लिंडब्लाडियन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Markovian quantum master equation for density matrices (mixed states)}} | {{Short description|Markovian quantum master equation for density matrices (mixed states)}} | ||
[[क्वांटम यांत्रिकी]] में, '''गोरिनी-कोसाकोव्स्की-सुदर्शन-लिंडब्लैड समीकरण''' (जीकेएसएल समीकरण, जिसका नाम [[विटोरियो गोरिनी]], [[आंद्रेज कोसाकोव्स्की]], ई.सी. जॉर्ज सुदर्शन और गोरान लिंडब्लैड (भौतिक विज्ञानी) | [[क्वांटम यांत्रिकी]] में, '''गोरिनी-कोसाकोव्स्की-सुदर्शन-लिंडब्लैड समीकरण''' (जीकेएसएल समीकरण, जिसका नाम [[विटोरियो गोरिनी]], [[आंद्रेज कोसाकोव्स्की]], ई.सी. जॉर्ज सुदर्शन और गोरान लिंडब्लैड (भौतिक विज्ञानी) या गोरान लिंडब्लैड के नाम पर रखा गया है), लिंडब्लैड रूप में मास्टर समीकरण, क्वांटम लिउविलियन, या लिंडब्लैडियन [[मार्कोव प्रक्रिया]] [[क्वांटम मास्टर समीकरण]] के सामान्य रूपों में से है जो विवृत क्वांटम प्रणाली का वर्णन करता है। यह क्वांटम प्रणाली प्रदर्शित के लिए श्रोडिंगर समीकरण को सामान्यीकृत करता है; अर्थात्, प्रणाली अपने वातावरण के संपर्क में हैं। परिणामी गतिशीलता अब एकात्मक नहीं है, किन्तु पुनः भी [[पूरी तरह से सकारात्मक ट्रेस-संरक्षण|ट्रेस-संरक्षण और पूर्ण रूप से धनात्मक]] या ट्रेस-संरक्षण और किसी भी प्रारंभिक स्थिति के लिए पूर्ण रूप से धनात्मक होने की प्रोपर्टी को संतुष्ट करती है।<ref name="BP"> | ||
{{cite book |last1=Breuer |first1=Heinz-Peter |title=The Theory of Open Quantum Systems |last2=Petruccione |first2=F. |publisher=Oxford University Press |year=2002 |isbn=978-0-1985-2063-4}}</ref> श्रोडिंगर समीकरण या, वास्तव में, वॉन न्यूमैन समीकरण, जीकेएसएल समीकरण का विशेष | {{cite book |last1=Breuer |first1=Heinz-Peter |title=The Theory of Open Quantum Systems |last2=Petruccione |first2=F. |publisher=Oxford University Press |year=2002 |isbn=978-0-1985-2063-4}}</ref> श्रोडिंगर समीकरण या, वास्तव में, वॉन न्यूमैन समीकरण, जीकेएसएल समीकरण का विशेष स्थिति है, जिसके कारण कुछ अनुमान लगाई गई हैं कि क्वांटम यांत्रिकी को लिंडब्लैड समीकरण के आगे के अनुप्रयोग और विश्लेषण के माध्यम से उत्पादक रूप से विस्तारित और विस्तारित किया जा सकता है।<ref>{{cite journal|last=Weinberg|first=Steven|author-link=Steven Weinberg|title=राज्य वैक्टर के बिना क्वांटम यांत्रिकी|doi=10.1103/PhysRevA.90.042102|journal=Phys. Rev. A| volume=90 | page=042102 | year=2014|issue=4|arxiv=1405.3483|bibcode=2014PhRvA..90d2102W|s2cid=53990012}}</ref> श्रोडिंगर समीकरण [[जितना राज्य|स्थिति सदिश]] से संबंधित है, जो केवल [[शुद्ध क्वांटम अवस्था]] का वर्णन कर सकता है और इस प्रकार [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] की तुलना में कम सामान्य है, जो [[मिश्रित अवस्था (भौतिकी)]] का भी वर्णन कर सकता है। | ||
== प्रेरणा == | == प्रेरणा == | ||
क्वांटम यांत्रिकी के विहित सूत्रीकरण में, प्रणाली का समय विकास एकात्मक गतिशीलता द्वारा नियंत्रित होता है। इसका तात्पर्य यह है कि | क्वांटम यांत्रिकी के विहित सूत्रीकरण में, प्रणाली का समय विकास एकात्मक गतिशीलता द्वारा नियंत्रित होता है। इसका तात्पर्य यह है कि पूर्ण प्रक्रिया में कोई क्षय नहीं होता है और चरण सुसंगतता बनी रहती है, और यह इस तथ्य का परिणाम है कि स्वतंत्रता की सभी भाग लेने वाली डिग्री पर विचार किया जाता है। चूंकि, कोई भी वास्तविक भौतिक प्रणाली पूर्णतः पृथक नहीं है, और अपने पर्यावरण के साथ इंट्रैक्ट करेगी। प्रणाली के बाहर स्वतंत्रता की डिग्री के साथ इस अंतःक्रिया के परिणामस्वरूप वातावरण में ऊर्जा का अपव्यय होता है, जिससे चरण का क्षय और यादृच्छिककरण होता है। इससे भी अधिक, किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया को समझना विभिन्न सामान्यतः देखी जाने वाली घटनाओं को समझने के लिए आवश्यक है, जैसे उत्तेजित परमाणुओं से प्रकाश का सहज उत्सर्जन, या लेजर जैसे विभिन्न क्वांटम तकनीकी उपकरणों का प्रदर्शन किया गया था। | ||
किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया के | किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया के समाधान के लिए कुछ गणितीय तकनीकें प्रस्तुत की गई हैं। इनमें घनत्व आव्यूह और उससे जुड़े मास्टर समीकरण का उपयोग का उपयोग किया जाता है। जबकि सैद्धांतिक रूप से क्वांटम गतिशीलता को हल करने का यह दृष्टिकोण श्रोडिंगर चित्र या [[हाइजेनबर्ग चित्र]] के समान है, यह असंगत प्रक्रियाओं को सम्मिलित करने की अधिक सरलता से अनुमति देता है, जो पर्यावरणीय इंट्रैक्ट का प्रतिनिधित्व करते हैं। घनत्व संचालक की प्रोपर्टी यह है कि यह क्वांटम स्थितियों के मौलिक मिश्रण का प्रतिनिधित्व कर सकता है, और इस प्रकार तथाकथित विवृत क्वांटम प्रणाली की गतिशीलता का स्पष्ट वर्णन करने के लिए महत्वपूर्ण है। | ||
==परिभाषा== | ==परिभाषा== | ||
प्रणाली के घनत्व आव्यूह के लिए लिंडब्लैड मास्टर समीकरण {{mvar|ρ}} के रूप में लिखा जा सकता है<ref name="BP"/> (शैक्षणिक परिचय के लिए आप इसका उल्लेख कर सकते हैं<ref>{{cite journal|last=Manzano|first=Daniel|title=लिंडब्लैड मास्टर समीकरण का संक्षिप्त परिचय|doi=10.1063/1.5115323 | |||
|journal=AIP Advances | volume=10 | page=025106 | year=2020|issue=2|arxiv=1906.04478|bibcode=2020AIPA...10b5106M|s2cid=184487806}}</ref>) | |journal=AIP Advances | volume=10 | page=025106 | year=2020|issue=2|arxiv=1906.04478|bibcode=2020AIPA...10b5106M|s2cid=184487806}}</ref>) | ||
