाहिए। D द्वारा a का निरूपण इस प्रकार लिखा जाता है:
समूह अभ्यावेदन की परिभाषा के अनुसार, समूह उत्पाद का प्रतिनिधित्व अभ्यावेदन के आव्यूह गुणन में अनुवादित किया जाता है:
यदि e समूह का पहचान तत्व है (इसलिए ae = ea = a, आदि), फिर D(e) पहचान आव्यूह है, या पहचान आव्यूह का ब्लॉक आव्यूह है, क्योंकि हमारे पास होना चाहिए:
और इसी प्रकार समूह के अन्य सभी तत्वों के लिए भी अंतिम दो कथन उस आवश्यकता के अनुरूप हैं कि D समूह समरूपता है।
न्यूनीकरणीय और अपरिवर्तनीय प्रतिनिधित्व
प्रतिनिधित्व न्यूनीकरणीय है यदि इसमें गैर-तुच्छ G-अपरिवर्तनीय उप-समष्टि सम्मिलित है, अर्थात, सभी आव्यूह को उसी व्युत्क्रमणीय आव्यूह द्वारा ऊपरी त्रिकोणीय ब्लॉक रूप में रखा जा सकता है दूसरे शब्दों में , यदि कोई समानता परिवर्तन है:
जो प्रतिनिधित्व में प्रत्येक आव्यूह को समान पैटर्न ऊपरी त्रिकोणीय ब्लॉकों में मैप करता है। प्रत्येक क्रमित अनुक्रम लघु ब्लॉक समूह उपप्रस्तुति है। कहने का तात्पर्य यह है कि, यदि प्रतिनिधित्व, उदाहरण के लिए, आयाम 2 का है, तो हमारे पास है:
सूचना: भले ही कोई प्रतिनिधित्व कम किया जा सके, फिर भी इसका आव्यूह प्रतिनिधित्व ऊपरी त्रिकोणीय ब्लॉक रूप नहीं हो सकता है। इसका यह रूप तभी होगा जब हम उपयुक्त आधार का चयन करेंगे, जिसे आव्यूह मानक आधार से ऊपर प्रारम्भ करके प्राप्त किया जा सकता है।
विघटित और अविघटित अभ्यावेदन
यदि सभी आव्यूह हों तो प्रतिनिधित्व विघटित हो सकता है को उसी व्युत्क्रमणीय आव्यूह द्वारा ब्लॉक-विकर्ण के रूप में रखा जा सकता है। दूसरे शब्दों में, यदि आव्यूह समानता है:[1]
जो प्रतिनिधित्व में प्रत्येक आव्यूह को विकर्ण ब्लॉक के समान पैटर्न में विकर्णित करता है। ऐसा प्रत्येक ब्लॉक दूसरों से स्वतंत्र समूह उपप्रतिनिधित्व है। अभ्यावेदन D(a) और D′(a) को समतुल्य निरूपण कहा जाता है।[2] (k-आयामी, मान लीजिए) प्रतिनिधित्व को k > 1 आव्यूहों के प्रत्यक्ष योग में विघटित किया जा सकता है:
इसलिए D(a) विघटित हो सकता है, और कोष्ठक में सुपरस्क्रिप्ट द्वारा विघटित आव्यूह को लेबल करने की प्रथा है, जैसे कि n = 1, 2, ..., k के लिए D(n)(a) में, चूँकि कुछ लेखक केवल कोष्ठक के बिना संख्यात्मक लेबल लिखते हैं।
D(a) का आयाम ब्लॉकों के आयामों का योग है:
यदि यह संभव नहीं है, अर्थात k = 1, तो प्रतिनिधित्व अविभाज्य है।[1][3]
सूचना: भले ही कोई प्रतिनिधित्व विघटित हो, उसका आव्यूह प्रतिनिधित्व विकर्ण ब्लॉक रूप नहीं हो सकता है। इसका यह रूप तभी होगा जब हम उपयुक्त आधार का चयन करेंगे, जिसे आव्यूह मानक आधार से ऊपर प्रारम्भ करके प्राप्त किया जा सकता है।
अघुलनशील प्रतिनिधित्व और अविभाज्य प्रतिनिधित्व के मध्य संबंध
अघुलनशील प्रतिनिधित्व स्वभाव से अविभाज्य प्रतिनिधित्व है। चूँकि, कन्वर्से विफल हो सकता है।
किंतु कुछ नियमों के अंतर्गत, हमारे पास अविभाज्य प्रतिनिधित्व है जो अघुलनशील प्रतिनिधित्व है।
- जब समूह परिमित है, और इसका क्षेत्र पर प्रतिनिधित्व है, तो अविभाज्य प्रतिनिधित्व अघुलनशील प्रतिनिधित्व है। [4]
- जब समूह परिमित है, और इसका क्षेत्र पर प्रतिनिधित्व है, यदि हमारे पास है तो अविभाज्य प्रतिनिधित्व अघुलनशील प्रतिनिधित्व है।
अघुलनशील अभ्यावेदन के उदाहरण
तुच्छ प्रतिनिधित्व
सभी समूह के पास सभी समूह तत्वों को पहचान परिवर्तन के लिए मैप करके आयामी, अघुलनशील तुच्छ प्रतिनिधित्व है।
एक-आयामी प्रतिनिधित्व
कोई भी एक-आयामी प्रतिनिधित्व अप्रासंगिक है क्योंकि इसमें कोई उचित गैर-तुच्छ उप-समष्टि नहीं है।
