अवलोकनीय: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{About|the use in physics|the use in statistics|Observable variable|the use in [[control theory]]|Observability|the use in [[software engineering]]|Observer pattern}} | {{About|the use in physics|the use in statistics|Observable variable|the use in [[control theory]]|Observability|the use in [[software engineering]]|Observer pattern}} | ||
भौतिकी में, [[अवलोकन]] योग्य भौतिक गुण या [[भौतिक मात्रा]] है जिसका [[माप]]न किया जा सकता है। उदाहरणों में स्थिति (वेक्टर) और संवेग शामिल हैं। [[शास्त्रीय यांत्रिकी]] द्वारा शासित प्रणालियों में, यह सभी संभावित सिस्टम स्थितियों के सेट पर [[वास्तविक संख्या]]-मूल्य वाला फ़ंक्शन है। [[क्वांटम भौतिकी]] में, यह [[कितना राज्य]], या [[गेज सिद्धांत]] है, जहां क्वांटम स्थिति की संपत्ति को परिचालन परिभाषा के कुछ अनुक्रम द्वारा निर्धारित किया जा सकता है। उदाहरण के लिए, इन परिचालनों में सिस्टम को विभिन्न [[विद्युत चुम्बकीय]] क्षेत्रों में सबमिट करना और अंततः मान पढ़ना शामिल हो सकता है। | |||
भौतिकी में, [[अवलोकन]] योग्य | |||
भौतिक रूप से सार्थक अवलोकनों को [[रेखीय मानचित्र]] कानूनों को भी पूरा करना चाहिए जो संदर्भ के विभिन्न फ़्रेमों में विभिन्न अवलोकनों द्वारा किए गए अवलोकनों से संबंधित हैं। ये परिवर्तन कानून राज्य स्थान के [[ स्वचालितता ]] हैं, जो कि आक्षेप [[परिवर्तन (गणित)]] है जो प्रश्न में अंतरिक्ष के कुछ गणितीय गुणों को संरक्षित करता है। | भौतिक रूप से सार्थक अवलोकनों को [[रेखीय मानचित्र]] कानूनों को भी पूरा करना चाहिए जो संदर्भ के विभिन्न फ़्रेमों में विभिन्न अवलोकनों द्वारा किए गए अवलोकनों से संबंधित हैं। ये परिवर्तन कानून राज्य स्थान के [[ स्वचालितता ]] हैं, जो कि आक्षेप [[परिवर्तन (गणित)]] है जो प्रश्न में अंतरिक्ष के कुछ गणितीय गुणों को संरक्षित करता है। | ||
Line 12: | Line 10: | ||
क्वांटम भौतिकी में, वेधशालाएं क्वांटम राज्यों के [[राज्य स्थान (भौतिकी)]] का प्रतिनिधित्व करने वाले हिल्बर्ट अंतरिक्ष पर [[रैखिक ऑपरेटर]]ों के रूप में प्रकट होती हैं। वेधशालाओं के [[eigenvalue]]s [[वास्तविक संख्या]]एं हैं जो संभावित मानों के अनुरूप हैं, अवलोकन योग्य द्वारा दर्शाए गए गतिशील चर को होने के रूप में मापा जा सकता है। अर्थात्, क्वांटम यांत्रिकी में अवलोकन विशेष माप के परिणामों को वास्तविक संख्याएँ निर्दिष्ट करते हैं, जो सिस्टम की मापी गई क्वांटम स्थिति के संबंध में ऑपरेटर के आइगेनवैल्यू के अनुरूप होते हैं। परिणामस्वरूप, केवल कुछ माप ही किसी क्वांटम प्रणाली की किसी स्थिति के लिए अवलोकन योग्य वस्तु का मूल्य निर्धारित कर सकते हैं। शास्त्रीय यांत्रिकी में, किसी अवलोकन योग्य वस्तु का मूल्य निर्धारित करने के लिए कोई भी माप किया जा सकता है। | क्वांटम भौतिकी में, वेधशालाएं क्वांटम राज्यों के [[राज्य स्थान (भौतिकी)]] का प्रतिनिधित्व करने वाले हिल्बर्ट अंतरिक्ष पर [[रैखिक ऑपरेटर]]ों के रूप में प्रकट होती हैं। वेधशालाओं के [[eigenvalue]]s [[वास्तविक संख्या]]एं हैं जो संभावित मानों के अनुरूप हैं, अवलोकन योग्य द्वारा दर्शाए गए गतिशील चर को होने के रूप में मापा जा सकता है। अर्थात्, क्वांटम यांत्रिकी में अवलोकन विशेष माप के परिणामों को वास्तविक संख्याएँ निर्दिष्ट करते हैं, जो सिस्टम की मापी गई क्वांटम स्थिति के संबंध में ऑपरेटर के आइगेनवैल्यू के अनुरूप होते हैं। परिणामस्वरूप, केवल कुछ माप ही किसी क्वांटम प्रणाली की किसी स्थिति के लिए अवलोकन योग्य वस्तु का मूल्य निर्धारित कर सकते हैं। शास्त्रीय यांत्रिकी में, किसी अवलोकन योग्य वस्तु का मूल्य निर्धारित करने के लिए कोई भी माप किया जा सकता है। | ||