<math>\dot\rho=-{i\over\hbar}[H,\rho]+\sum_{i}^{} \gamma_i\left(L_i\rho L_i^\dagger -\frac{1}{2} \left\{L_i^\dagger L_i, \rho\right\} \right)</math> | <math>\dot\rho=-{i\over\hbar}[H,\rho]+\sum_{i}^{} \gamma_i\left(L_i\rho L_i^\dagger -\frac{1}{2} \left\{L_i^\dagger L_i, \rho\right\} \right)</math> | ||
कहाँ <math>\{a, b\} = ab + ba </math> [[एंटीकम्यूटेटर]] है, <math>H</math> हैमिल्टनियन प्रणाली है, जो गतिकी के एकात्मक पहलुओं का वर्णन करती है, और <math>L_i</math> जंप | कहाँ <math>\{a, b\} = ab + ba </math> [[एंटीकम्यूटेटर]] है, <math>H</math> हैमिल्टनियन प्रणाली है, जो गतिकी के एकात्मक पहलुओं का वर्णन करती है, और <math>L_i</math> जंप संचालक का समूह है जो गतिशीलता के विघटनकारी भाग का वर्णन करता है। जंप संचालक का आकार बताता है कि पर्यावरण प्रणाली पर कैसे कार्य करता है, और अंततः प्रणाली-पर्यावरण गतिशीलता के सूक्ष्म मॉडल से निर्धारित किया जाना चाहिए। अंत में, <math>\gamma_i \geq 0</math> गैर-नकारात्मक गुणांकों का सेट है जिसे अवमंदन दर कहा जाता है। मैं गिरा <math>\gamma_i = 0</math> वॉन न्यूमैन समीकरण को पुनः प्राप्त करता है <math>\dot\rho=-(i/\hbar)[H,\rho]</math> एकात्मक गतिशीलता का वर्णन, जो मौलिक लिउविले के प्रमेय (हैमिल्टनियन) का क्वांटम एनालॉग है। | ||
अधिक सामान्यतः, जीकेएसएल समीकरण का रूप होता है | अधिक सामान्यतः, जीकेएसएल समीकरण का रूप होता है | ||
:<math>\dot\rho=-{i\over\hbar}[H,\rho]+\sum_{n,m } h_{nm}\left(A_n\rho A_m^\dagger-\frac{1}{2}\left\{A_m^\dagger A_n, \rho\right\}\right)</math> | :<math>\dot\rho=-{i\over\hbar}[H,\rho]+\sum_{n,m } h_{nm}\left(A_n\rho A_m^\dagger-\frac{1}{2}\left\{A_m^\dagger A_n, \rho\right\}\right)</math> | ||
कहाँ <math>\{A_m\}</math> मनमाना | कहाँ <math>\{A_m\}</math> मनमाना संचालक हैं और {{mvar|h}} [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक-निश्चित आव्यूह]] आव्यूह है। उत्तरार्द्ध यह सुनिश्चित करने के लिए सख्त आवश्यकता है कि गतिशीलता ट्रेस-संरक्षित और पूर्ण रूप से धनात्मक है। की संख्या <math>A_m</math> संचालक का कार्य मनमाना है, और उन्हें किसी विशेष गुण को पूरा करने की आवश्यकता नहीं है। किन्तु अगर प्रणाली है <math>N</math>-आयामी, इसे दिखाया जा सकता है<ref name="BP" />कि मास्टर समीकरण को सेट द्वारा पूर्ण रूप से वर्णित किया जा सकता है <math>N^2-1</math> संचालक, बशर्ते वे संचालक के स्थान के लिए आधार बनाते हों। | ||
आव्यूह के बाद से {{mvar|h}} धनात्मक अर्धनिश्चित है, यह [[एकात्मक परिवर्तन]] के साथ [[विकर्णीय मैट्रिक्स|विकर्णीय आव्यूह]] हो सकता है {{mvar|u}}: | |||
:<math>u^\dagger h u = \begin{bmatrix} | :<math>u^\dagger h u = \begin{bmatrix} | ||
Line 30: | Line 30: | ||
0 & 0 & \cdots & \gamma_{N^2-1} | 0 & 0 & \cdots & \gamma_{N^2-1} | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
जहां eigenvalues {{mvar|γ<sub>i</sub>}} गैर-नकारात्मक हैं। यदि हम किसी अन्य ऑर्थोनॉर्मल | जहां eigenvalues {{mvar|γ<sub>i</sub>}} गैर-नकारात्मक हैं। यदि हम किसी अन्य ऑर्थोनॉर्मल संचालक आधार को परिभाषित करते हैं | ||
:<math> L_i = \sum_j u_{ji} A_j </math> | :<math> L_i = \sum_j u_{ji} A_j </math> | ||
Line 41: | Line 41: | ||
{{Main|Quantum Markov semigroup}} | {{Main|Quantum Markov semigroup}} | ||
लिंडब्लैडियन द्वारा विभिन्न समय के लिए बनाए गए मानचित्रों को सामूहिक रूप से क्वांटम डायनेमिक सेमीग्रुप के रूप में संदर्भित किया जाता है [[क्वांटम गतिशील मानचित्र]] मानचित्रों का परिवार <math>\phi_t</math> एकल समय पैरामीटर द्वारा अनुक्रमित घनत्व | लिंडब्लैडियन द्वारा विभिन्न समय के लिए बनाए गए मानचित्रों को सामूहिक रूप से क्वांटम डायनेमिक सेमीग्रुप के रूप में संदर्भित किया जाता है [[क्वांटम गतिशील मानचित्र]] मानचित्रों का परिवार <math>\phi_t</math> एकल समय पैरामीटर द्वारा अनुक्रमित घनत्व आव्यूह के स्थान पर <math>t \ge 0</math> जो [[अर्धसमूह]] प्रोपर्टी का पालन करता है | ||
:<math>\phi_s(\phi_t(\rho)) = \phi_{t+s}(\rho) , \qquad t,s \ge 0.</math> | :<math>\phi_s(\phi_t(\rho)) = \phi_{t+s}(\rho) , \qquad t,s \ge 0.</math> | ||
लिंडब्लैड समीकरण द्वारा प्राप्त किया जा सकता है | लिंडब्लैड समीकरण द्वारा प्राप्त किया जा सकता है | ||
:<math>\mathcal{L}(\rho) = \mathrm{lim}_{\Delta t \to 0} \frac{\phi_{\Delta t}(\rho)-\phi_0(\rho)}{\Delta t}</math> | :<math>\mathcal{L}(\rho) = \mathrm{lim}_{\Delta t \to 0} \frac{\phi_{\Delta t}(\rho)-\phi_0(\rho)}{\Delta t}</math> | ||
जो, की रैखिकता द्वारा <math>\phi_t</math>, लीनियर | जो, की रैखिकता द्वारा <math>\phi_t</math>, लीनियर सुपरसंचालक है। सेमीग्रुप को इस प्रकार पुनर्प्राप्त किया जा सकता है | ||
:<math>\phi_{t+s}(\rho) = e^{\mathcal{L}s} \phi_t(\rho).</math> | :<math>\phi_{t+s}(\rho) = e^{\mathcal{L}s} \phi_t(\rho).</math> | ||
Line 51: | Line 51: | ||
===अपरिवर्तनीय गुण=== | ===अपरिवर्तनीय गुण=== | ||
लिंडब्लाड समीकरण किसी भी एकात्मक परिवर्तन के तहत अपरिवर्तनीय है {{mvar|v}} लिंडब्लाड | लिंडब्लाड समीकरण किसी भी एकात्मक परिवर्तन के तहत अपरिवर्तनीय है {{mvar|v}} लिंडब्लाड संचालक और स्थिरांकों की, | ||
:<math> \sqrt{\gamma_i} L_i \to \sqrt{\gamma_i'} L_i' = \sum_{j} v_{ij} \sqrt{\gamma_j} L_j ,</math> | :<math> \sqrt{\gamma_i} L_i \to \sqrt{\gamma_i'} L_i' = \sum_{j} v_{ij} \sqrt{\gamma_j} L_j ,</math> | ||
Line 59: | Line 59: | ||
