अर्धसंभाव्यता वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


{{Short description|Objects like probability distributions that violate σ-additivity; useful in computational physics}}
{{Short description|Objects like probability distributions that violate σ-additivity; useful in computational physics}}
'''अर्धसंभाव्यता वितरण''', संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को शिथिल करता है ।अर्धसंभावनाएं सामान्य संभावनाओं के साथ कई सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षा मूल्य उत्पन्न करने की क्षमता। चूँकि , वे ''σ'' -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं।  वास्तव में, अर्धसंभाव्यता वितरण में नकारात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं , जो कि पहले सिद्धांत का खंडन करते हैं । क्वासिप्रोबेबिलिटी वितरण [[क्वांटम यांत्रिकी]] के अध्ययन में उत्पन्न होते हैं जब चरण अंतरिक्ष फॉर्मूलेशन में इलाज किया जाता है, आमतौर पर [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]] , [[समय-आवृत्ति विश्लेषण]] में उपयोग किया जाता है,<ref>L. Cohen (1995), ''Time-frequency analysis: theory and applications'', Prentice-Hall,  Upper Saddle River, NJ,    {{isbn|0-13-594532-1}} </ref>
'''अर्धसंभाव्यता वितरण''', संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को शिथिल करता है। अर्धसंभावनाएं सामान्य संभावनाओं के साथ कई सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षा मूल्य उत्पन्न करने की क्षमता। चूँकि , वे ''σ'' -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं।  वास्तव में, अर्धसंभाव्यता वितरण में नकारात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं , जो कि पहले सिद्धांत का खंडन करते हैं । क्वासिप्रोबेबिलिटी वितरण [[क्वांटम यांत्रिकी]] के अध्ययन में उत्पन्न होते हैं जब चरण अंतरिक्ष फॉर्मूलेशन में इलाज किया जाता है, आमतौर पर [[ क्वांटम प्रकाशिकी |क्वांटम प्रकाशिकी]] , [[समय-आवृत्ति विश्लेषण]] में उपयोग किया जाता है,<ref>L. Cohen (1995), ''Time-frequency analysis: theory and applications'', Prentice-Hall,  Upper Saddle River, NJ,    {{isbn|0-13-594532-1}} </ref>


== परिचय ==
== परिचय ==
Line 8: Line 8:
सबसे सामान्य रूप में, क्वांटम यांत्रिकी की गतिशीलता | क्वांटम-मैकेनिकल प्रणाली हिल्बर्ट अंतरिक्ष में [[मास्टर समीकरण]] द्वारा निर्धारित की जाती है: [[घनत्व ऑपरेटर]] के लिए गति का समीकरण (आमतौर पर लिखा जाता है) <math>\widehat{\rho}</math>) प्रणाली में। घनत्व ऑपरेटर को पूर्ण [[ऑर्थोनॉर्मल आधार]] के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (यानी, कुछ कणों या स्वतंत्रता की डिग्री वाले सिस्टम) के लिए सीधे एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए जल्दी ही कठिन हो जाता है। चूँकि , यह साबित करना संभव है<ref name="Sudarshan">{{cite journal | last=Sudarshan | first=E. C. G. | title=सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=10 | issue=7 | date=1963-04-01 | issn=0031-9007 | doi=10.1103/physrevlett.10.277 | pages=277–279| bibcode=1963PhRvL..10..277S }}</ref> घनत्व ऑपरेटर को सदैव [[विकर्ण मैट्रिक्स]] रूप में लिखा जा सकता है, बशर्ते कि यह [[अतिपूर्णता]] के आधार पर हो। जब घनत्व ऑपरेटर को इस तरह के पूर्ण आधार पर दर्शाया जाता है, तो इसे सामान्य फलन के समान तरीके से लिखा जा सकता है, इस कीमत पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। सिस्टम का विकास तब पूरी तरह से क्वासिप्रोबेबिलिटी वितरण फलन के विकास से निर्धारित होता है।
सबसे सामान्य रूप में, क्वांटम यांत्रिकी की गतिशीलता | क्वांटम-मैकेनिकल प्रणाली हिल्बर्ट अंतरिक्ष में [[मास्टर समीकरण]] द्वारा निर्धारित की जाती है: [[घनत्व ऑपरेटर]] के लिए गति का समीकरण (आमतौर पर लिखा जाता है) <math>\widehat{\rho}</math>) प्रणाली में। घनत्व ऑपरेटर को पूर्ण [[ऑर्थोनॉर्मल आधार]] के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (यानी, कुछ कणों या स्वतंत्रता की डिग्री वाले सिस्टम) के लिए सीधे एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए जल्दी ही कठिन हो जाता है। चूँकि , यह साबित करना संभव है<ref name="Sudarshan">{{cite journal | last=Sudarshan | first=E. C. G. | title=सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=10 | issue=7 | date=1963-04-01 | issn=0031-9007 | doi=10.1103/physrevlett.10.277 | pages=277–279| bibcode=1963PhRvL..10..277S }}</ref> घनत्व ऑपरेटर को सदैव [[विकर्ण मैट्रिक्स]] रूप में लिखा जा सकता है, बशर्ते कि यह [[अतिपूर्णता]] के आधार पर हो। जब घनत्व ऑपरेटर को इस तरह के पूर्ण आधार पर दर्शाया जाता है, तो इसे सामान्य फलन के समान तरीके से लिखा जा सकता है, इस कीमत पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। सिस्टम का विकास तब पूरी तरह से क्वासिप्रोबेबिलिटी वितरण फलन के विकास से निर्धारित होता है।