क्वांटम प्रणाली की स्थिति और अवलोकन योग्य के मूल्य के बीच संबंध के विवरण के लिए कुछ रैखिक बीजगणित की आवश्यकता होती है। क्वांटम यांत्रिकी के गणितीय सूत्रीकरण में, चरण स्थिरांक तक, शुद्ध अवस्थाएं [[ हिल्बर्ट स्थान ]] V में गैर-शून्य [[वेक्टर (ज्यामिति)]] द्वारा दी जाती हैं। दो वैक्टर 'v' और 'w' को ही स्थिति निर्दिष्ट करने के लिए माना जाता है यदि और केवल यदि <math>\mathbf{w} = c\mathbf{v}</math> कुछ गैर-शून्य के लिए <math>c \in \Complex</math>. वी पर स्व-सहायक ऑपरेटरों द्वारा अवलोकन दिए जाते हैं। प्रत्येक स्व-सहायक ऑपरेटर भौतिक रूप से सार्थक अवलोकन योग्य से मेल नहीं खाता है। <ref>{{cite book |last1=Isham |first1=Christopher |title=Lectures On Quantum Theory: Mathematical And Structural Foundations |date=1995 |publisher=World Scientific |isbn=191129802X |pages=87–88 |url=https://books.google.com/books?id=vM02DwAAQBAJ}}</ref><ref>{{Citation | last1=Mackey | first1=George Whitelaw | author1-link=George Mackey | title=Mathematical Foundations of Quantum Mechanics | publisher=[[Dover Publications]] | location=New York | series=Dover Books on Mathematics | isbn=978-0-486-43517-6 | year=1963}}</ref><ref>{{Citation | last1=Emch | first1=Gerard G. | title=Algebraic methods in statistical mechanics and quantum field theory | publisher=[[Wiley-Interscience]] | isbn=978-0-471-23900-0 | year=1972}}</ref><ref>{{cite web |title=Not all self-adjoint operators are observables? |url=https://physics.stackexchange.com/questions/373357/not-all-self-adjoint-operators-are-observables |website=Physics Stack Exchange |access-date=11 February 2022}}</ref> इसके अलावा, सभी भौतिक अवलोकन गैर-तुच्छ स्व-सहायक ऑपरेटरों से जुड़े नहीं हैं। उदाहरण के लिए, क्वांटम सिद्धांत में, द्रव्यमान हैमिल्टनियन में पैरामीटर के रूप में प्रकट होता है, न कि गैर-तुच्छ ऑपरेटर के रूप में।<ref>{{cite book |last1=Isham |first1=Christopher |title=Lectures On Quantum Theory: Mathematical And Structural Foundations |date=1995 |publisher=World Scientific |isbn=191129802X |pages=87–88 |url=https://books.google.com/books?id=vM02DwAAQBAJ}}</ref> [[प्राथमिक कण]]ों की प्रणाली के मामले में, अंतरिक्ष V में तरंग फ़ंक्शन या क्वांटम अवस्था नामक फ़ंक्शन शामिल होते हैं। | |||
क्वांटम यांत्रिकी में परिवर्तन कानूनों के मामले में, अपेक्षित ऑटोमोर्फिज्म हिल्बर्ट स्पेस वी के एकात्मक ऑपरेटर (या [[एकात्मक विरोधी]]) [[रैखिक परिवर्तन]] हैं। गैलिलियन सापेक्षता या [[विशेष सापेक्षता]] के तहत, संदर्भ के फ्रेम का गणित विशेष रूप से सरल है, जो सेट को काफी हद तक प्रतिबंधित करता है। भौतिक रूप से सार्थक अवलोकन योग्य वस्तुएँ। | क्वांटम यांत्रिकी में परिवर्तन कानूनों के मामले में, अपेक्षित ऑटोमोर्फिज्म हिल्बर्ट स्पेस वी के एकात्मक ऑपरेटर (या [[एकात्मक विरोधी]]) [[रैखिक परिवर्तन]] हैं। गैलिलियन सापेक्षता या [[विशेष सापेक्षता]] के तहत, संदर्भ के फ्रेम का गणित विशेष रूप से सरल है, जो सेट को काफी हद तक प्रतिबंधित करता है। भौतिक रूप से सार्थक अवलोकन योग्य वस्तुएँ। | ||