:<math> H \to H' = H + \frac{1}{2i} \sum_j \gamma_j \left (a_j^* L_j - a_j L_j^\dagger \right ) +bI,</math> | :<math> H \to H' = H + \frac{1}{2i} \sum_j \gamma_j \left (a_j^* L_j - a_j L_j^\dagger \right ) +bI,</math> | ||
कहाँ {{mvar|a<sub>i</sub>}} सम्मिश्र संख्याएँ हैं और {{mvar|b}} वास्तविक संख्या है. | कहाँ {{mvar|a<sub>i</sub>}} सम्मिश्र संख्याएँ हैं और {{mvar|b}} वास्तविक संख्या है. | ||
चूंकि, पहला परिवर्तन संचालक की रूढ़िवादिता को नष्ट कर देता है {{mvar|L<sub>i</sub>}} (जब तक कि सभी {{mvar|γ<sub>i</sub>}} समान हैं) और दूसरा परिवर्तन ट्रेसलेसनेस को नष्ट कर देता है। इसलिए, के बीच पतन तक {{mvar|γ<sub>i</sub>}}, द {{mvar|L<sub>i</sub>}}लिंडब्लाड समीकरण के विकर्ण रूप को गतिशीलता द्वारा विशिष्ट रूप से निर्धारित किया जाता है, जब तक हमें उन्हें ऑर्थोनॉर्मल और ट्रेसलेस होने की आवश्यकता होती है। | |||
===हाइजेनबर्ग चित्र=== | ===हाइजेनबर्ग चित्र=== | ||
श्रोडिंगर चित्र में घनत्व | श्रोडिंगर चित्र में घनत्व आव्यूह के लिंडब्लाड-प्रकार के विकास को हाइजेनबर्ग चित्र में समकक्ष रूप से वर्णित किया जा सकता है | ||
गति के निम्नलिखित (विकर्णीकृत) समीकरण का उपयोग करना प्रत्येक अवलोकन योग्य क्वांटम के लिए {{mvar|X}}: | गति के निम्नलिखित (विकर्णीकृत) समीकरण का उपयोग करना प्रत्येक अवलोकन योग्य क्वांटम के लिए {{mvar|X}}: | ||
:<math>\dot{X} = \frac{i}{\hbar} [H, X] +\sum_i \gamma_i \left(L_i^\dagger X L_i -\frac{1}{2}\left\{L_i^\dagger L_i, X\right\} \right).</math> | :<math>\dot{X} = \frac{i}{\hbar} [H, X] +\sum_i \gamma_i \left(L_i^\dagger X L_i -\frac{1}{2}\left\{L_i^\dagger L_i, X\right\} \right).</math> | ||
समान समीकरण एरेनफेस्ट प्रमेय द्वारा दिए गए वेधशालाओं के अपेक्षित मूल्यों के समय विकास का वर्णन करता है। | समान समीकरण एरेनफेस्ट प्रमेय द्वारा दिए गए वेधशालाओं के अपेक्षित मूल्यों के समय विकास का वर्णन करता है। | ||
श्रोडिंगर चित्र लिंडब्लाड समीकरण की ट्रेस-संरक्षण | श्रोडिंगर चित्र लिंडब्लाड समीकरण की ट्रेस-संरक्षण प्रोपर्टी के अनुरूप, हाइजेनबर्ग चित्र समीकरण [[यूनिटल मानचित्र]] है, यानी यह पहचान संचालक को संरक्षित करता है। | ||
==भौतिक व्युत्पत्ति== | ==भौतिक व्युत्पत्ति== | ||
लिंडब्लैड मास्टर समीकरण विभिन्न प्रकार के | लिंडब्लैड मास्टर समीकरण विभिन्न प्रकार के विवृत क्वांटम प्रणाली के विकास का वर्णन करता है, जैसे प्रणाली कमजोर रूप से मार्कोवियन जलाशय से जुड़ी हुई है।<ref name="BP"/>ध्यान दें कि {{mvar|H}} समीकरण में प्रदर्शित होना आवश्यक रूप से नंगे प्रणाली हैमिल्टनियन के समान नहीं है, बल्कि इसमें प्रणाली-पर्यावरण इंटरैक्शन से उत्पन्न होने वाली प्रभावी एकात्मक गतिशीलता भी सम्मिलित हो सकती है। | ||
अनुमानी व्युत्पत्ति, उदाहरण के लिए, [[जॉन प्रीस्किल]] के नोट्स में,<ref>{{cite book | first1=John | last1=Preskill | title=Lecture notes on Quantum Computation, Ph219/CS219 | url=http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf| archive-url=https://web.archive.org/web/20200623204052/http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf | archive-date=2020-06-23 }}</ref> खुली क्वांटम प्रणाली के अधिक सामान्य रूप से शुरू होता है और मार्कोवियन धारणा बनाकर और छोटे समय में विस्तार करके इसे लिंडब्लैड रूप में परिवर्तित करता है। अधिक शारीरिक रूप से प्रेरित मानक | अनुमानी व्युत्पत्ति, उदाहरण के लिए, [[जॉन प्रीस्किल]] के नोट्स में,<ref>{{cite book | first1=John | last1=Preskill | title=Lecture notes on Quantum Computation, Ph219/CS219 | url=http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf| archive-url=https://web.archive.org/web/20200623204052/http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf | archive-date=2020-06-23 }}</ref> खुली क्वांटम प्रणाली के अधिक सामान्य रूप से शुरू होता है और मार्कोवियन धारणा बनाकर और छोटे समय में विस्तार करके इसे लिंडब्लैड रूप में परिवर्तित करता है। अधिक शारीरिक रूप से प्रेरित मानक समाधान<ref> | ||
{{cite book | first1=Robert | last1=Alicki | first2=Karl | last2=Lendi | title=Quantum Dynamical Semigroups and Applications | series=Lecture Notes in Physics | publisher=Springer | year=2007 | volume=717 | doi=10.1007/3-540-70861-8| isbn=978-3-540-70860-5 }}</ref><ref>[[Howard Carmichael|Carmichael, Howard]]. ''An Open Systems Approach to Quantum Optics''. Springer Verlag, 1991</ref> | {{cite book | first1=Robert | last1=Alicki | first2=Karl | last2=Lendi | title=Quantum Dynamical Semigroups and Applications | series=Lecture Notes in Physics | publisher=Springer | year=2007 | volume=717 | doi=10.1007/3-540-70861-8| isbn=978-3-540-70860-5 }}</ref><ref>[[Howard Carmichael|Carmichael, Howard]]. ''An Open Systems Approach to Quantum Optics''. Springer Verlag, 1991</ref> प्रणाली और पर्यावरण दोनों पर हैमिल्टनियन अभिनय से शुरू होने वाले लिंडब्लैडियन की तीन सामान्य प्रकार की व्युत्पत्तियों को सम्मिलित किया गया है: कमजोर युग्मन सीमा (नीचे विस्तार से वर्णित), कम घनत्व सन्निकटन, और एकवचन युग्मन सीमा। इनमें से प्रत्येक, पर्यावरण के सहसंबंध कार्यों के संबंध में विशिष्ट भौतिक धारणाओं पर निर्भर करता है। उदाहरण के लिए, कमजोर युग्मन सीमा व्युत्पत्ति में, कोई सामान्यतः मानता है कि (ए) पर्यावरण के साथ प्रणाली के सहसंबंध धीरे-धीरे विकसित होते हैं, (बी) प्रणाली क्षय के कारण पर्यावरण की उत्तेजनाएं तेजी से बढ़ती हैं, और (सी) शब्द जो तेजी से दोलन कर रहे हैं जब तुलना की | ||
