बोसोनिक स्ट्रिंग सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
Line 30: | Line 30: | ||
| Closed, unoriented || टैचियन, ग्रेविटॉन, डिलेटन | | Closed, unoriented || टैचियन, ग्रेविटॉन, डिलेटन | ||
|} | |} | ||
ध्यान दें कि सभी चार सिद्धांतों में एक नकारात्मक ऊर्जा टैचियन | ध्यान दें कि सभी चार सिद्धांतों में एक नकारात्मक ऊर्जा टैचियन (<math>M^2 = - \frac{1}{\alpha'}</math>) है और एक द्रव्यमान रहित गुरुत्वाकर्षण है। | ||
इस लेख का शेष भाग सीमाहीन, ओरिएंटेबल वर्डशीट के अनुरूप विवृत, ओरिएंटेड सिद्धांत पर प्रस्तावित होता है। | इस लेख का शेष भाग सीमाहीन, ओरिएंटेबल वर्डशीट के अनुरूप विवृत, ओरिएंटेड सिद्धांत पर प्रस्तावित होता है। | ||
Line 59: | Line 59: | ||
: <math> g'(\xi) = e^{\sigma(\xi)} g(\xi) </math> | : <math> g'(\xi) = e^{\sigma(\xi)} g(\xi) </math> | ||
चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या [[ मॉड्यूलि स्पेस ]] का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है <math>h \geq 4</math>. | चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या [[ मॉड्यूलि स्पेस ]] का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है <math>h \geq 4</math>. | ||
'''h = 0''' | |||
चार टैच्योन के | ट्री-लेवल पर, जीनस 0 के अनुरूप, ब्रह्माण्ड संबंधी स्थिरांक लुप्त हो जाता है: <math> Z_0 = 0 </math>. | ||
चार टैच्योन के प्रकीर्णन के लिए चार-बिंदु कार्य शापिरो-विरासोरो आयाम है: | |||
: <math> A_4 \propto (2\pi)^{26} \delta^{26}(k) \frac{\Gamma(-1-s/2) \Gamma(-1-t/2) \Gamma(-1-u/2)}{\Gamma(2+s/2) \Gamma(2+t/2) \Gamma(2+u/2)} </math> | : <math> A_4 \propto (2\pi)^{26} \delta^{26}(k) \frac{\Gamma(-1-s/2) \Gamma(-1-t/2) \Gamma(-1-u/2)}{\Gamma(2+s/2) \Gamma(2+t/2) \Gamma(2+u/2)} </math> | ||
जहाँ <math>k</math> कुल संवेग है और <math>s</math>, <math>t</math>, <math>u</math> मैंडेलस्टैम चर हैं। | |||
==== | ==== h = 1 ==== | ||
[[File:ModularGroup-FundamentalDomain.svg|thumb|right|alt=Fundamental domain for the modular group.| छायांकित क्षेत्र मॉड्यूलर समूह के लिए | [[File:ModularGroup-FundamentalDomain.svg|thumb|right|alt=Fundamental domain for the modular group.| छायांकित क्षेत्र मॉड्यूलर समूह के लिए संभावित मौलिक डोमेन है।]]जीनस 1 टोरस है, और वन-लूप स्तर से युग्मित होता है। विभाजन फलन की मात्रा इस प्रकार है: | ||
: <math> Z_1 = \int_{\mathcal{M}_1} \frac{d^2 \tau}{8\pi^2 \tau_2^2} \frac{1}{(4\pi^2 \tau_2)^{12}} \left| \eta(\tau) \right| ^{-48} </math> | : <math> Z_1 = \int_{\mathcal{M}_1} \frac{d^2 \tau}{8\pi^2 \tau_2^2} \frac{1}{(4\pi^2 \tau_2)^{12}} \left| \eta(\tau) \right| ^{-48} </math> | ||