क्वांटम यांत्रिकी में, अवलोकन योग्य वस्तुओं का मापन कुछ प्रतीत होता है कि सहज ज्ञान युक्त गुणों को प्रदर्शित करता है। विशेष रूप से, यदि कोई सिस्टम हिल्बर्ट स्पेस में वेक्टर द्वारा वर्णित स्थिति में है, तो माप प्रक्रिया राज्य को गैर-नियतात्मक लेकिन सांख्यिकीय रूप से पूर्वानुमानित तरीके से प्रभावित करती है। विशेष रूप से, माप लागू होने के बाद, एकल वेक्टर द्वारा राज्य विवरण को नष्ट किया जा सकता है, जिसे | क्वांटम यांत्रिकी में, अवलोकन योग्य वस्तुओं का मापन कुछ प्रतीत होता है कि सहज ज्ञान युक्त गुणों को प्रदर्शित करता है। विशेष रूप से, यदि कोई सिस्टम हिल्बर्ट स्पेस में वेक्टर द्वारा वर्णित स्थिति में है, तो माप प्रक्रिया राज्य को गैर-नियतात्मक लेकिन सांख्यिकीय रूप से पूर्वानुमानित तरीके से प्रभावित करती है। विशेष रूप से, माप लागू होने के बाद, एकल वेक्टर द्वारा राज्य विवरण को नष्ट किया जा सकता है, जिसे [[सांख्यिकीय समूह]] द्वारा प्रतिस्थापित किया जा सकता है। क्वांटम भौतिकी में माप संचालन की प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स) प्रकृति को कभी-कभी माप समस्या के रूप में संदर्भित किया जाता है और क्वांटम संचालन द्वारा गणितीय रूप से वर्णित किया जाता है। क्वांटम संचालन की संरचना के अनुसार, यह विवरण गणितीय रूप से [[कई-दुनिया की व्याख्या]] के बराबर है जहां मूल प्रणाली को बड़ी प्रणाली के उपप्रणाली के रूप में माना जाता है और मूल प्रणाली की स्थिति राज्य के आंशिक निशान द्वारा दी जाती है बड़ी प्रणाली का. | ||
क्वांटम यांत्रिकी में, गतिशील चर <math>A</math> जैसे स्थिति, ट्रांसलेशनल (रैखिक) गति, [[कोणीय गति ऑपरेटर]], [[स्पिन (भौतिकी)]], और [[कुल कोणीय गति]] प्रत्येक | क्वांटम यांत्रिकी में, गतिशील चर <math>A</math> जैसे स्थिति, ट्रांसलेशनल (रैखिक) गति, [[कोणीय गति ऑपरेटर]], [[स्पिन (भौतिकी)]], और [[कुल कोणीय गति]] प्रत्येक [[हर्मिटियन ऑपरेटर]] से जुड़े हुए हैं <math>\hat{A}</math> जो क्वांटम प्रणाली की क्वांटम स्थिति पर कार्य करता है। ऑपरेटर के [[eigenvalues]] <math>\hat{A}</math> उन संभावित मानों के अनुरूप है जिन्हें गतिशील चर के रूप में देखा जा सकता है। उदाहरण के लिए, मान लीजिए <math>|\psi_{a}\rangle</math> अवलोकनीय का ईजेनकेट ([[आइजन्वेक्टर]]) है <math>\hat{A}</math>, eigenvalue के साथ <math>a</math>, और हिल्बर्ट स्थान में मौजूद है। तब | ||
<math display="block">\hat{A}|\psi_a\rangle = a|\psi_a\rangle.</math> | <math display="block">\hat{A}|\psi_a\rangle = a|\psi_a\rangle.</math> | ||
यह ईजेनकेट समीकरण कहता है कि यदि अवलोकन योग्य का माप <math>\hat{A}</math> बनाया जाता है जबकि ब्याज की व्यवस्था राज्य में है <math>|\psi_a\rangle</math>, तो उस विशेष माप के देखे गए मान को आइगेनवैल्यू वापस करना होगा <math>a</math> निश्चित रूप से। हालाँकि, यदि ब्याज की व्यवस्था सामान्य स्थिति में है <math>|\phi\rangle \in \mathcal{H}</math>, फिर eigenvalue <math>a</math> संभाव्यता के साथ लौटाया जाता है <math>|\langle \psi_a|\phi\rangle|^2</math>, बॉर्न नियम द्वारा। | यह ईजेनकेट