ब्याज की प्रणाली समयसीमा की उपेक्षा की जा सकती है। इन तीन सन्निकटनों को बोर्न कहा जाता है, | ब्याज की प्रणाली समयसीमा की उपेक्षा की जा सकती है। इन तीन सन्निकटनों को बोर्न कहा जाता है, | ||
मार्कोव, और घूर्णन तरंग, क्रमशः।<ref name="VA">This paragraph was adapted from {{cite arXiv |last=Albert |first=Victor V. |eprint=1802.00010 |title=Lindbladians with multiple steady states: theory and applications|year=2018 |class=quant-ph }}</ref> | मार्कोव, और घूर्णन तरंग, क्रमशः।<ref name="VA">This paragraph was adapted from {{cite arXiv |last=Albert |first=Victor V. |eprint=1802.00010 |title=Lindbladians with multiple steady states: theory and applications|year=2018 |class=quant-ph }}</ref> | ||
कमजोर-युग्मन सीमा व्युत्पत्ति क्वांटम प्रणाली मानती है जिसमें स्वतंत्रता की डिग्री की सीमित संख्या होती है जो स्वतंत्रता की डिग्री की अनंत संख्या वाले स्नान से जुड़ी होती है। | कमजोर-युग्मन सीमा व्युत्पत्ति क्वांटम प्रणाली मानती है जिसमें स्वतंत्रता की डिग्री की सीमित संख्या होती है जो स्वतंत्रता की डिग्री की अनंत संख्या वाले स्नान से जुड़ी होती है। प्रणाली और बाथ प्रत्येक में कुल हिल्बर्ट स्थान के संबंधित उप-स्थान पर कार्य करने वाले संचालक के संदर्भ में हैमिल्टनियन लिखा हुआ है। ये हैमिल्टनियन अयुग्मित प्रणाली और स्नान की आंतरिक गतिशीलता को नियंत्रित करते हैं। तीसरा हैमिल्टनियन है जिसमें प्रणाली और बाथ संचालक के उत्पाद सम्मिलित हैं, इस प्रकार प्रणाली और बाथ को युग्मित किया जाता है। इस हैमिल्टनियन का सबसे सामान्य रूप है | ||
:<math> H= H_S + H_B + H_{BS} \, </math> | :<math> H= H_S + H_B + H_{BS} \, </math> | ||
संपूर्ण प्रणाली की गतिशीलता को गति के लिउविले समीकरण द्वारा वर्णित किया जा सकता है, <math> \dot{\chi}=-i[H,\chi] </math>. स्वतंत्रता की अनंत कोटि वाले इस समीकरण को, बहुत विशेष मामलों को छोड़कर, विश्लेषणात्मक रूप से हल करना असंभव है। इसके अलावा, कुछ अनुमानों के तहत, स्वतंत्रता की स्नान डिग्री पर विचार करने की आवश्यकता नहीं है, और | संपूर्ण प्रणाली की गतिशीलता को गति के लिउविले समीकरण द्वारा वर्णित किया जा सकता है, <math> \dot{\chi}=-i[H,\chi] </math>. स्वतंत्रता की अनंत कोटि वाले इस समीकरण को, बहुत विशेष मामलों को छोड़कर, विश्लेषणात्मक रूप से हल करना असंभव है। इसके अलावा, कुछ अनुमानों के तहत, स्वतंत्रता की स्नान डिग्री पर विचार करने की आवश्यकता नहीं है, और प्रणाली घनत्व आव्यूह के संदर्भ में प्रभावी मास्टर समीकरण प्राप्त किया जा सकता है, <math>\rho=\operatorname{tr}_B \chi </math>. एकात्मक परिवर्तन द्वारा परिभाषित अंतःक्रिया चित्र में जाकर समस्या का अधिक सरलता से विश्लेषण किया जा सकता है <math> \tilde{M}= U_0MU_0^\dagger</math>, कहाँ <math> M</math> मनमाना संचालक है, और <math> U_0=e^{i(H_S+H_B)t} </math>. यह भी ध्यान रखें <math>U(t,t_0)</math>संपूर्ण प्रणाली का कुल एकात्मक संचालक है। यह पुष्टि करना सीधा है कि लिउविल समीकरण बन जाता है | ||
:<math> \dot{\tilde{\chi}}=-i[\tilde{H}_{BS},\tilde{\chi}] \, </math> | :<math> \dot{\tilde{\chi}}=-i[\tilde{H}_{BS},\tilde{\chi}] \, </math> | ||
Line 86: | Line 86: | ||
:<math> \tilde{\chi}(t)=\tilde{\chi}(0) -i\int^t_0 dt' [\tilde{H}_{BS}(t'),\tilde{\chi}(t')] </math> | :<math> \tilde{\chi}(t)=\tilde{\chi}(0) -i\int^t_0 dt' [\tilde{H}_{BS}(t'),\tilde{\chi}(t')] </math> | ||
के लिए यह अंतर्निहित समीकरण <math> \tilde{\chi} </math> | के लिए यह अंतर्निहित समीकरण <math> \tilde{\chi} </math> स्पष्ट भिन्न-अभिन्न समीकरण प्राप्त करने के लिए इसे वापस लिउविल समीकरण में प्रतिस्थापित किया जा सकता है | ||
:<math> \dot{\tilde{\chi}}=-i[\tilde{H}_{BS}(t),\tilde{\chi}(0)] - \int^t_0 dt' [\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\chi}(t')]]</math> | :<math> \dot{\tilde{\chi}}=-i[\tilde{H}_{BS}(t),\tilde{\chi}(0)] - \int^t_0 dt' [\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\chi}(t')]]</math> | ||
हम यह मानकर व्युत्पत्ति के साथ आगे बढ़ते हैं कि | हम यह मानकर व्युत्पत्ति के साथ आगे बढ़ते हैं कि इंट्रैक्ट शुरू हुई है <math> t=0 </math>, और उस समय प्रणाली और स्नान के बीच कोई संबंध नहीं होता है। इसका तात्पर्य यह है कि प्रारंभिक स्थिति तथ्यात्मक है <math> \chi(0) = \rho(0) R_0 </math>, कहाँ <math> R_0 </math> प्रारंभ में स्नान का घनत्व संचालक है। | ||
स्नान पर स्वतंत्रता की डिग्री का पता लगाना, <math> \operatorname{tr}_R \tilde{\chi} = \tilde{\rho} </math>, उपरोक्त भिन्न-अभिन्न समीकरण की पैदावार | स्नान पर स्वतंत्रता की डिग्री का पता लगाना, <math> \operatorname{tr}_R \tilde{\chi} = \tilde{\rho} </math>, उपरोक्त भिन्न-अभिन्न समीकरण की पैदावार | ||
:<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\chi}(t')]]\} </math> | :<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\chi}(t')]]\} </math> | ||
यह समीकरण | यह समीकरण प्रणाली घनत्व आव्यूह की समय गतिशीलता के लिए स्पष्ट है किन्तु स्वतंत्रता की स्नान डिग्री की गतिशीलता के पूर्ण ज्ञान की आवश्यकता है। बोर्न सन्निकटन नामक सरलीकरण धारणा स्नान की विशालता और युग्मन की सापेक्ष कमजोरी पर आधारित है, जिसका अर्थ है कि स्नान के लिए प्रणाली के युग्मन से स्नान के आइजेनस्टेट्स में महत्वपूर्ण परिवर्तन नहीं होना चाहिए। इस मामले में पूर्ण घनत्व आव्यूह हर समय के लिए कारक योग्य है <math> \tilde{\chi}(t)=\tilde{\rho}(t)R_0 </math>. मास्टर समीकरण बनता है | ||