[[सुसंगत अवस्थाएँ]], अर्थात् विनाश संचालिका की सही स्वदेशी अवस्थाएँ <math>\widehat{a}</math> ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करें। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित संपत्ति होती है,
[[सुसंगत अवस्थाएँ|सुसंगत स्थितिएँ]], अर्थात् विनाश संचालिका की सही स्वदेशी स्थितिएँ <math>\widehat{a}</math> ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करें। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित संपत्ति होती है,
:<math>\begin{align}\widehat{a}|\alpha\rangle&=\alpha|\alpha\rangle \\
:<math>\begin{align}\widehat{a}|\alpha\rangle&=\alpha|\alpha\rangle \\
\langle\alpha|\widehat{a}^{\dagger}&=\langle\alpha|\alpha^*. \end{align}</math>
\langle\alpha|\widehat{a}^{\dagger}&=\langle\alpha|\alpha^*. \end{align}</math>
उनके पास कुछ और दिलचस्प गुण भी हैं। उदाहरण के लिए, कोई भी दो सुसंगत अवस्थाएँ ऑर्थोगोनल नहीं हैं। वास्तव में, यदि |α〉 और |β〉 सुसंगत अवस्थाओं की जोड़ी हैं, तो
उनके पास कुछ और दिलचस्प गुण भी हैं। उदाहरण के लिए, कोई भी दो सुसंगत स्थितिएँ ऑर्थोगोनल नहीं हैं। वास्तव में, यदि |α〉 और |β〉 सुसंगत स्थितिओं की जोड़ी हैं, तो
:<math>\langle\beta\mid\alpha\rangle=e^{-{1\over2}(|\beta|^2+|\alpha|^2-2\beta^*\alpha)}\neq\delta(\alpha-\beta).</math>
:<math>\langle\beta\mid\alpha\rangle=e^{-{1\over2}(|\beta|^2+|\alpha|^2-2\beta^*\alpha)}\neq\delta(\alpha-\beta).</math>
ध्यान दें कि ये अवस्थाएँ, हालांकि, α | के साथ सही ढंग से [[इकाई वेक्टर]] हैं α〉 = 1. [[फॉक राज्य|फॉक]] स्थिति के आधार की पूर्णता के कारण, सुसंगत स्थिति के आधार का चुनाव अतिपूर्ण होना चाहिए।<ref>{{cite journal | last=Klauder | first=John R | title=सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण| journal=Annals of Physics | publisher=Elsevier BV | volume=11 | issue=2 | year=1960 | issn=0003-4916 | doi=10.1016/0003-4916(60)90131-7 | pages=123–168| bibcode=1960AnPhy..11..123K }}</ref> अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।
ध्यान दें कि ये स्थितिएँ, हालांकि, α | के साथ सही ढंग से [[इकाई वेक्टर]] हैं α〉 = 1. [[फॉक राज्य|फॉक]] स्थिति के आधार की पूर्णता के कारण, सुसंगत स्थिति के आधार का चुनाव अतिपूर्ण होना चाहिए।<ref>{{cite journal | last=Klauder | first=John R | title=सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण| journal=Annals of Physics | publisher=Elsevier BV | volume=11 | issue=2 | year=1960 | issn=0003-4916 | doi=10.1016/0003-4916(60)90131-7 | pages=123–168| bibcode=1960AnPhy..11..123K }}</ref> अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।
{| class="toccolours collapsible collapsed" width="100%" style="text-align:left"
{| class="toccolours collapsible collapsed" width="100%" style="text-align:left"
!सुसंगत अवस्थाओं की अपूर्णता का प्रमाण
!सुसंगत स्थितिओं की अपूर्णता का प्रमाण
|-
|-
|
|
Integration over the complex plane can be written in terms of polar coordinates with <math>d^2\alpha=r \, dr \, d\theta</math>. Where [[order of integration (calculus)|exchanging sum and integral]] is allowed, we arrive at a simple integral expression of the [[gamma function]]:
Integration over the complex पीlane can be written in terms of पीolar coordinates with <math>d^2\alpha=r \, dr \, d\theta</math>. Where [[order of integration (calculus)|exchanging sum and integral]] is allowed, we arrive at a simple integral expression of the [[gamma function]]:
:<math>\begin{align}\int |\alpha\rangle\langle\alpha| \, d^2\alpha
:<math>\begin{align}\int |\alpha\rangle\langle\alpha| \, d^2\alpha
&= \int \sum_{n=0}^\infty\sum_{k=0}^\infty e^{-{|\alpha|^2}} \cdot \frac{\alpha^n (\alpha^*)^k}{\sqrt{n!k!}} |n\rangle \langle k| \, d^2\alpha \\
&= \int \sum_{n=0}^\infty\sum_{k=0}^\infty e^{-{|\alpha|^2}} \cdot \frac{\alpha^n (\alpha^*)^k}{\sqrt{n!k!}} |n\rangle \langle k| \, d^2\alpha \\
Line 32: Line 32:
:<math>|\psi\rangle = \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|\psi\rangle \, d^2\alpha.</math>
:<math>|\psi\rangle = \frac{1}{\pi} \int |\alpha\rangle\langle\alpha|\psi\rangle \, d^2\alpha.</math>