अघुलनशील जटिल निरूपण
परिमित समूह G के अघुलनशील जटिल निरूपण को चरित्र सिद्धांत के परिणामों का उपयोग करके चित्रित किया जा सकता है। विशेष रूप से, सभी जटिल निरूपण इरेप्स के प्रत्यक्ष योग और इरेप्स की संख्या के रूप में विघटित होते हैं के संयुग्मी वर्गों की संख्या के समान है।[5]
- अप्रासंगिक जटिल निरूपण मानचित्रों द्वारा दिए गए है, जहाँ एकता का रूट है।
- मान लीजिये एक है, -आयामी जटिल प्रतिनिधित्व आधार के साथ तब इरेप्स के प्रत्यक्ष योग के रूप में विघटित होता है:और ओर्थोगोनल उप-समष्टि द्वारा दिया गया है:पूर्व इररेप आयामी और तुच्छ प्रतिनिधित्व के लिए आइसोमोर्फिक है उत्तरार्द्ध है आयामी और मानक प्रतिनिधित्व के रूप में जाना जाता है।[5]
- मान लीजिये समूह हो, नियमित प्रतिनिधित्व आधार पर मुक्त सम्मिश्र सदिश समष्टि है समूह क्रिया के साथ , निरूपित के सभी अघुलनशील प्रतिनिधित्व के विघटन में प्रकट होते हैं इर्रेप्स के प्रत्यक्ष योग के रूप में है।
Fp पर अघुलनशील प्रतिनिधित्व का उदाहरण
- मान लीजिये , समूह और G का परिमित आयामी अघुलनशील प्रतिनिधित्व है। कक्षा-स्थिरीकरण प्रमेय द्वारा, प्रत्येक की कक्षा तत्व द्वारा कार्य किया गया। समूह का आकार घात है। चूँकि इन सभी कक्षाओं के आकार का योग होता है , और आकार 1 की कक्षा में केवल स्वयं ही समाहित है, योग के मिलान के लिए आकार 1 की अन्य कक्षाएँ भी होनी चाहिए। अर्थात कुछ उपस्थित है ऐसा है कि सभी के लिए यह प्रत्येक अघुलनशील प्रतिनिधित्व को बाध्य करता है समूह समाप्त आयामी होना चाहिए।
सैद्धांतिक भौतिकी और रसायन विज्ञान में अनुप्रयोग
क्वांटम भौतिकी और क्वांटम रसायन विज्ञान में, हैमिल्टनियन ऑपरेटर के पतित ईजेनस्टेट्स के प्रत्येक सेट में हैमिल्टनियन के समरूपता समूह के प्रतिनिधित्व के लिए सदिश समष्टि V सम्मिलित होता है। मल्टीप्लेट, जिसका सबसे उत्तम अध्ययन इसके अपरिवर्तनीय भागों में कमी के माध्यम से किया गया है। अत: अघुलनशील अभ्यावेदन की पहचान करने से किसी को व्यवस्थित लेबल करने की अनुमति मिलती है, यह अनुमान लगाया जा सकता है कि व्यवस्थित के अंतर्गत वे ऊर्जा स्तर को कैसे विभाजित करेंगे; या अन्य अवस्था में ट्रांजीशन इस प्रकार, V क्वांटम यांत्रिकी में, सिस्टम के समरूपता समूह के अपरिवर्तनीय प्रतिनिधित्व आंशिक रूप से या पूर्ण रूप से सिस्टम के ऊर्जा स्तर को लेबल करते हैं, जिससे चयन नियमों को निर्धारित करने की अनुमति मिलती है।[6]
ली समूह
लोरेंत्ज़ समूह
D(K) और D(J) के इर्रेप्स जहाँ J घूर्णन का जनरेटर है और K बूस्ट के जनरेटर का उपयोग लोरेंत्ज़ समूह के स्पिन अभ्यावेदन के निर्माण के लिए किया जा सकता है, क्योंकि वे क्वांटम यांत्रिकी के स्पिन आव्यूह से संबंधित हैं। यह उन्हें सापेक्ष तरंग समीकरण प्राप्त करने की अनुमति देता है।[7]
यह भी देखें
साहचर्य बीजगणित
- सरल मॉड्यूल
- अविघटनीय मॉड्यूल
- साहचर्य बीजगणित का प्रतिनिधित्व
ली समूह
- ली बीजगणित का प्रतिनिधित्व सिद्धांत
- SU(2) का प्रतिनिधित्व सिद्धांत
- SL2(R) का प्रतिनिधित्व सिद्धांत
- गैलीलियन समूह का प्रतिनिधित्व सिद्धांत
- भिन्नता समूहों का प्रतिनिधित्व सिद्धांत
- पोंकारे समूह का प्रतिनिधित्व सिद्धांत
- उच्चतम भार का प्रमेय
संदर्भ
- ↑ 1.0 1.1 E. P. Wigner (1959). समूह सिद्धांत और परमाणु स्पेक्ट्रा के क्वांटम यांत्रिकी में इसका अनुप्रयोग. Pure and applied physics. Academic press. p. 73.