:<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\rho}(t')R_0]]\} </math> | :<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\rho}(t')R_0]]\} </math> | ||
समीकरण अब स्वतंत्रता की डिग्री प्रणाली में स्पष्ट है, | समीकरण अब स्वतंत्रता की डिग्री प्रणाली में स्पष्ट है, किन्तु इसे हल करना बहुत मुश्किल है। अंतिम धारणा बोर्न-मार्कोव सन्निकटन है कि घनत्व आव्यूह का समय व्युत्पन्न केवल इसकी वर्तमान स्थिति पर निर्भर करता है, न कि इसके अतीत पर। यह धारणा तेज़ स्नान गतिशीलता के तहत मान्य है, जिसमें स्नान के भीतर सहसंबंध बहुत तेज़ी से खो जाते हैं, और प्रतिस्थापित करने के समान होते हैं <math> \rho(t')\rightarrow \rho(t)</math> समीकरण के दाहिनी ओर. | ||
:<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\rho}(t)R_0]]\} </math> | :<math> \dot{\tilde{\rho}}= - \int^t_0 dt' \operatorname{tr}_R\{[\tilde{H}_{BS}(t),[\tilde{H}_{BS}(t'),\tilde{\rho}(t)R_0]]\} </math> | ||
Line 103: | Line 103: | ||
:<math>H_{BS}=\sum_i \alpha_i \Gamma_i</math> | :<math>H_{BS}=\sum_i \alpha_i \Gamma_i</math> | ||
प्रणाली संचालक के लिए <math> \alpha_i </math> और स्नान संचालक <math> \Gamma_i </math> तब <math>\tilde{H}_{BS}=\sum_i \tilde{\alpha}_i \tilde{\Gamma}_i</math>. मास्टर समीकरण बनता है | |||
:<math> \dot{\tilde{\rho}}= - \sum_i \int^t_0 dt' \operatorname{tr}_R\{[\tilde{\alpha}_i(t) \tilde{\Gamma}_i(t),[\tilde{\alpha}_j(t') \tilde{\Gamma}_j(t'),\tilde{\rho}(t)R_0]]\} </math> | :<math> \dot{\tilde{\rho}}= - \sum_i \int^t_0 dt' \operatorname{tr}_R\{[\tilde{\alpha}_i(t) \tilde{\Gamma}_i(t),[\tilde{\alpha}_j(t') \tilde{\Gamma}_j(t'),\tilde{\rho}(t)R_0]]\} </math> | ||
Line 110: | Line 110: | ||
:<math>\dot{\tilde{\rho}} = - \sum_i \int^t_0 dt' \left[ \left( \tilde{\alpha}_i(t) \tilde{\alpha}_j(t') \tilde{\rho}(t) - \tilde{\alpha}_i(t) \tilde{\rho}(t) \tilde{\alpha}_j(t') \right) \langle\tilde{\Gamma}_i(t)\tilde{\Gamma}_j(t')\rangle + \left( \tilde{\rho}(t) \tilde{\alpha}_j(t') \tilde{\alpha}_i(t) - \tilde{\alpha}_j(t') \tilde{\rho}(t) \tilde{\alpha}_i(t) \right) \langle\tilde{\Gamma}_j(t')\tilde{\Gamma}_i(t)\rangle \right] </math> | :<math>\dot{\tilde{\rho}} = - \sum_i \int^t_0 dt' \left[ \left( \tilde{\alpha}_i(t) \tilde{\alpha}_j(t') \tilde{\rho}(t) - \tilde{\alpha}_i(t) \tilde{\rho}(t) \tilde{\alpha}_j(t') \right) \langle\tilde{\Gamma}_i(t)\tilde{\Gamma}_j(t')\rangle + \left( \tilde{\rho}(t) \tilde{\alpha}_j(t') \tilde{\alpha}_i(t) - \tilde{\alpha}_j(t') \tilde{\rho}(t) \tilde{\alpha}_i(t) \right) \langle\tilde{\Gamma}_j(t')\tilde{\Gamma}_i(t)\rangle \right] </math> | ||
अपेक्षा मूल्य <math> \langle \Gamma_i\Gamma_j \rangle=\operatorname{tr}\{\Gamma_i\Gamma_jR_0\} </math> स्वतंत्रता की स्नान कोटि के संबंध में हैं। | अपेक्षा मूल्य <math> \langle \Gamma_i\Gamma_j \rangle=\operatorname{tr}\{\Gamma_i\Gamma_jR_0\} </math> स्वतंत्रता की स्नान कोटि के संबंध में हैं। | ||
इन सहसंबंधों के तेजी से क्षय को मानकर (आदर्श रूप से)। <math> \langle \Gamma_i(t)\Gamma_j(t') \rangle \propto \delta(t-t') </math>), लिंडब्लैड | इन सहसंबंधों के तेजी से क्षय को मानकर (आदर्श रूप से)। <math> \langle \Gamma_i(t)\Gamma_j(t') \rangle \propto \delta(t-t') </math>), लिंडब्लैड सुपरसंचालक एल का उपरोक्त रूप प्राप्त किया गया है। | ||
==उदाहरण== | ==उदाहरण== | ||
[[जंप ऑपरेटर]] के लिए <math> F </math> और कोई एकात्मक विकास नहीं, लिंडब्लैड [[सुपरऑपरेटर]], घनत्व | [[जंप ऑपरेटर|जंप]] संचालक के लिए <math> F </math> और कोई एकात्मक विकास नहीं, लिंडब्लैड [[सुपरऑपरेटर]], घनत्व आव्यूह पर कार्य करता है <math> \rho </math>, है | ||
:<math> \mathcal{D}[F](\rho) ={F\rho F^\dagger} -\frac{1}{2}\left( F^\dagger F \rho + \rho F^\dagger F\right) </math> | :<math> \mathcal{D}[F](\rho) ={F\rho F^\dagger} -\frac{1}{2}\left( F^\dagger F \rho + \rho F^\dagger F\right) </math> | ||
ऐसा शब्द नियमित रूप से लिंडब्लाड समीकरण में पाया जाता है जैसा कि [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]] में उपयोग किया जाता है, जहां यह जलाशय से फोटॉन के अवशोषण या उत्सर्जन को व्यक्त कर सकता है। यदि कोई अवशोषण और उत्सर्जन दोनों चाहता है, तो उसे प्रत्येक के लिए जंप | ऐसा शब्द नियमित रूप से लिंडब्लाड समीकरण में पाया जाता है जैसा कि [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]] में उपयोग किया जाता है, जहां यह जलाशय से फोटॉन के अवशोषण या उत्सर्जन को व्यक्त कर सकता है। यदि कोई अवशोषण और उत्सर्जन दोनों चाहता है, तो उसे प्रत्येक के लिए जंप संचालक की आवश्यकता होगी। यह सबसे सामान्य लिंडब्लाड समीकरण की ओर ले जाता है जो [[क्वांटम हार्मोनिक ऑसिलेटर]] (उदाहरण के लिए फैब्री-पेरोट इंटरफेरोमीटर | फैब्री-पेरोट कैविटी) के डंपिंग का वर्णन करता है, जो जंप संचालक के साथ [[थर्मल जलाशय]] से जुड़ा होता है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 126: | Line 126: | ||
:<math> \dot{\rho}=-i[\omega_c a^\dagger a,\rho]+\gamma_1\mathcal{D}[F_1](\rho) + \gamma_2\mathcal{D}[F_2](\rho). </math> | :<math> \dot{\rho}=-i[\omega_c a^\dagger a,\rho]+\gamma_1\mathcal{D}[F_1](\rho) + \gamma_2\mathcal{D}[F_2](\rho). </math> | ||