<math>\tau</math> सकारात्मक काल्पनिक भाग वाली | <math>\tau</math> सकारात्मक काल्पनिक भाग वाली सम्मिश्र संख्या <math>\tau_2</math>; <math>\mathcal{M}_1</math> है, टोरस के मॉड्यूलि स्पेस के लिए होलोमोर्फिक, [[मॉड्यूलर समूह]] के लिए कोई [[मौलिक डोमेन]] <math>PSL(2,\mathbb{Z})</math> है, उदाहरण के लिए, <math> \left\{ \tau_2 > 0, |\tau|^2 > 1, -\frac{1}{2} < \tau_1 < \frac{1}{2} \right\} </math>ऊपरी अर्ध तल पर कार्य करता है, <math>\eta(\tau)</math> [[डेडेकाइंड और फ़ंक्शन|डेडेकाइंड ईटा फ़ंक्शन]] है। इंटीग्रैंड निश्चित रूप से मॉड्यूलर समूह के अनुसार अपरिवर्तनीय है: माप <math> \frac{d^2 \tau}{\tau_2^2} </math> बस पोंकारे मीट्रिक है जिसमें आइसोमेट्री समूह के रूप में PSL(2,R) है; शेष एकीकरण <math>\tau_2 \rightarrow |c \tau + d|^2 \tau_2 </math> भी गुण से अपरिवर्तनीय है और तथ्य यह है कि <math>\eta(\tau)</math> भार 1/2 का [[मॉड्यूलर रूप]] है। | ||
यह अभिन्न विचलन करता | यह अभिन्न विचलन करता है। यह टैचियन की उपस्थिति के कारण है और पर्टर्बेटिव वैक्यूम की अस्थिरता से संबंधित है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
*नंबू-गोटो क्रिया | *नंबू-गोटो क्रिया | ||
*पोल्याकोव | *पोल्याकोव क्रिया | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 10:07, 1 December 2023
String theory |
---|
Fundamental objects |
Perturbative theory |
Non-perturbative results |
Phenomenology |
Mathematics |
बोसोनिक स्ट्रिंग सिद्धांत, स्ट्रिंग सिद्धांत का मूल संस्करण है, जिसे 1960 के दशक के अंत में विकसित किया गया और इसका नाम सत्येन्द्र नाथ बोस के नाम पर रखा गया था। इसे ऐसा इसलिए कहा जाता है क्योंकि इसके स्पेक्ट्रम में केवल बोसॉन होते हैं।
1980 के दशक में, स्ट्रिंग सिद्धांत के संदर्भ में सुपरसिमेट्री का अविष्कार किया गया, और स्ट्रिंग सिद्धांत का नया संस्करण जिसे सुपरस्ट्रिंग सिद्धांत (सुपरसिमेट्रिक स्ट्रिंग सिद्धांत) कहा जाता है, वास्तविक फोकस बन गया। फिर भी, बोसोनिक स्ट्रिंग सिद्धांत पर्टर्बेटिव स्ट्रिंग सिद्धांत की अनेक सामान्य विशेषताओं को समझने के लिए अत्यधिक उपयोगी मॉडल बना हुआ है, और सुपरस्ट्रिंग्स की अनेक सैद्धांतिक कठिनाइयाँ वास्तव में बोसोनिक स्ट्रिंग्स के संदर्भ में पूर्व में ही प्राप्त की जा सकती हैं।
समस्याएँ
चूँकि बोसोनिक स्ट्रिंग सिद्धांत में अनेक आकर्षक विशेषताएं हैं, यह दो महत्वपूर्ण क्षेत्रों में व्यवहार्य भौतिक मॉडल के रूप में कम है।
सर्वप्रथम, यह केवल बोसॉन के अस्तित्व की भविष्यवाणी करता है जबकि कई भौतिक कण फ़र्मिअन हैं।
दूसरा, यह काल्पनिक संख्या द्रव्यमान के साथ स्ट्रिंग के मोड के अस्तित्व की भविष्यवाणी करता है, जिसका अर्थ है कि सिद्धांत में टैचियन संक्षेपण नामक प्रक्रिया में अस्थिरता है।