समीकरण कहता है कि यदि अवलोकन योग्य का माप <math>\hat{A}</math> बनाया जाता है जबकि ब्याज की व्यवस्था राज्य में है <math>|\psi_a\rangle</math>, तो उस विशेष माप के देखे गए मान को आइगेनवैल्यू वापस करना होगा <math>a</math> निश्चित रूप से। हालाँकि, यदि ब्याज की व्यवस्था सामान्य स्थिति में है <math>|\phi\rangle \in \mathcal{H}</math>, फिर eigenvalue <math>a</math> संभाव्यता के साथ लौटाया जाता है <math>|\langle \psi_a|\phi\rangle|^2</math>, बॉर्न नियम द्वारा। | ||
उपरोक्त परिभाषा कुछ हद तक वास्तविक [[भौतिक मात्रा]]ओं को दर्शाने के लिए वास्तविक संख्याओं को चुनने की हमारी परंपरा पर निर्भर है। वास्तव में, सिर्फ इसलिए कि गतिशील चर वास्तविक हैं और आध्यात्मिक अर्थ में अवास्तविक नहीं हैं, इसका मतलब यह नहीं है कि उन्हें गणितीय अर्थ में वास्तविक संख्याओं के अनुरूप होना चाहिए।<ref>{{cite book |last1=Ballentine |first1=Leslie |title=Quantum Mechanics: A Modern Development |date=2015 |publisher=World Scientific |isbn=978-9814578578 |page=49 |edition=2 |url=https://books.google.com/books?id=2JShngEACAAJ}}</ref> | उपरोक्त परिभाषा कुछ हद तक वास्तविक [[भौतिक मात्रा]]ओं को दर्शाने के लिए वास्तविक संख्याओं को चुनने की हमारी परंपरा पर निर्भर है। वास्तव में, सिर्फ इसलिए कि गतिशील चर वास्तविक हैं और आध्यात्मिक अर्थ में अवास्तविक नहीं हैं, इसका मतलब यह नहीं है कि उन्हें गणितीय अर्थ में वास्तविक संख्याओं के अनुरूप होना चाहिए।<ref>{{cite book |last1=Ballentine |first1=Leslie |title=Quantum Mechanics: A Modern Development |date=2015 |publisher=World Scientific |isbn=978-9814578578 |page=49 |edition=2 |url=https://books.google.com/books?id=2JShngEACAAJ}}</ref> | ||
अधिक सटीक होने के लिए, गतिशील चर/अवलोकन योग्य हिल्बर्ट स्पेस में | अधिक सटीक होने के लिए, गतिशील चर/अवलोकन योग्य हिल्बर्ट स्पेस में स्व-सहायक ऑपरेटर है। | ||
=== परिमित और अनंत आयामी हिल्बर्ट स्थानों पर ऑपरेटर्स === | === परिमित और अनंत आयामी हिल्बर्ट स्थानों पर ऑपरेटर्स === | ||
यदि हिल्बर्ट स्थान परिमित-आयामी है तो अवलोकनों को हर्मिटियन मैट्रिक्स द्वारा दर्शाया जा सकता है। अनंत-आयामी हिल्बर्ट अंतरिक्ष में, अवलोकन योग्य को | यदि हिल्बर्ट स्थान परिमित-आयामी है तो अवलोकनों को हर्मिटियन मैट्रिक्स द्वारा दर्शाया जा सकता है। अनंत-आयामी हिल्बर्ट अंतरिक्ष में, अवलोकन योग्य को [[सममित ऑपरेटर]] द्वारा दर्शाया जाता है, जो [[आंशिक कार्य]] करता है। इस तरह के बदलाव का कारण यह है कि अनंत-आयामी हिल्बर्ट अंतरिक्ष में, अवलोकन योग्य ऑपरेटर असीमित ऑपरेटर बन सकता है, जिसका अर्थ है कि अब इसका सबसे बड़ा स्वदेशी मूल्य नहीं है। परिमित-आयामी हिल्बर्ट स्थान में यह मामला नहीं है: ऑपरेटर के पास उस स्थिति के [[आयाम (गणित)]] से अधिक कोई स्वदेशी मान नहीं हो सकता है जिस पर वह कार्य करता है, और [[सुव्यवस्थित संपत्ति]] द्वारा, वास्तविक संख्याओं के किसी भी परिमित सेट में सबसे बड़ा होता है तत्व। उदाहरण के लिए, रेखा के अनुदिश गतिमान बिंदु कण की स्थिति किसी भी वास्तविक संख्या को उसके मान के रूप में ले सकती है, और वास्तविक संख्याओं का समुच्चय बेशुमार समुच्चय है। चूँकि किसी अवलोकन योग्य वस्तु का eigenvalue संभावित भौतिक मात्रा का प्रतिनिधित्व करता है जिसे उसके संबंधित गतिशील चर ले सकते हैं, हमें यह निष्कर्ष निकालना चाहिए कि इस बेशुमार अनंत-आयामी हिल्बर्ट अंतरिक्ष में देखने योग्य स्थिति के लिए कोई सबसे बड़ा eigenvalue नहीं है। | ||