अतिरिक्त लिंडब्लैड | अतिरिक्त लिंडब्लैड संचालक को डिफ़ेज़िंग और कंपन संबंधी विश्राम के विभिन्न रूपों को मॉडल करने के लिए सम्मिलित किया जा सकता है। इन विधियों को ग्रिड-आधारित घनत्व आव्यूह प्रसार विधियों में सम्मिलित किया गया है। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 00:52, 5 December 2023
क्वांटम यांत्रिकी में, गोरिनी-कोसाकोव्स्की-सुदर्शन-लिंडब्लैड समीकरण (जीकेएसएल समीकरण, जिसका नाम विटोरियो गोरिनी, आंद्रेज कोसाकोव्स्की, ई.सी. जॉर्ज सुदर्शन और गोरान लिंडब्लैड (भौतिक विज्ञानी) या गोरान लिंडब्लैड के नाम पर रखा गया है), लिंडब्लैड रूप में मास्टर समीकरण, क्वांटम लिउविलियन, या लिंडब्लैडियन मार्कोव प्रक्रिया क्वांटम मास्टर समीकरण के सामान्य रूपों में से है जो विवृत क्वांटम प्रणाली का वर्णन करता है। यह क्वांटम प्रणाली प्रदर्शित के लिए श्रोडिंगर समीकरण को सामान्यीकृत करता है; अर्थात्, प्रणाली अपने वातावरण के संपर्क में हैं। परिणामी गतिशीलता अब एकात्मक नहीं है, किन्तु पुनः भी ट्रेस-संरक्षण और पूर्ण रूप से धनात्मक या ट्रेस-संरक्षण और किसी भी प्रारंभिक स्थिति के लिए पूर्ण रूप से धनात्मक होने की प्रोपर्टी को संतुष्ट करती है।[1] श्रोडिंगर समीकरण या, वास्तव में, वॉन न्यूमैन समीकरण, जीकेएसएल समीकरण का विशेष स्थिति है, जिसके कारण कुछ अनुमान लगाई गई हैं कि क्वांटम यांत्रिकी को लिंडब्लैड समीकरण के आगे के अनुप्रयोग और विश्लेषण के माध्यम से उत्पादक रूप से विस्तारित और विस्तारित किया जा सकता है।[2] श्रोडिंगर समीकरण स्थिति सदिश से संबंधित है, जो केवल शुद्ध क्वांटम अवस्था का वर्णन कर सकता है और इस प्रकार घनत्व आव्यूह की तुलना में कम सामान्य है, जो मिश्रित अवस्था (भौतिकी) का भी वर्णन कर सकता है।
प्रेरणा
क्वांटम यांत्रिकी के विहित सूत्रीकरण में, प्रणाली का समय विकास एकात्मक गतिशीलता द्वारा नियंत्रित होता है। इसका तात्पर्य यह है कि पूर्ण प्रक्रिया में कोई क्षय नहीं होता है और चरण सुसंगतता बनी रहती है, और यह इस तथ्य का परिणाम है कि स्वतंत्रता की सभी भाग लेने वाली डिग्री पर विचार किया जाता है। चूंकि, कोई भी वास्तविक भौतिक प्रणाली पूर्णतः पृथक नहीं है, और अपने पर्यावरण के साथ इंट्रैक्ट करेगी। प्रणाली के बाहर स्वतंत्रता की डिग्री के साथ इस अंतःक्रिया के परिणामस्वरूप वातावरण में ऊर्जा का अपव्यय होता है, जिससे चरण का क्षय और यादृच्छिककरण होता है। इससे भी अधिक, किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया को समझना विभिन्न सामान्यतः देखी जाने वाली घटनाओं को समझने के लिए आवश्यक है, जैसे उत्तेजित परमाणुओं से प्रकाश का सहज उत्सर्जन, या लेजर जैसे विभिन्न क्वांटम तकनीकी उपकरणों का प्रदर्शन किया गया था।
किसी क्वांटम प्रणाली की उसके पर्यावरण के साथ अंतःक्रिया के समाधान के लिए कुछ गणितीय तकनीकें प्रस्तुत की गई हैं। इनमें घनत्व आव्यूह और उससे जुड़े मास्टर समीकरण का उपयोग का उपयोग किया जाता है। जबकि सैद्धांतिक रूप से क्वांटम गतिशीलता को हल करने का यह दृष्टिकोण श्रोडिंगर चित्र या हाइजेनबर्ग चित्र के समान है, यह असंगत प्रक्रियाओं को सम्मिलित करने की अधिक सरलता से अनुमति देता है, जो पर्यावरणीय इंट्रैक्ट का प्रतिनिधित्व करते हैं। घनत्व संचालक की प्रोपर्टी यह है कि यह क्वांटम स्थितियों के मौलिक मिश्रण का प्रतिनिधित्व कर सकता है, और इस प्रकार तथाकथित विवृत क्वांटम प्रणाली की गतिशीलता का स्पष्ट वर्णन करने के लिए महत्वपूर्ण है।
परिभाषा
प्रणाली के घनत्व आव्यूह के लिए लिंडब्लैड मास्टर समीकरण ρ के रूप में लिखा जा सकता है[1] (शैक्षणिक परिचय के लिए आप इसका उल्लेख कर सकते हैं[3])
कहाँ एंटीकम्यूटेटर है, हैमिल्टनियन प्रणाली है, जो गतिकी के एकात्मक पहलुओं का वर्णन करती है, और जंप संचालक का समूह है जो गतिशीलता के विघटनकारी भाग का वर्णन करता है। जंप संचालक का आकार बताता है कि पर्यावरण प्रणाली पर कैसे कार्य करता है, और अंततः प्रणाली-पर्यावरण गतिशीलता के सूक्ष्म मॉडल से निर्धारित किया जाना चाहिए। अंत में, गैर-नकारात्मक गुणांकों का सेट है जिसे अवमंदन दर कहा जाता है। मैं गिरा वॉन न्यूमैन समीकरण को पुनः प्राप्त करता है एकात्मक गतिशीलता का वर्णन, जो मौलिक लिउविले के प्रमेय (हैमिल्टनियन) का क्वांटम एनालॉग है।
अधिक सामान्यतः, जीकेएसएल समीकरण का रूप होता है
कहाँ मनमाना संचालक हैं और h धनात्मक-निश्चित आव्यूह आव्यूह है। उत्तरार्द्ध यह सुनिश्चित करने के लिए सख्त आवश्यकता है कि गतिशीलता ट्रेस-संरक्षित और पूर्ण रूप से धनात्मक है। की संख्या संचालक का कार्य मनमाना है, और उन्हें किसी विशेष गुण को पूरा करने की आवश्यकता नहीं है। किन्तु अगर प्रणाली है -आयामी, इसे दिखाया जा सकता है[1]कि मास्टर समीकरण को सेट द्वारा पूर्ण रूप से वर्णित किया जा सकता है संचालक, बशर्ते वे संचालक के स्थान के लिए आधार बनाते हों।
आव्यूह के बाद से h धनात्मक अर्धनिश्चित है, यह एकात्मक परिवर्तन के साथ विकर्णीय आव्यूह हो सकता है u:
जहां eigenvalues γi गैर-नकारात्मक हैं। यदि हम किसी अन्य ऑर्थोनॉर्मल संचालक आधार को परिभाषित करते हैं
यह मास्टर समीकरण को पहले के समान रूप में कम कर देता है:
क्वांटम गतिशील अर्धसमूह
लिंडब्लैडियन द्वारा विभिन्न समय के लिए बनाए गए मानचित्रों को सामूहिक रूप से क्वांटम डायनेमिक सेमीग्रुप के रूप में संदर्भित किया जाता है क्वांटम गतिशील मानचित्र मानचित्रों का परिवार एकल समय पैरामीटर द्वारा अनुक्रमित घनत्व आव्यूह के स्थान पर जो अर्धसमूह प्रोपर्टी का पालन करता है
लिंडब्लैड समीकरण द्वारा प्राप्त किया जा सकता है
जो, की रैखिकता द्वारा , लीनियर सुपरसंचालक है। सेमीग्रुप को इस प्रकार पुनर्प्राप्त किया जा सकता है
अपरिवर्तनीय गुण
लिंडब्लाड समीकरण किसी भी एकात्मक परिवर्तन के तहत अपरिवर्तनीय है v लिंडब्लाड संचालक और स्थिरांकों की,