On the other hand, despite correct normalization of the states, the factor of π > 1 proves that this basis is overcomplete.
On the other hand, despite correct normalization of the states, the factor of π > 1 पीroves that this basis is overcomplete.
|}
|}
चूँकि , सुसंगत स्थिति के आधार पर, यह सदैव संभव है<ref name="Sudarshan" />घनत्व संकारक को विकर्ण रूप में व्यक्त करना
चूँकि , सुसंगत स्थिति के आधार पर, यह सदैव संभव है<ref name="Sudarshan" />घनत्व संकारक को विकर्ण रूप में व्यक्त करना
Line 90: Line 90:
यह इस प्रकार है कि
यह इस प्रकार है कि
*<math>P(\alpha,\alpha^*)= \frac{1}{\pi^2} \int Q(\beta,\beta^*) e^{|\lambda|^2+\lambda^* ( \alpha-\beta) -\lambda  ( \alpha-\beta) ^*} \, d^2\beta ~d^2\lambda,</math>
*<math>P(\alpha,\alpha^*)= \frac{1}{\pi^2} \int Q(\beta,\beta^*) e^{|\lambda|^2+\lambda^* ( \alpha-\beta) -\lambda  ( \alpha-\beta) ^*} \, d^2\beta ~d^2\lambda,</math>
अक्सर भिन्न अभिन्न अंग, जो इंगित करता है कि पी अक्सर वितरण है। समान घनत्व मैट्रिक्स के लिए Q सदैव P से अधिक चौड़ा होता है। <ref>Wolfgang Schleich, ''Quantum Optics in Phase Space'',  (Wiley-VCH,  2001) {{isbn|978-3527294350}}</ref>
अक्सर भिन्न अभिन्न अंग, जो इंगित करता है कि पी अक्सर वितरण है। समान घनत्व मैट्रिक्स के लिए क्यू सदैव पी से अधिक चौड़ा होता है। <ref>Wolfgang Schleich, ''Quantum Optics in Phase Space'',  (Wiley-VCH,  2001) {{isbn|978-3527294350}}</ref>
उदाहरण के लिए, तापीय स्थिति के लिए,
उदाहरण के लिए, तापीय स्थिति के लिए,
:<math>\hat \rho= \frac{1}{\bar n +1}\sum_{n=0}^\infty \left (\frac{\bar n}{1+\bar n }\right)^n |n\rangle \langle n|~~, </math>
:<math>\hat \rho= \frac{1}{\bar n +1}\sum_{n=0}^\infty \left (\frac{\bar n}{1+\bar n }\right)^n |n\rangle \langle n|~~, </math>
Line 99: Line 99:
उपरोक्त प्रत्येक रूपांतरण के बाद से {{mvar|ρ}} से वितरण फलन के लिए स्थानीय हैं, प्रत्येक वितरण के लिए गति का समीकरण समान परिवर्तन करके प्राप्त किया जा सकता है  जैसा कि <math>\dot{\rho}</math>. इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड समीकरण में व्यक्त किया जा सकता है, वह पूरी तरह से घनत्व ऑपरेटर पर निर्माण और विनाश ऑपरेटरों के संयोजन की कार्रवाई द्वारा वर्णित है, इस तरह के संचालन के प्रत्येक अर्धसंभाव्यता कार्यों पर पड़ने वाले प्रभाव पर विचार करना उपयोगी है।<ref>H. J. Carmichael, ''Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations'', Springer-Verlag (2002).</ref><ref>C. W. Gardiner, ''Quantum Noise'', Springer-Verlag (1991).</ref>
उपरोक्त प्रत्येक रूपांतरण के बाद से {{mvar|ρ}} से वितरण फलन के लिए स्थानीय हैं, प्रत्येक वितरण के लिए गति का समीकरण समान परिवर्तन करके प्राप्त किया जा सकता है  जैसा कि <math>\dot{\rho}</math>. इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड समीकरण में व्यक्त किया जा सकता है, वह पूरी तरह से घनत्व ऑपरेटर पर निर्माण और विनाश ऑपरेटरों के संयोजन की कार्रवाई द्वारा वर्णित है, इस तरह के संचालन के प्रत्येक अर्धसंभाव्यता कार्यों पर पड़ने वाले प्रभाव पर विचार करना उपयोगी है।<ref>H. J. Carmichael, ''Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations'', Springer-Verlag (2002).</ref><ref>C. W. Gardiner, ''Quantum Noise'', Springer-Verlag (1991).</ref>