== क्वांटम यांत्रिकी में संगत और असंगत अवलोकन == | == क्वांटम यांत्रिकी में संगत और असंगत अवलोकन == | ||
शास्त्रीय मात्राओं और क्वांटम यांत्रिक वेधशालाओं के बीच | शास्त्रीय मात्राओं और क्वांटम यांत्रिक वेधशालाओं के बीच महत्वपूर्ण अंतर यह है कि क्वांटम वेधशालाओं के कुछ जोड़े साथ मापने योग्य नहीं हो सकते हैं, संपत्ति जिसे पूरकता (भौतिकी) कहा जाता है। यह गणितीय रूप से उनके संबंधित ऑपरेटरों की गैर-[[ क्रमपरिवर्तनशीलता ]] द्वारा व्यक्त किया जाता है, इस प्रभाव से कि [[कम्यूटेटर (भौतिकी)]] | ||
<math display="block">\left[\hat{A}, \hat{B}\right] := \hat{A}\hat{B} - \hat{B}\hat{A} \neq \hat{0}.</math> | <math display="block">\left[\hat{A}, \hat{B}\right] := \hat{A}\hat{B} - \hat{B}\hat{A} \neq \hat{0}.</math> | ||
यह असमानता अवलोकन योग्य वस्तुओं के माप के क्रम पर माप परिणामों की निर्भरता को व्यक्त करती है <math>\hat{A}</math> और <math>\hat{B}</math> प्रदर्शन कर रहे हैं। का | यह असमानता अवलोकन योग्य वस्तुओं के माप के क्रम पर माप परिणामों की निर्भरता को व्यक्त करती है <math>\hat{A}</math> और <math>\hat{B}</math> प्रदर्शन कर रहे हैं। का माप <math>\hat{A}</math> क्वांटम स्थिति को इस तरह से बदल देता है जो बाद के माप के साथ असंगत है <math>\hat{B}</math> और इसके विपरीत। | ||
आवागमन संचालकों से संबंधित वेधशालाएँ संगत वेधशालाएँ कहलाती हैं। उदाहरण के लिए, गति के साथ कहते हैं <math>x</math> और <math>y</math> अक्ष संगत हैं. गैर-कम्यूटिंग ऑपरेटरों से संबंधित वेधशालाओं को असंगत वेधशालाएं या पूरक चर कहा जाता है। उदाहरण के लिए, | आवागमन संचालकों से संबंधित वेधशालाएँ संगत वेधशालाएँ कहलाती हैं। उदाहरण के लिए, गति के साथ कहते हैं <math>x</math> और <math>y</math> अक्ष संगत हैं. गैर-कम्यूटिंग ऑपरेटरों से संबंधित वेधशालाओं को असंगत वेधशालाएं या पूरक चर कहा जाता है। उदाहरण के लिए, ही अक्ष पर स्थिति और संवेग असंगत हैं।<ref name=messiah>{{Cite book|last=Messiah|first=Albert|title=क्वांटम यांत्रिकी|date=1966|publisher=North Holland, John Wiley & Sons|isbn=0486409244|language=en}}</ref>{{rp|155}} | ||
असंगत वेधशालाओं में सामान्य [[eigenfunction]]s का पूरा सेट नहीं हो सकता है। ध्यान दें कि कुछ | असंगत वेधशालाओं में सामान्य [[eigenfunction]]s का पूरा सेट नहीं हो सकता है। ध्यान दें कि कुछ साथ eigenvectors हो सकते हैं <math>\hat{A}</math> और <math>\hat{B}</math>, लेकिन पूर्ण [[आधार (वेक्टर स्थान)]] बनाने के लिए संख्या में पर्याप्त नहीं है।<ref>{{Cite book|last=Griffiths|first=David J.|url=https://books.google.com/books?id=0h-nDAAAQBAJ|title=क्वांटम यांत्रिकी का परिचय|date=2017|publisher=Cambridge University Press|isbn=978-1-107-17986-8|pages=111|language=en}}</ref><ref>{{Cite book|last1=Cohen-Tannoudji|first1=Claude|url=https://books.google.com/books?id=o6yftQEACAAJ|title=Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications|last2=Diu|first2=Bernard|last3=Laloë|first3=Franck|date=2019-12-04|publisher=Wiley|isbn=978-3-527-34553-3|pages=232|language=en}}</ref> | ||