और अमानवीय परिवर्तन के तहत भी
कहाँ ai सम्मिश्र संख्याएँ हैं और b वास्तविक संख्या है. चूंकि, पहला परिवर्तन संचालक की रूढ़िवादिता को नष्ट कर देता है Li (जब तक कि सभी γi समान हैं) और दूसरा परिवर्तन ट्रेसलेसनेस को नष्ट कर देता है। इसलिए, के बीच पतन तक γi, द Liलिंडब्लाड समीकरण के विकर्ण रूप को गतिशीलता द्वारा विशिष्ट रूप से निर्धारित किया जाता है, जब तक हमें उन्हें ऑर्थोनॉर्मल और ट्रेसलेस होने की आवश्यकता होती है।
हाइजेनबर्ग चित्र
श्रोडिंगर चित्र में घनत्व आव्यूह के लिंडब्लाड-प्रकार के विकास को हाइजेनबर्ग चित्र में समकक्ष रूप से वर्णित किया जा सकता है गति के निम्नलिखित (विकर्णीकृत) समीकरण का उपयोग करना प्रत्येक अवलोकन योग्य क्वांटम के लिए X:
समान समीकरण एरेनफेस्ट प्रमेय द्वारा दिए गए वेधशालाओं के अपेक्षित मूल्यों के समय विकास का वर्णन करता है। श्रोडिंगर चित्र लिंडब्लाड समीकरण की ट्रेस-संरक्षण प्रोपर्टी के अनुरूप, हाइजेनबर्ग चित्र समीकरण यूनिटल मानचित्र है, यानी यह पहचान संचालक को संरक्षित करता है।
भौतिक व्युत्पत्ति
लिंडब्लैड मास्टर समीकरण विभिन्न प्रकार के विवृत क्वांटम प्रणाली के विकास का वर्णन करता है, जैसे प्रणाली कमजोर रूप से मार्कोवियन जलाशय से जुड़ी हुई है।[1]ध्यान दें कि H समीकरण में प्रदर्शित होना आवश्यक रूप से नंगे प्रणाली हैमिल्टनियन के समान नहीं है, बल्कि इसमें प्रणाली-पर्यावरण इंटरैक्शन से उत्पन्न होने वाली प्रभावी एकात्मक गतिशीलता भी सम्मिलित हो सकती है।
अनुमानी व्युत्पत्ति, उदाहरण के लिए, जॉन प्रीस्किल के नोट्स में,[4] खुली क्वांटम प्रणाली के अधिक सामान्य रूप से शुरू होता है और मार्कोवियन धारणा बनाकर और छोटे समय में विस्तार करके इसे लिंडब्लैड रूप में परिवर्तित करता है। अधिक शारीरिक रूप से प्रेरित मानक समाधान[5][6] प्रणाली और पर्यावरण दोनों पर हैमिल्टनियन अभिनय से शुरू होने वाले लिंडब्लैडियन की तीन सामान्य प्रकार की व्युत्पत्तियों को सम्मिलित किया गया है: कमजोर युग्मन सीमा (नीचे विस्तार से वर्णित), कम घनत्व सन्निकटन, और एकवचन युग्मन सीमा। इनमें से प्रत्येक, पर्यावरण के सहसंबंध कार्यों के संबंध में विशिष्ट भौतिक धारणाओं पर निर्भर करता है। उदाहरण के लिए, कमजोर युग्मन सीमा व्युत्पत्ति में, कोई सामान्यतः मानता है कि (ए) पर्यावरण के साथ प्रणाली के सहसंबंध धीरे-धीरे विकसित होते हैं, (बी) प्रणाली क्षय के कारण पर्यावरण की उत्तेजनाएं तेजी से बढ़ती हैं, और (सी) शब्द जो तेजी से दोलन कर रहे हैं जब तुलना की ब्याज की प्रणाली समयसीमा की उपेक्षा की जा सकती है। इन तीन सन्निकटनों को बोर्न कहा जाता है, मार्कोव, और घूर्णन तरंग, क्रमशः।[7] कमजोर-युग्मन सीमा व्युत्पत्ति क्वांटम प्रणाली मानती है जिसमें स्वतंत्रता की डिग्री की सीमित संख्या होती है जो स्वतंत्रता की डिग्री की अनंत संख्या वाले स्नान से जुड़ी होती है। प्रणाली और बाथ प्रत्येक में कुल हिल्बर्ट स्थान के संबंधित उप-स्थान पर कार्य करने वाले संचालक के संदर्भ में हैमिल्टनियन लिखा हुआ है। ये हैमिल्टनियन अयुग्मित प्रणाली और स्नान की आंतरिक गतिशीलता को नियंत्रित करते हैं। तीसरा हैमिल्टनियन है जिसमें प्रणाली और बाथ संचालक के उत्पाद सम्मिलित हैं, इस प्रकार प्रणाली और बाथ को युग्मित किया जाता है। इस हैमिल्टनियन का सबसे सामान्य रूप है
संपूर्ण प्रणाली की गतिशीलता को गति के लिउविले समीकरण द्वारा वर्णित किया जा सकता है, . स्वतंत्रता की अनंत कोटि वाले इस समीकरण को, बहुत विशेष मामलों को छोड़कर, विश्लेषणात्मक रूप से हल करना असंभव है। इसके अलावा, कुछ अनुमानों के तहत, स्वतंत्रता की स्नान डिग्री पर विचार करने की आवश्यकता नहीं है, और प्रणाली घनत्व आव्यूह के संदर्भ में प्रभावी मास्टर समीकरण प्राप्त किया जा सकता है, . एकात्मक परिवर्तन द्वारा परिभाषित अंतःक्रिया चित्र में जाकर समस्या का अधिक सरलता से विश्लेषण किया जा सकता है , कहाँ मनमाना संचालक है, और . यह भी ध्यान रखें संपूर्ण प्रणाली का कुल एकात्मक संचालक है। यह पुष्टि करना सीधा है कि लिउविल समीकरण बन जाता है
जहां हैमिल्टनियन स्पष्टतः समय पर निर्भर है। इसके अलावा, इंटरेक्शन चित्र के अनुसार, , कहाँ . इस समीकरण को देने के लिए सीधे एकीकृत किया जा सकता है
के लिए यह अंतर्निहित समीकरण स्पष्ट भिन्न-अभिन्न समीकरण प्राप्त करने के लिए इसे वापस लिउविल समीकरण में प्रतिस्थापित किया जा सकता है
हम यह मानकर व्युत्पत्ति के साथ आगे बढ़ते हैं कि इंट्रैक्ट शुरू हुई है , और उस समय प्रणाली और स्नान के बीच कोई संबंध नहीं होता है। इसका तात्पर्य यह है कि प्रारंभिक स्थिति तथ्यात्मक है , कहाँ प्रारंभ में स्नान का घनत्व संचालक है।
स्नान पर स्वतंत्रता की डिग्री का पता लगाना, , उपरोक्त भिन्न-अभिन्न समीकरण की पैदावार
यह समीकरण प्रणाली घनत्व आव्यूह की समय गतिशीलता के लिए स्पष्ट है किन्तु स्वतंत्रता की स्नान डिग्री की गतिशीलता के पूर्ण ज्ञान की आवश्यकता है। बोर्न सन्निकटन नामक सरलीकरण धारणा स्नान की विशालता और युग्मन की सापेक्ष कमजोरी पर आधारित है, जिसका अर्थ है कि स्नान के लिए प्रणाली के युग्मन से स्नान के आइजेनस्टेट्स में महत्वपूर्ण परिवर्तन नहीं होना चाहिए। इस मामले में पूर्ण घनत्व आव्यूह हर समय के लिए कारक योग्य है . मास्टर समीकरण बनता है
समीकरण अब स्वतंत्रता की डिग्री प्रणाली में स्पष्ट है, किन्तु इसे हल करना बहुत मुश्किल है। अंतिम धारणा बोर्न-मार्कोव सन्निकटन है कि घनत्व आव्यूह का समय व्युत्पन्न केवल इसकी वर्तमान स्थिति पर निर्भर करता है, न कि इसके अतीत पर। यह धारणा तेज़ स्नान गतिशीलता के तहत मान्य है, जिसमें स्नान के भीतर सहसंबंध बहुत तेज़ी से खो जाते हैं, और प्रतिस्थापित करने के समान होते हैं समीकरण के दाहिनी ओर.