उदाहरण के लिए, विनाश संचालिका पर विचार करें <math>\widehat{a}_j\,</math> जो  {{mvar|ρ}} पर प्रभाव कर रहा है। P वितरण के लिए चरित्रिक फलन के लिए हमें यह है
उदाहरण के लिए, विनाश संचालिका पर विचार करें <math>\widehat{a}_j\,</math> जो  {{mvar|ρ}} पर प्रभाव कर रहा है। पी वितरण के लिए चरित्रिक फलन के लिए हमें यह है
: <math>\operatorname{tr}(\widehat{a}_j\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}} e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}) = \frac{\partial}{\partial(iz_j)}\chi_P(\mathbf{z},\mathbf{z}^*).</math>
: <math>\operatorname{tr}(\widehat{a}_j\rho e^{i\mathbf{z}^*\cdot\widehat{\mathbf{a}}^{\dagger}} e^{i\mathbf{z}\cdot\widehat{\mathbf{a}}}) = \frac{\partial}{\partial(iz_j)}\chi_P(\mathbf{z},\mathbf{z}^*).</math>
फूरियर परिवर्तन के संबंध में लेना <math>\mathbf{z}\,</math> खोजने के लिए ग्लौबर P फलन पर संबंधित क्रिया प्राप्त करने के लिए हमें मिलता है
फूरियर परिवर्तन के संबंध में लेना <math>\mathbf{z}\,</math> खोजने के लिए ग्लौबर पी फलन पर संबंधित क्रिया प्राप्त करने के लिए हमें मिलता है
:<math>\widehat{a}_j\rho \rightarrow \alpha_j P(\mathbf{\alpha},\mathbf{\alpha}^*).</math>
:<math>\widehat{a}_j\rho \rightarrow \alpha_j P(\mathbf{\alpha},\mathbf{\alpha}^*).</math>
इस प्रक्रिया का पालन करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित ऑपरेटर संबंधितताएँ पहचानी जा सकती हैं:
इस प्रक्रिया का पालन करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित ऑपरेटर संबंधितताएँ पहचानी जा सकती हैं:
Line 108: Line 108:
* <math>\widehat{a}^\dagger_j\rho \rightarrow \left(\alpha_j^* - (1-\kappa)\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\widehat{a}^\dagger_j\rho \rightarrow \left(\alpha_j^* - (1-\kappa)\frac{\partial}{\partial\alpha_j}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}_j \rightarrow \left(\alpha_j - (1-\kappa)\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
* <math>\rho\widehat{a}_j \rightarrow \left(\alpha_j - (1-\kappa)\frac{\partial}{\partial\alpha_j^*}\right)\{W\mid P\mid Q\}(\mathbf{\alpha},\mathbf{\alpha}^*)</math>
यहाँ {{math|κ {{=}} 0, 1/2}} या क्रमशः P, विग्नर और Q वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।
यहाँ {{math|κ {{=}} 0, 1/2}} या क्रमशः पी, विग्नर और क्यू वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।


==उदाहरण==
==उदाहरण==


===सुसंगत अवस्था===
===सुसंगत स्थिति===
निर्माण के अनुसार, कोहिरेंट स्थिति <math>|\alpha_0\rangle</math> के लिए P बस एक डेल्टा समीकरण है:
निर्माण के अनुसार, सुसंगत स्थिति <math>|\alpha_0\rangle</math> के लिए पी डेल्टा समीकरण है:
:<math>P(\alpha,\alpha^*)=\delta^2(\alpha-\alpha_0).</math>
:<math>P(\alpha,\alpha^*)=\delta^2(\alpha-\alpha_0).</math>
विग्नर और Q प्रतिष्ठान उपरोक्त गॉसियन संलयन सूत्रों से सीधे रूप से आते हैं,
विग्नर और क्यू प्रतिष्ठान उपरोक्त गॉसियन संलयन सूत्रों से सीधे रूप से आते हैं,