Revision as of 20:04, 4 December 2023
भौतिकी में, अवलोकन योग्य भौतिक गुण या भौतिक मात्रा है जिसका मापन किया जा सकता है। उदाहरणों में स्थिति (वेक्टर) और संवेग शामिल हैं। शास्त्रीय यांत्रिकी द्वारा शासित प्रणालियों में, यह सभी संभावित सिस्टम स्थितियों के सेट पर वास्तविक संख्या-मूल्य वाला फ़ंक्शन है। क्वांटम भौतिकी में, यह कितना राज्य, या गेज सिद्धांत है, जहां क्वांटम स्थिति की संपत्ति को परिचालन परिभाषा के कुछ अनुक्रम द्वारा निर्धारित किया जा सकता है। उदाहरण के लिए, इन परिचालनों में सिस्टम को विभिन्न विद्युत चुम्बकीय क्षेत्रों में सबमिट करना और अंततः मान पढ़ना शामिल हो सकता है।
भौतिक रूप से सार्थक अवलोकनों को रेखीय मानचित्र कानूनों को भी पूरा करना चाहिए जो संदर्भ के विभिन्न फ़्रेमों में विभिन्न अवलोकनों द्वारा किए गए अवलोकनों से संबंधित हैं। ये परिवर्तन कानून राज्य स्थान के स्वचालितता हैं, जो कि आक्षेप परिवर्तन (गणित) है जो प्रश्न में अंतरिक्ष के कुछ गणितीय गुणों को संरक्षित करता है।
क्वांटम यांत्रिकी
क्वांटम भौतिकी में, वेधशालाएं क्वांटम राज्यों के राज्य स्थान (भौतिकी) का प्रतिनिधित्व करने वाले हिल्बर्ट अंतरिक्ष पर रैखिक ऑपरेटरों के रूप में प्रकट होती हैं। वेधशालाओं के eigenvalues वास्तविक संख्याएं हैं जो संभावित मानों के अनुरूप हैं, अवलोकन योग्य द्वारा दर्शाए गए गतिशील चर को होने के रूप में मापा जा सकता है। अर्थात्, क्वांटम यांत्रिकी में अवलोकन विशेष माप के परिणामों को वास्तविक संख्याएँ निर्दिष्ट करते हैं, जो सिस्टम की मापी गई क्वांटम स्थिति के संबंध में ऑपरेटर के आइगेनवैल्यू के अनुरूप होते हैं। परिणामस्वरूप, केवल कुछ माप ही किसी क्वांटम प्रणाली की किसी स्थिति के लिए अवलोकन योग्य वस्तु का मूल्य निर्धारित कर सकते हैं। शास्त्रीय यांत्रिकी में, किसी अवलोकन योग्य वस्तु का मूल्य निर्धारित करने के लिए कोई भी माप किया जा सकता है।
क्वांटम प्रणाली की स्थिति और अवलोकन योग्य के मूल्य के बीच संबंध के विवरण के लिए कुछ रैखिक बीजगणित की आवश्यकता होती है। क्वांटम यांत्रिकी के गणितीय सूत्रीकरण में, चरण स्थिरांक तक, शुद्ध अवस्थाएं हिल्बर्ट स्थान V में गैर-शून्य वेक्टर (ज्यामिति) द्वारा दी जाती हैं। दो वैक्टर 'v' और 'w' को ही स्थिति निर्दिष्ट करने के लिए माना जाता है यदि और केवल यदि कुछ गैर-शून्य के लिए . वी पर स्व-सहायक ऑपरेटरों द्वारा अवलोकन दिए जाते हैं। प्रत्येक स्व-सहायक ऑपरेटर भौतिक रूप से सार्थक अवलोकन योग्य से मेल नहीं खाता है। [1][2][3][4] इसके अलावा, सभी भौतिक अवलोकन गैर-तुच्छ स्व-सहायक ऑपरेटरों से जुड़े नहीं हैं। उदाहरण के लिए, क्वांटम सिद्धांत में, द्रव्यमान हैमिल्टनियन में पैरामीटर के रूप में प्रकट होता है, न कि गैर-तुच्छ ऑपरेटर के रूप में।[5] प्राथमिक कणों की प्रणाली के मामले में, अंतरिक्ष V में तरंग फ़ंक्शन या क्वांटम अवस्था नामक फ़ंक्शन शामिल होते हैं।
क्वांटम यांत्रिकी में परिवर्तन कानूनों के मामले में, अपेक्षित ऑटोमोर्फिज्म हिल्बर्ट स्पेस वी के एकात्मक ऑपरेटर (या एकात्मक विरोधी) रैखिक परिवर्तन हैं। गैलिलियन सापेक्षता या विशेष सापेक्षता के तहत, संदर्भ के फ्रेम का गणित विशेष रूप से सरल है, जो सेट को काफी हद तक प्रतिबंधित करता है। भौतिक रूप से सार्थक अवलोकन योग्य वस्तुएँ।