यदि अंतःक्रिया को हैमिल्टनियन रूप माना जाता है
प्रणाली संचालक के लिए और स्नान संचालक तब . मास्टर समीकरण बनता है
जिसे इस प्रकार विस्तारित किया जा सकता है
अपेक्षा मूल्य स्वतंत्रता की स्नान कोटि के संबंध में हैं। इन सहसंबंधों के तेजी से क्षय को मानकर (आदर्श रूप से)। ), लिंडब्लैड सुपरसंचालक एल का उपरोक्त रूप प्राप्त किया गया है।
उदाहरण
जंप संचालक के लिए और कोई एकात्मक विकास नहीं, लिंडब्लैड सुपरऑपरेटर, घनत्व आव्यूह पर कार्य करता है , है
ऐसा शब्द नियमित रूप से लिंडब्लाड समीकरण में पाया जाता है जैसा कि क्वांटम प्रकाशिकी में उपयोग किया जाता है, जहां यह जलाशय से फोटॉन के अवशोषण या उत्सर्जन को व्यक्त कर सकता है। यदि कोई अवशोषण और उत्सर्जन दोनों चाहता है, तो उसे प्रत्येक के लिए जंप संचालक की आवश्यकता होगी। यह सबसे सामान्य लिंडब्लाड समीकरण की ओर ले जाता है जो क्वांटम हार्मोनिक ऑसिलेटर (उदाहरण के लिए फैब्री-पेरोट इंटरफेरोमीटर | फैब्री-पेरोट कैविटी) के डंपिंग का वर्णन करता है, जो जंप संचालक के साथ थर्मल जलाशय से जुड़ा होता है।
यहाँ थरथरानवाला को भिगोने वाले जलाशय में उत्तेजनाओं की औसत संख्या है और γ क्षय दर है. यदि हम आवृत्ति के साथ क्वांटम हार्मोनिक ऑसिलेटर हैमिल्टनियन द्वारा उत्पन्न अतिरिक्त एकात्मक विकास भी जोड़ते हैं , हमने प्राप्त
अतिरिक्त लिंडब्लैड संचालक को डिफ़ेज़िंग और कंपन संबंधी विश्राम के विभिन्न रूपों को मॉडल करने के लिए सम्मिलित किया जा सकता है। इन विधियों को ग्रिड-आधारित घनत्व आव्यूह प्रसार विधियों में सम्मिलित किया गया है।
यह भी देखें
- क्वांटम मास्टर समीकरण
- रेडफील्ड समीकरण
क्वांटम प्रणाली खोलें खोलें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Breuer, Heinz-Peter; Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford University Press. ISBN 978-0-1985-2063-4.
- ↑ Weinberg, Steven (2014). "राज्य वैक्टर के बिना क्वांटम यांत्रिकी". Phys. Rev. A. 90 (4): 042102. arXiv:1405.3483. Bibcode:2014PhRvA..90d2102W. doi:10.1103/PhysRevA.90.042102. S2CID 53990012.
- ↑ Manzano, Daniel (2020). "लिंडब्लैड मास्टर समीकरण का संक्षिप्त परिचय". AIP Advances. 10 (2): 025106. arXiv:1906.04478. Bibcode:2020AIPA...10b5106M. doi:10.1063/1.5115323. S2CID 184487806.
- ↑ Preskill, John. Lecture notes on Quantum Computation, Ph219/CS219 (PDF). Archived from the original (PDF) on 2020-06-23.
- ↑ Alicki, Robert; Lendi, Karl (2007). Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics. Vol. 717. Springer. doi:10.1007/3-540-70861-8. ISBN 978-3-540-70860-5.
- ↑ Carmichael, Howard. An Open Systems Approach to Quantum Optics. Springer Verlag, 1991
- ↑ This paragraph was adapted from Albert, Victor V. (2018). "Lindbladians with multiple steady states: theory and applications". arXiv:1802.00010 [quant-ph].
- Chruściński, Dariusz; Pascazio, Saverio (2017). "A Brief History of the GKLS Equation". Open Systems & Information Dynamics. 24 (3). arXiv:1710.05993. Bibcode:2017OSID...2440001C. doi:10.1142/S1230161217400017. S2CID 90357.
- Kossakowski, A. (1972). "On quantum statistical mechanics of non-Hamiltonian systems". Rep. Math. Phys. 3 (4): 247. Bibcode:1972RpMP....3..247K. doi:10.1016/0034-4877(72)90010-9.
- Belavin, A.A.; Zel'dovich, B. Ya.; Perelomov, A.M.; Popov, V.S. (1969). "Relaxation of Quantum Systems with Equidistant Spectra". JETP. 29: 145. Bibcode:1969JETP...29..145B.
- Lindblad, G. (1976). "On the generators of quantum dynamical semigroups". Commun. Math. Phys. 48 (2): 119. Bibcode:1976CMaPh..48..119L. doi:10.1007/BF01608499. S2CID 55220796.
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. (1976). "Completely positive dynamical semigroups of N-level systems". J. Math. Phys. 17 (5): 821. Bibcode:1976JMP....17..821G. doi:10.1063/1.522979.
- Banks, T.; Susskind, L.; Peskin, M.E. (1984). "Difficulties for the evolution of pure states into mixed states". Nuclear Physics B. 244 (1): 125–134. Bibcode:1984NuPhB.244..125B. doi:10.1016/0550-3213(84)90184-6. OSTI 1447054.
- Accardi, Luigi; Lu, Yun Gang; Volovich, I.V. (2002). Quantum Theory and Its Stochastic Limit. New York: Springer Verlag. ISBN 978-3-5404-1928-0.
- Alicki, Robert (2002). "Invitation to quantum dynamical semigroups". Dynamics of Dissipation. Lecture Notes in Physics. 597: 239. arXiv:quant-ph/0205188. Bibcode:2002LNP...597..239A. doi:10.1007/3-540-46122-1_10. ISBN 978-3-540-44111-3. S2CID 118089738.
- Alicki, Robert; Lendi, Karl (1987). Quantum Dynamical Semigroups and Applications. Berlin: Springer Verlag. ISBN 978-0-3871-8276-6.
- Attal, Stéphane; Joye, Alain; Pillet, Claude-Alain (2006). Open Quantum Systems II: The Markovian Approach. Springer. ISBN 978-3-5403-0992-5.
- Gardiner, C.W.; Zoller, Peter (2010). Quantum Noise. Springer Series in Synergetics (3rd ed.). Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-06094-6.
- Ingarden, Roman S.; Kossakowski, A.; Ohya, M. (1997). Information Dynamics and Open Systems: Classical and Quantum Approach. New York: Springer Verlag. ISBN 978-0-7923-4473-5.
- Tarasov, Vasily E. (2008). Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Amsterdam, Boston, London, New York: Elsevier Science. ISBN 978-0-0805-5971-1.
- Pearle, P. (2012). "Simple derivation of the Lindblad equation". European Journal of Physics, 33(4), 805.
बाहरी संबंध
- Quantum Optics Toolbox for Matlab
- mcsolve Quantum jump (monte carlo) solver from QuTiP.
- QuantumOptics.jl the quantum optics toolbox in Julia.
- The Lindblad master equation