विग्नर प्रतिष्ठान:
विग्नर प्रतिष्ठान:
:<math>W(\alpha,\alpha^*)=\frac{2}{\pi} \int \delta^2(\beta-\alpha_0) e^{-2|\alpha-\beta|^2} \, d^2\beta=\frac{2}{\pi}e^{-2|\alpha-\alpha_0|^2}</math>
:<math>W(\alpha,\alpha^*)=\frac{2}{\pi} \int \delta^2(\beta-\alpha_0) e^{-2|\alpha-\beta|^2} \, d^2\beta=\frac{2}{\pi}e^{-2|\alpha-\alpha_0|^2}</math>
:Q प्रतिष्ठान:
:क्यू प्रतिष्ठान:
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi} \int \delta^2(\beta-\alpha_0) e^{-|\alpha-\beta|^2} \, d^2\beta=\frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}.</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi} \int \delta^2(\beta-\alpha_0) e^{-|\alpha-\beta|^2} \, d^2\beta=\frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}.</math>
हुसीमी प्रतिष्ठान भी यही तरीका उपयोग करके प्राप्त की जा सकती है, जोरूरत है दो कोहिरेंट स्थितियों के बीच के आंतरिक गुणक के लिए उपरोक्त सूत्र की:
हुसिमी प्रतिनिधित्व को दो सुसंगत स्थितियों के आंतरिक उत्पाद के लिए उपरोक्त सूत्र का उपयोग करके भी पाया जा सकता है,
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle \alpha_0|\alpha\rangle|^2 = \frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle \alpha_0|\alpha\rangle|^2 = \frac{1}{\pi}e^{-|\alpha-\alpha_0|^2}</math>
===फॉक अवस्था===
===फॉक स्थिति===
फॉक स्थिति <math>|n\rangle</math> का P प्रतिष्ठान है
फॉक स्थिति <math>|n\rangle</math> का पी प्रतिष्ठान है
:<math>P(\alpha,\alpha^*)=\frac{e^{|\alpha|^2}}{n!} \frac{\partial^{2n}}{\partial\alpha^{*n}\,\partial\alpha^n} \delta^2(\alpha).</math>
:<math>P(\alpha,\alpha^*)=\frac{e^{|\alpha|^2}}{n!} \frac{\partial^{2n}}{\partial\alpha^{*n}\,\partial\alpha^n} \delta^2(\alpha).</math>
चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई शास्त्रीय सहमति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-शास्त्रीयता कम पारदर्शी होती है। यदि L<sub>n</sub> [[लैगुएरे बहुपद]] है, तो W इसका है
चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई शास्त्रीय सहमति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-शास्त्रीयता कम पारदर्शी होती है। यदि L<sub>n</sub> [[लैगुएरे बहुपद]] है, तो W इसका है
Line 130: Line 130:
जो नकारात्मक हो सकता है किन्तु सीमित है।
जो नकारात्मक हो सकता है किन्तु सीमित है।


उपभिन्नता से, Q सदैव सकारात्मक और सीमित रहता है
उपभिन्नता से, क्यू सदैव सकारात्मक और सीमित रहता है
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle n|\alpha\rangle|^2 =\frac{1}{\pi n!}|\langle 0|\widehat{a}^n|\alpha\rangle|^2 = \frac{|\alpha|^{2n}}{\pi n!} |\langle 0|\alpha\rangle|^2 ~.</math>
:<math>Q(\alpha,\alpha^*)=\frac{1}{\pi}\langle \alpha|\widehat{\rho}|\alpha\rangle =\frac{1}{\pi}|\langle n|\alpha\rangle|^2 =\frac{1}{\pi n!}|\langle 0|\widehat{a}^n|\alpha\rangle|^2 = \frac{|\alpha|^{2n}}{\pi n!} |\langle 0|\alpha\rangle|^2 ~.</math>
===डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर===
===डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर===
Line 138: Line 138:
इसका परिणाम फोककर-प्लैंक समीकरण में होता है,
इसका परिणाम फोककर-प्लैंक समीकरण में होता है,
:<math>\frac{\partial}{\partial t} \{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \left[(\gamma+i\omega_0)\frac{\partial}{\partial \alpha}\alpha + (\gamma-i\omega_0)\frac{\partial}{\partial \alpha^*}\alpha^* + \frac{\gamma}{2}(\langle n \rangle + \kappa)\frac{\partial^2}{\partial\alpha\,\partial\alpha^*}\right]\{W\mid P\mid Q\}(\alpha,\alpha^*,t), </math>
:<math>\frac{\partial}{\partial t} \{W\mid P\mid Q\}(\alpha,\alpha^*,t) = \left[(\gamma+i\omega_0)\frac{\partial}{\partial \alpha}\alpha + (\gamma-i\omega_0)\frac{\partial}{\partial \alpha^*}\alpha^* + \frac{\gamma}{2}(\langle n \rangle + \kappa)\frac{\partial^2}{\partial\alpha\,\partial\alpha^*}\right]\{W\mid P\mid Q\}(\alpha,\alpha^*,t), </math>
जहां क्रमशः P, W, और Q प्रतिनिधित्व के लिए κ = 0, 1/2, 1 है।
जहां क्रमशः पी, W, और क्यू प्रतिनिधित्व के लिए κ = 0, 1/2, 1 है।


यदि सिस्टम प्रारंभ में सुसंगत स्थिति में है <math>|\alpha_0\rangle</math>, तो इस समीकरण का हल है
यदि सिस्टम प्रारंभ में सुसंगत स्थिति में है <math>|\alpha_0\rangle</math>, तो इस समीकरण का हल है