इसके अतिरिक्त, सामान्य स्पेसटाइम आयाम में बोसोनिक स्ट्रिंग सिद्धांत अनुरूप विसंगति के कारण विसंगतियों को प्रदर्शित करता है। किन्तु, जैसा कि सर्वप्रथम क्लाउड लवलेस ने देखा था,[1] 26 आयामों (स्पेस के 25 आयाम और समय का एक आयाम) के स्पेसटाइम में, सिद्धांत के लिए महत्वपूर्ण आयाम, विसंगति समाप्त हो जाती है। यह उच्च आयामीता आवश्यक रूप से स्ट्रिंग सिद्धांत के लिए समस्या नहीं है, क्योंकि इसे इस प्रकार से प्रस्तुत किया जा सकता है कि 22 अतिरिक्त आयामों के साथ स्पेसटाइम को छोटे टोरस या अन्य कॉम्पैक्ट मैनिफोल्ड बनाने के लिए मोड़ दिया जाता है। इससे कम ऊर्जा प्रयोगों के लिए स्पेसटाइम के केवल परिचित चार आयाम ही दिखाई देंगे। महत्वपूर्ण आयाम का अस्तित्व जहां विसंगति समाप्त हो जाती है, सभी स्ट्रिंग सिद्धांतों की सामान्य विशेषता है।
बोसोनिक स्ट्रिंग के प्रकार
चार संभावित बोसोनिक स्ट्रिंग सिद्धांत हैं, जो इस पर निर्भर करता है कि संवृत स्ट्रिंग की अनुमति है या नहीं और क्या स्ट्रिंग में निर्दिष्ट अभिविन्यास है। याद रखें कि संवृत स्ट्रिंग के सिद्धांत में विवृत स्ट्रिंग भी सम्मिलित होनी चाहिए; संवृत स्ट्रिंग के विषय में अध्ययन किया जा सकता है कि उनके समापन बिंदु D25-ब्रेन पर निश्चित किए गए हैं जो सभी स्पेसटाइम को भरते हैं। स्ट्रिंग के विशिष्ट अभिविन्यास का अर्थ है कि केवल ओरिएंटेबिलिटी वर्ल्डशीट के अनुरूप इंटरैक्शन की अनुमति है (उदाहरण के लिए, दो स्ट्रिंग केवल समान अभिविन्यास के साथ विलय कर सकते हैं)। चार संभावित सिद्धांतों के स्पेक्ट्रा का रेखाचित्र इस प्रकार है:
बोसोनिक स्ट्रिंग सिद्धांत | गैर-सकारात्मक अवस्था |
---|---|
Open and closed, oriented | टैचियन, ग्रेविटॉन, डिलेटन, द्रव्यमान रहित एंटीसिमेट्रिक टेंसर |
Open and closed, unoriented | टैचियन, ग्रेविटॉन, डिलेटन |
Closed, oriented | टैचियन, ग्रेविटॉन, डिलेटन, एंटीसिमेट्रिक टेंसर, U(1) वेक्टर बोसोन |
Closed, unoriented | टैचियन, ग्रेविटॉन, डिलेटन |
ध्यान दें कि सभी चार सिद्धांतों में एक नकारात्मक ऊर्जा टैचियन () है और एक द्रव्यमान रहित गुरुत्वाकर्षण है।
इस लेख का शेष भाग सीमाहीन, ओरिएंटेबल वर्डशीट के अनुरूप विवृत, ओरिएंटेड सिद्धांत पर प्रस्तावित होता है।
गणित
पथ अभिन्न गड़बड़ी सिद्धांत
बोसोनिक स्ट्रिंग सिद्धांत कहा जा सकता है[2] पॉलाकोव कार्रवाई के पथ अभिन्न सूत्रीकरण द्वारा परिभाषित किया जाना है:
वर्ल्डशीट पर वह फ़ील्ड है जो 25+1 स्पेसटाइम में स्ट्रिंग के एम्बेडिंग का वर्णन करता है; पॉलाकोव सूत्रीकरण में, इसे एम्बेडिंग से प्रेरित मीट्रिक के रूप में नहीं, बल्कि एक स्वतंत्र गतिशील क्षेत्र के रूप में समझा जाना चाहिए। लक्ष्य स्पेसटाइम पर मीट्रिक है, जिसे आमतौर पर पर्टर्बेटिव सिद्धांत में मिन्कोवस्की मीट्रिक माना जाता है। बाती घुमाना के तहत, इसे यूक्लिडियन मीट्रिक में लाया जाता है . एम एक टोपोलॉजिकल मैनिफ़ोल्ड पैरामीट्रिज्ड के रूप में वर्ल्डशीट है निर्देशांक स्ट्रिंग तनाव है और रेगे ढलान से संबंधित है .