क्वांटम यांत्रिकी में, अवलोकन योग्य वस्तुओं का मापन कुछ प्रतीत होता है कि सहज ज्ञान युक्त गुणों को प्रदर्शित करता है। विशेष रूप से, यदि कोई सिस्टम हिल्बर्ट स्पेस में वेक्टर द्वारा वर्णित स्थिति में है, तो माप प्रक्रिया राज्य को गैर-नियतात्मक लेकिन सांख्यिकीय रूप से पूर्वानुमानित तरीके से प्रभावित करती है। विशेष रूप से, माप लागू होने के बाद, एकल वेक्टर द्वारा राज्य विवरण को नष्ट किया जा सकता है, जिसे सांख्यिकीय समूह द्वारा प्रतिस्थापित किया जा सकता है। क्वांटम भौतिकी में माप संचालन की प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स) प्रकृति को कभी-कभी माप समस्या के रूप में संदर्भित किया जाता है और क्वांटम संचालन द्वारा गणितीय रूप से वर्णित किया जाता है। क्वांटम संचालन की संरचना के अनुसार, यह विवरण गणितीय रूप से कई-दुनिया की व्याख्या के बराबर है जहां मूल प्रणाली को बड़ी प्रणाली के उपप्रणाली के रूप में माना जाता है और मूल प्रणाली की स्थिति राज्य के आंशिक निशान द्वारा दी जाती है बड़ी प्रणाली का.
क्वांटम यांत्रिकी में, गतिशील चर जैसे स्थिति, ट्रांसलेशनल (रैखिक) गति, कोणीय गति ऑपरेटर, स्पिन (भौतिकी), और कुल कोणीय गति प्रत्येक हर्मिटियन ऑपरेटर से जुड़े हुए हैं जो क्वांटम प्रणाली की क्वांटम स्थिति पर कार्य करता है। ऑपरेटर के eigenvalues उन संभावित मानों के अनुरूप है जिन्हें गतिशील चर के रूप में देखा जा सकता है। उदाहरण के लिए, मान लीजिए अवलोकनीय का ईजेनकेट (आइजन्वेक्टर) है , eigenvalue के साथ , और हिल्बर्ट स्थान में मौजूद है। तब
उपरोक्त परिभाषा कुछ हद तक वास्तविक भौतिक मात्राओं को दर्शाने के लिए वास्तविक संख्याओं को चुनने की हमारी परंपरा पर निर्भर है। वास्तव में, सिर्फ इसलिए कि गतिशील चर वास्तविक हैं और आध्यात्मिक अर्थ में अवास्तविक नहीं हैं, इसका मतलब यह नहीं है कि उन्हें गणितीय अर्थ में वास्तविक संख्याओं के अनुरूप होना चाहिए।[6] अधिक सटीक होने के लिए, गतिशील चर/अवलोकन योग्य हिल्बर्ट स्पेस में स्व-सहायक ऑपरेटर है।
परिमित और अनंत आयामी हिल्बर्ट स्थानों पर ऑपरेटर्स
यदि हिल्बर्ट स्थान परिमित-आयामी है तो अवलोकनों को हर्मिटियन मैट्रिक्स द्वारा दर्शाया जा सकता है। अनंत-आयामी हिल्बर्ट अंतरिक्ष में, अवलोकन योग्य को सममित ऑपरेटर द्वारा दर्शाया जाता है, जो आंशिक कार्य करता है। इस तरह के बदलाव का कारण यह है कि अनंत-आयामी हिल्बर्ट अंतरिक्ष में, अवलोकन योग्य ऑपरेटर असीमित ऑपरेटर बन सकता है, जिसका अर्थ है कि अब इसका सबसे बड़ा स्वदेशी मूल्य नहीं है। परिमित-आयामी हिल्बर्ट स्थान में यह मामला नहीं है: ऑपरेटर के पास उस स्थिति के आयाम (गणित) से अधिक कोई स्वदेशी मान नहीं हो सकता है जिस पर वह कार्य करता है, और सुव्यवस्थित संपत्ति द्वारा, वास्तविक संख्याओं के किसी भी परिमित सेट में सबसे बड़ा होता है तत्व। उदाहरण के लिए, रेखा के अनुदिश गतिमान बिंदु कण की स्थिति किसी भी वास्तविक संख्या को उसके मान के रूप में ले सकती है, और वास्तविक संख्याओं का समुच्चय बेशुमार समुच्चय है। चूँकि किसी अवलोकन योग्य वस्तु का eigenvalue संभावित भौतिक मात्रा का प्रतिनिधित्व करता है जिसे उसके संबंधित गतिशील चर ले सकते हैं, हमें यह निष्कर्ष निकालना चाहिए कि इस बेशुमार अनंत-आयामी हिल्बर्ट अंतरिक्ष में देखने योग्य स्थिति के लिए कोई सबसे बड़ा eigenvalue नहीं है।
क्वांटम यांत्रिकी में संगत और असंगत अवलोकन