Revision as of 18:49, 30 November 2023

अर्धसंभाव्यता वितरण, संभाव्यता वितरण के समान गणितीय वस्तु है, किन्तु जो संभाव्यता सिद्धांत के कोलमोगोरोव के कुछ सिद्धांतों को शिथिल करता है। अर्धसंभावनाएं सामान्य संभावनाओं के साथ कई सामान्य विशेषताएं साझा करती हैं, जैसे, महत्वपूर्ण रूप से, वितरण के भार के संबंध में अपेक्षा मूल्य उत्पन्न करने की क्षमता। चूँकि , वे σ -एडिटिविटी सिद्धांत का उल्लंघन कर सकते हैं उन पर एकीकरण करने से परस्पर अनन्य स्थिति की संभावनाएं उत्पन्न नहीं होती हैं। वास्तव में, अर्धसंभाव्यता वितरण में नकारात्मक संभाव्यता घनत्व के क्षेत्र भी होते हैं , जो कि पहले सिद्धांत का खंडन करते हैं । क्वासिप्रोबेबिलिटी वितरण क्वांटम यांत्रिकी के अध्ययन में उत्पन्न होते हैं जब चरण अंतरिक्ष फॉर्मूलेशन में इलाज किया जाता है, आमतौर पर क्वांटम प्रकाशिकी , समय-आवृत्ति विश्लेषण में उपयोग किया जाता है,[1]

परिचय

सबसे सामान्य रूप में, क्वांटम यांत्रिकी की गतिशीलता | क्वांटम-मैकेनिकल प्रणाली हिल्बर्ट अंतरिक्ष में मास्टर समीकरण द्वारा निर्धारित की जाती है: घनत्व ऑपरेटर के लिए गति का समीकरण (आमतौर पर लिखा जाता है) ) प्रणाली में। घनत्व ऑपरेटर को पूर्ण ऑर्थोनॉर्मल आधार के संबंध में परिभाषित किया गया है। यद्यपि इस समीकरण को बहुत छोटी प्रणालियों (यानी, कुछ कणों या स्वतंत्रता की डिग्री वाले सिस्टम) के लिए सीधे एकीकृत करना संभव है, यह बड़ी प्रणालियों के लिए जल्दी ही कठिन हो जाता है। चूँकि , यह साबित करना संभव है[2] घनत्व ऑपरेटर को सदैव विकर्ण मैट्रिक्स रूप में लिखा जा सकता है, बशर्ते कि यह अतिपूर्णता के आधार पर हो। जब घनत्व ऑपरेटर को इस तरह के पूर्ण आधार पर दर्शाया जाता है, तो इसे सामान्य फलन के समान तरीके से लिखा जा सकता है, इस कीमत पर कि फलन में अर्धसंभाव्यता वितरण की विशेषताएं होती हैं। सिस्टम का विकास तब पूरी तरह से क्वासिप्रोबेबिलिटी वितरण फलन के विकास से निर्धारित होता है।

सुसंगत स्थितिएँ, अर्थात् विनाश संचालिका की सही स्वदेशी स्थितिएँ ऊपर वर्णित निर्माण में अपूर्ण आधार के रूप में कार्य करें। परिभाषा के अनुसार, सुसंगत स्थिति में निम्नलिखित संपत्ति होती है,

उनके पास कुछ और दिलचस्प गुण भी हैं। उदाहरण के लिए, कोई भी दो सुसंगत स्थितिएँ ऑर्थोगोनल नहीं हैं। वास्तव में, यदि |α〉 और |β〉 सुसंगत स्थितिओं की जोड़ी हैं, तो

ध्यान दें कि ये स्थितिएँ, हालांकि, α | के साथ सही ढंग से इकाई वेक्टर हैं α〉 = 1. फॉक स्थिति के आधार की पूर्णता के कारण, सुसंगत स्थिति के आधार का चुनाव अतिपूर्ण होना चाहिए।[3] अनौपचारिक प्रमाण दिखाने के लिए क्लिक करें।

चूँकि , सुसंगत स्थिति के आधार पर, यह सदैव संभव है[2]घनत्व संकारक को विकर्ण रूप में व्यक्त करना

जहाँ f चरण स्थान वितरण का प्रतिनिधित्व है। इस फलन f को अर्धसंभाव्यता घनत्व माना जाता है क्योंकि इसमें निम्नलिखित गुण हैं:

  • (सामान्यीकरण)
  • अगर ऑपरेटर है जिसे क्रमबद्ध Ω में सृजन और विनाश ऑपरेटरों की शक्ति श्रृंखला के रूप में व्यक्त किया जा सकता है, तो इसका अपेक्षित मूल्य है
(ऑप्टिकल तुल्यता प्रमेय)।