- ↑ W. K. Tung (1985). भौतिकी में समूह सिद्धांत. World Scientific. p. 32. ISBN 978-997-1966-560.
- ↑ W. K. Tung (1985). भौतिकी में समूह सिद्धांत. World Scientific. p. 33. ISBN 978-997-1966-560.
- ↑ Artin, Michael (2011). बीजगणित (2nd ed.). Pearson. p. 295. ISBN 978-0132413770.
- ↑ 5.0 5.1 Serre, Jean-Pierre (1977). परिमित समूहों का रैखिक निरूपण. Springer-Verlag. ISBN 978-0-387-90190-9.
- ↑ "रसायन शास्त्र का एक शब्दकोश, उत्तर.कॉम" (6th ed.). Oxford Dictionary of Chemistry.
- ↑ T. Jaroszewicz; P. S. Kurzepa (1992). "घूमते कणों के अंतरिक्ष-समय प्रसार की ज्यामिति". Annals of Physics. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
किताबें
- H. Weyl (1950). समूहों और क्वांटम यांत्रिकी का सिद्धांत. Courier Dover Publications. p. 203. ISBN 978-0-486-60269-1.
सापेक्षतावादी क्वांटम यांत्रिकी में चुंबकीय क्षण।
- P. R. Bunker; Per Jensen (2004). आणविक समरूपता के मूल सिद्धांत. CRC Press. ISBN 0-7503-0941-5.[हत्तपः://ववव.रूटलेज.कॉम/फंडामेंटल्स-ऑफ़-मॉलिक्यूलर-सिमिट्री/बंकर-जेन्सेन/प/बुक/9780750309417]
- A. D. Boardman; D. E. O'Conner; P. A. Young (1973). समरूपता और विज्ञान में इसके अनुप्रयोग. McGraw Hill. ISBN 978-0-07-084011-9.
- V. Heine (2007). क्वांटम यांत्रिकी में समूह सिद्धांत: इसके वर्तमान उपयोग का परिचय. Dover. ISBN 978-0-07-084011-9.
- V. Heine (1993). क्वांटम यांत्रिकी में समूह सिद्धांत: इसके वर्तमान उपयोग का एक परिचय. Courier Dover Publications. ISBN 978-048-6675-855.
- E. Abers (2004). क्वांटम यांत्रिकी. Addison Wesley. p. 425. ISBN 978-0-13-146100-0.
- B. R. Martin, G.Shaw (3 December 2008). कण भौतिकी (3rd ed.). Manchester Physics Series, John Wiley & Sons. p. 3. ISBN 978-0-470-03294-7.
- Weinberg, S. (1995), The Quantum Theory of Fields, vol. 1, Cambridge university press, pp. 230–231, ISBN 978-0-521-55001-7
- Weinberg, S. (1996), The Quantum Theory of Fields, vol. 2, Cambridge university press, ISBN 978-0-521-55002-4
- Weinberg, S. (2000), The Quantum Theory of Fields, vol. 3, Cambridge university press, ISBN 978-0-521-66000-6
- R. Penrose (2007). वास्तविकता की राह. Vintage books. ISBN 978-0-679-77631-4.
- P. W. Atkins (1970). आणविक क्वांटम यांत्रिकी (भाग 1 और 2): क्वांटम रसायन विज्ञान का परिचय. Vol. 1. Oxford University Press. pp. 125–126. ISBN 978-0-19-855129-4.
लेख
- Bargmann, V.; Wigner, E. P. (1948). "सापेक्षतावादी तरंग समीकरणों की समूह सैद्धांतिक चर्चा". Proc. Natl. Acad. Sci. U.S.A. 34 (5): 211–23. Bibcode:1948PNAS...34..211B. doi:10.1073/pnas.34.5.211. PMC 1079095. PMID 16578292.
- E. Wigner (1937). "अमानवीय लोरेंत्ज़ समूह के एकात्मक प्रतिनिधित्व पर" (PDF). Annals of Mathematics. 40 (1): 149–204. Bibcode:1939AnMat..40..149W. doi:10.2307/1968551. JSTOR 1968551. MR 1503456. S2CID 121773411. Archived from the original (PDF) on 2015-10-04. Retrieved 2013-07-07.
अग्रिम पठन
- Artin, Michael (1999). "Noncommutative Rings" (PDF). Chapter V.