शास्त्रीय मात्राओं और क्वांटम यांत्रिक वेधशालाओं के बीच महत्वपूर्ण अंतर यह है कि क्वांटम वेधशालाओं के कुछ जोड़े साथ मापने योग्य नहीं हो सकते हैं, संपत्ति जिसे पूरकता (भौतिकी) कहा जाता है। यह गणितीय रूप से उनके संबंधित ऑपरेटरों की गैर-क्रमपरिवर्तनशीलता द्वारा व्यक्त किया जाता है, इस प्रभाव से कि कम्यूटेटर (भौतिकी)
आवागमन संचालकों से संबंधित वेधशालाएँ संगत वेधशालाएँ कहलाती हैं। उदाहरण के लिए, गति के साथ कहते हैं और अक्ष संगत हैं. गैर-कम्यूटिंग ऑपरेटरों से संबंधित वेधशालाओं को असंगत वेधशालाएं या पूरक चर कहा जाता है। उदाहरण के लिए, ही अक्ष पर स्थिति और संवेग असंगत हैं।[7]: 155
असंगत वेधशालाओं में सामान्य eigenfunctions का पूरा सेट नहीं हो सकता है। ध्यान दें कि कुछ साथ eigenvectors हो सकते हैं और , लेकिन पूर्ण आधार (वेक्टर स्थान) बनाने के लिए संख्या में पर्याप्त नहीं है।[8][9]
यह भी देखें
- माप (भौतिकी)
- अवलोकनीय ब्रह्माण्ड
- प्रेक्षक (क्वांटम भौतिकी)
- ऑपरेटर (भौतिकी)#क्यूएम ऑपरेटरों की तालिका
- अदृश्य
संदर्भ
- ↑ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
- ↑ Mackey, George Whitelaw (1963), Mathematical Foundations of Quantum Mechanics, Dover Books on Mathematics, New York: Dover Publications, ISBN 978-0-486-43517-6
- ↑ Emch, Gerard G. (1972), Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, ISBN 978-0-471-23900-0
- ↑ "Not all self-adjoint operators are observables?". Physics Stack Exchange. Retrieved 11 February 2022.
- ↑ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
- ↑ Ballentine, Leslie (2015). Quantum Mechanics: A Modern Development (2 ed.). World Scientific. p. 49. ISBN 978-9814578578.
- ↑ Messiah, Albert (1966). क्वांटम यांत्रिकी (in English). North Holland, John Wiley & Sons. ISBN 0486409244.
- ↑ Griffiths, David J. (2017). क्वांटम यांत्रिकी का परिचय (in English). Cambridge University Press. p. 111. ISBN 978-1-107-17986-8.
- ↑ Cohen-Tannoudji, Claude; Diu, Bernard; Laloë, Franck (2019-12-04). Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (in English). Wiley. p. 232. ISBN 978-3-527-34553-3.
अग्रिम पठन
- Auyang, Sunny Y. (1995). How is quantum field theory possible?. New York, N.Y.: Oxford University Press. ISBN 978-0195093452.
- von Neumann, John (1996). Mathematical foundations of quantum mechanics. Translated by Robert T. Beyer (12. print., 1. paperback print. ed.). Princeton, N.J.: Princeton Univ. Press. ISBN 978-0691028934.
- Varadarajan, V.S. (2007). Geometry of quantum theory (2nd ed.). New York: Springer. ISBN 9780387493862.
- Weyl, Hermann (2009). "Appendix C: Quantum physics and causality". Philosophy of mathematics and natural science. Revised and augmented English edition based on a translation by Olaf Helmer. Princeton, N.J.: Princeton University Press. pp. 253–265. ISBN 9780691141206.
- Moretti, Valter (2017). Spectral Theory and Quantum Mechanics: Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation (2 ed.). Springer. ISBN 978-3319707068.
- Moretti, Valter (2019). Fundamental Mathematical Structures of Quantum Theory: Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation. Springer. ISBN 978-3030183462.