फलन f अद्वितीय नहीं है. विभिन्न प्रतिनिधित्वों का परिवार मौजूद है, प्रत्येक अलग क्रम से जुड़ा हुआ है। सामान्य भौतिकी साहित्य में सबसे लोकप्रिय और ऐतिहासिक रूप से इनमें से पहला है विग्नर क्वासिप्रोबेबिलिटी वितरण,[4] जो सममित ऑपरेटर ऑर्डरिंग से संबंधित है। विशेष रूप से क्वांटम ऑप्टिक्स में, अक्सर रुचि के ऑपरेटर, विशेष रूप से कण संख्या ऑपरेटर, स्वाभाविक रूप से सामान्य क्रम में व्यक्त किए जाते हैं। उस स्थिति में, चरण स्थान वितरण का संगत प्रतिनिधित्व ग्लौबर-सुदर्शन पी प्रतिनिधित्व है।[5] इन चरण अंतरिक्ष वितरणों की अर्धसंभाव्य प्रकृति को सबसे अच्छी तरह से समझा जाता है P निम्नलिखित मुख्य कथन के कारण प्रतिनिधित्व:[6]

यदि क्वांटम प्रणाली में शास्त्रीय एनालॉग है, उदा। एक सुसंगत अवस्था या थर्मल विकिरण,तो P सामान्य संभाव्यता वितरण की तरह हर जगह गैर-नकारात्मक है। हालाँकि, यदि क्वांटम प्रणाली का कोई शास्त्रीय एनालॉग नहीं है, उदाहरण के लिए एक असंगत फॉक स्थिति या उलझा हुआ सिस्टम, तो P कहीं न कहीं ऋणात्मक है या डेल्टा फ़ंक्शन की तुलना में अधिक एकवचन है।

यह व्यापक कथन अन्य अभ्यावेदनों में निष्क्रिय है। उदाहरण के लिए, ईपीआर विरोधाभास स्थिति का विग्नर फलन सकारात्मक निश्चित है किन्तु इसका कोई शास्त्रीय एनालॉग नहीं है।[7][8] ऊपर परिभाषित अभ्यावेदन के अतिरिक्त, कई अन्य अर्धसंभाव्यता वितरण हैं जो चरण अंतरिक्ष वितरण के वैकल्पिक अभ्यावेदन में उत्पन्न होते हैं। अन्य लोकप्रिय प्रतिनिधित्व हुसिमी क्यू प्रतिनिधित्व है,[9] जो तब उपयोगी होता है जब ऑपरेटर सामान्य-विरोधी क्रम में हों। हाल ही में, सकारात्मक P प्रतिनिधित्व और सामान्यीकृत का व्यापक वर्ग Pक्वांटम ऑप्टिक्स में जटिल समस्याओं को हल करने के लिए अभ्यावेदन का उपयोग किया गया है। ये सभी दूसरे के समतुल्य और परस्पर परिवर्तनीय हैं, अर्थात। कोहेन का वर्ग वितरण फलन.

विशेषता कार्य

संभाव्यता सिद्धांत के अनुरूप, क्वांटम क्वासिप्रोबेबिलिटी वितरण विशेषता फलन (संभावना सिद्धांत) के संदर्भ में लिखा जा सकता है, जिससे सभी ऑपरेटर अपेक्षा मान प्राप्त किए जा सकते हैं। विशिष्टता एन मोड सिस्टम के विग्नर, ग्लौबर-सुदर्शन पी-प्रतिनिधित्व और क्यू वितरण के लिए कार्य निम्नानुसार हैं:

यहाँ और प्रत्येक मोड के लिए विनाश और निर्माण ऑपरेटर वाले वेक्टर हैं प्रणाली में। इन विशिष्ट कार्यों का उपयोग ऑपरेटर क्षणों के अपेक्षा मूल्यों का सीधे मूल्यांकन करने के लिए किया जा सकता है। इन क्षणों में संहार और सृजन संचालकों का क्रम विशिष्ट विशिष्ट कार्य के लिए विशिष्ट होता है। उदाहरण के लिए, सामान्य क्रम (विनाश संचालकों से पहले सृजन संचालक) क्षणों का मूल्यांकन निम्नलिखित तरीके से किया जा सकता है :

उसी तरह, विनाश और निर्माण ऑपरेटरों के सामान्य रूप से आदेशित और सममित रूप से आदेशित संयोजनों की अपेक्षा मूल्यों का मूल्यांकन क्रमशः क्यू और विग्नर वितरण के लिए विशेषता कार्यों से किया जा सकता है। अर्धसंभाव्यता कार्यों को स्वयं उपरोक्त विशिष्ट कार्यों के फूरियर परिवर्तनों के रूप में परिभाषित किया गया है। वह है,

यहाँ और ग्लॉबर पी और क्यू वितरण के मामले में सुसंगत स्थिति आयाम के रूप में पहचाना जा सकता है, किन्तु विग्नर फलन के लिए केवल सी-नंबर। चूंकि सामान्य स्थान में विभेदन फूरियर अंतरिक्ष में गुणन बन जाता है, इसलिए इन कार्यों से क्षणों की गणना निम्नलिखित तरीके से की जा सकती है:

यहाँ सममित क्रम को दर्शाता है।

ये सभी अभ्यावेदन गॉसियन फ़ंक्शन, वीयरस्ट्रैस परिवर्तन, द्वारा कनवल्शन के माध्यम से परस्पर जुड़े हुए हैं।