इसमें डिफोमॉर्फिज्म इनवेरिएंस और वेइल परिवर्तन है। वेइल समरूपता परिमाणीकरण (अनुरूप विसंगति) पर टूट जाती है और इसलिए इस क्रिया को एक काउंटरटर्म के साथ पूरक किया जाना चाहिए, साथ ही एक काल्पनिक विशुद्ध रूप से टोपोलॉजिकल शब्द, यूलर विशेषता के आनुपातिक:
काउंटरटर्म द्वारा वेइल इनवेरिएंस को स्पष्ट रूप से तोड़ने को महत्वपूर्ण आयाम 26 में रद्द किया जा सकता है।
फिर भौतिक मात्राओं का निर्माण (यूक्लिडियन) विभाजन फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) और सहसंबंध फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) | एन-पॉइंट फ़ंक्शन से किया जाता है:
असतत योग संभावित टोपोलॉजी पर एक योग है, जो यूक्लिडियन बोसोनिक ओरिएंटेबल बंद स्ट्रिंग्स के लिए कॉम्पैक्ट ओरिएंटेबल रीमैनियन मैनिफोल्ड हैं और इस प्रकार एक जीनस द्वारा पहचाने जाते हैं . एक सामान्यीकरण कारक समरूपता से ओवरकाउंटिंग की भरपाई के लिए पेश किया गया है। जबकि विभाजन फ़ंक्शन की गणना ब्रह्माण्ड संबंधी स्थिरांक से मेल खाती है, जिसमें एन-पॉइंट फ़ंक्शन भी सम्मिलित है वर्टेक्स ऑपरेटर्स, स्ट्रिंग्स के प्रकीर्णन आयाम का वर्णन करता है।
क्रिया का समरूपता समूह वास्तव में एकीकरण स्थान को एक सीमित आयामी कई गुना तक कम कर देता है। h> विभाजन फ़ंक्शन में पथ-अभिन्न, संभावित रीमानियन संरचनाओं पर एक प्राथमिक योग है; चूँकि, वेइल ट्रांसफ़ॉर्मेशन के संबंध में भागफल स्थान (टोपोलॉजी) हमें केवल अनुरूप संरचनाओं पर विचार करने की अनुमति देता है, अर्थात, संबंधित मेट्रिक्स की पहचान के तहत मेट्रिक्स के समतुल्य वर्ग
चूँकि विश्व-पत्र द्वि-आयामी है, अनुरूप संरचनाओं और जटिल मैनिफोल्ड के बीच 1-1 पत्राचार है। किसी को अभी भी भिन्नताओं को दूर करना होगा। यह हमें सभी संभावित जटिल संरचनाओं मॉड्यूलो डिफोमॉर्फिज्म के स्थान पर एकीकरण के साथ छोड़ देता है, जो कि दी गई टोपोलॉजिकल सतह का केवल मॉड्यूलि स्थान है, और वास्तव में एक परिमित-आयामी जटिल मैनिफोल्ड है। इसलिए पर्टर्बेटिव बोसोनिक स्ट्रिंग्स की मूल समस्या मॉड्यूलि स्पेस का पैरामीट्रिजेशन बन जाती है, जो जीनस के लिए गैर-तुच्छ है .
h = 0
ट्री-लेवल पर, जीनस 0 के अनुरूप, ब्रह्माण्ड संबंधी स्थिरांक लुप्त हो जाता है: .
चार टैच्योन के प्रकीर्णन के लिए चार-बिंदु कार्य शापिरो-विरासोरो आयाम है:
जहाँ कुल संवेग है और , , मैंडेलस्टैम चर हैं।
h = 1
जीनस 1 टोरस है, और वन-लूप स्तर से युग्मित होता है। विभाजन फलन की मात्रा इस प्रकार है:
सकारात्मक काल्पनिक भाग वाली सम्मिश्र संख्या ; है, टोरस के मॉड्यूलि स्पेस के लिए होलोमोर्फिक, मॉड्यूलर समूह के लिए कोई मौलिक डोमेन है, उदाहरण के लिए, ऊपरी अर्ध तल पर कार्य करता है, डेडेकाइंड ईटा फ़ंक्शन है। इंटीग्रैंड निश्चित रूप से मॉड्यूलर समूह के अनुसार अपरिवर्तनीय है: माप बस पोंकारे मीट्रिक है जिसमें आइसोमेट्री समूह के रूप में PSL(2,R) है; शेष एकीकरण भी गुण से अपरिवर्तनीय है और तथ्य यह है कि भार 1/2 का मॉड्यूलर रूप है।
यह अभिन्न विचलन करता है। यह टैचियन की उपस्थिति के कारण है और पर्टर्बेटिव वैक्यूम की अस्थिरता से संबंधित है।
यह भी देखें
- नंबू-गोटो क्रिया
- पोल्याकोव क्रिया
टिप्पणियाँ
- ↑ Lovelace, Claud (1971), "Pomeron form factors and dual Regge cuts", Physics Letters, B34 (6): 500–506, Bibcode:1971PhLB...34..500L, doi:10.1016/0370-2693(71)90665-4.
- ↑ D'Hoker, Phong
संदर्भ
D'Hoker, Eric & Phong, D. H. (Oct 1988). "The geometry of string perturbation theory". Rev. Mod. Phys. American Physical Society. 60 (4): 917–1065. Bibcode:1988RvMP...60..917D. doi:10.1103/RevModPhys.60.917.
Belavin, A.A. & Knizhnik, V.G. (Feb 1986). "Complex geometry and the theory of quantum strings". ZhETF. 91 (2): 364–390. Bibcode:1986ZhETF..91..364B. Archived from the original on 2021-02-26. Retrieved 2015-04-24.