या, उस संपत्ति का उपयोग करते हुए जो कनवल्शन साहचर्य है,

यह इस प्रकार है कि

अक्सर भिन्न अभिन्न अंग, जो इंगित करता है कि पी अक्सर वितरण है। समान घनत्व मैट्रिक्स के लिए क्यू सदैव पी से अधिक चौड़ा होता है। [10] उदाहरण के लिए, तापीय स्थिति के लिए,

किसी के पास

समय विकास और ऑपरेटर पत्राचार

उपरोक्त प्रत्येक रूपांतरण के बाद से ρ से वितरण फलन के लिए स्थानीय हैं, प्रत्येक वितरण के लिए गति का समीकरण समान परिवर्तन करके प्राप्त किया जा सकता है जैसा कि . इसके अतिरिक्त, चूंकि कोई भी मास्टर समीकरण जिसे लिंडब्लैड समीकरण में व्यक्त किया जा सकता है, वह पूरी तरह से घनत्व ऑपरेटर पर निर्माण और विनाश ऑपरेटरों के संयोजन की कार्रवाई द्वारा वर्णित है, इस तरह के संचालन के प्रत्येक अर्धसंभाव्यता कार्यों पर पड़ने वाले प्रभाव पर विचार करना उपयोगी है।[11][12]

उदाहरण के लिए, विनाश संचालिका पर विचार करें जो ρ पर प्रभाव कर रहा है। पी वितरण के लिए चरित्रिक फलन के लिए हमें यह है

फूरियर परिवर्तन के संबंध में लेना खोजने के लिए ग्लौबर पी फलन पर संबंधित क्रिया प्राप्त करने के लिए हमें मिलता है

इस प्रक्रिया का पालन करके ऊपर दिए गए प्रत्येक वितरण के लिए, निम्नलिखित ऑपरेटर संबंधितताएँ पहचानी जा सकती हैं:

यहाँ κ = 0, 1/2 या क्रमशः पी, विग्नर और क्यू वितरणों के लिए 1 है। इस प्रकार, मास्टर समीकरणों को समीकरणों के रूप में व्यक्त किया जा सकता है`।

उदाहरण

सुसंगत स्थिति

निर्माण के अनुसार, सुसंगत स्थिति के लिए पी डेल्टा समीकरण है:

विग्नर और क्यू प्रतिष्ठान उपरोक्त गॉसियन संलयन सूत्रों से सीधे रूप से आते हैं,

विग्नर प्रतिष्ठान:

क्यू प्रतिष्ठान:

हुसिमी प्रतिनिधित्व को दो सुसंगत स्थितियों के आंतरिक उत्पाद के लिए उपरोक्त सूत्र का उपयोग करके भी पाया जा सकता है,

फॉक स्थिति

फॉक स्थिति का पी प्रतिष्ठान है

चूँकि n>0 के लिए यह डेल्टा समीकरण से अधिक असमीकरण है, फ़ॉक स्थिति का कोई शास्त्रीय सहमति नहीं है। गॉसियन संकल्पों के साथ आगे बढ़ने पर गैर-शास्त्रीयता कम पारदर्शी होती है। यदि Ln लैगुएरे बहुपद है, तो W इसका है

जो नकारात्मक हो सकता है किन्तु सीमित है।

उपभिन्नता से, क्यू सदैव सकारात्मक और सीमित रहता है

डम्प्ड क्वांटम हार्मोनिक ऑसिलेटर

निम्नलिखित मास्टर समीकरण के साथ नम क्वांटम हार्मोनिक ऑसिलेटर पर विचार करें,

इसका परिणाम फोककर-प्लैंक समीकरण में होता है,

जहां क्रमशः पी, W, और क्यू प्रतिनिधित्व के लिए κ = 0, 1/2, 1 है।

यदि सिस्टम प्रारंभ में सुसंगत स्थिति में है , तो इस समीकरण का हल है

संदर्भ

  1. L. Cohen (1995), Time-frequency analysis: theory and applications, Prentice-Hall, Upper Saddle River, NJ, ISBN 0-13-594532-1
  2. 2.0 2.1 Sudarshan, E. C. G. (1963-04-01). "सांख्यिकीय प्रकाश किरणों के अर्धशास्त्रीय और क्वांटम यांत्रिक विवरणों की समतुल्यता". Physical Review Letters. American Physical Society (APS). 10 (7): 277–279. Bibcode:1963PhRvL..10..277S. doi:10.1103/physrevlett.10.277. ISSN 0031-9007.
  3. Klauder, John R (1960). "सामान्य सी-नंबरों के संदर्भ में एक्शन विकल्प और स्पिनर फ़ील्ड का फेनमैन परिमाणीकरण". Annals of Physics. Elsevier BV. 11 (2): 123–168. Bibcode:1960AnPhy..11..123K. doi:10.1016/0003-4916(60)90131-7. ISSN 0003-4916.
  4. Wigner, E. (1932-06-01). "थर्मोडायनामिक संतुलन के लिए क्वांटम सुधार पर". Physical Review. American Physical Society (APS). 40 (5): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/physrev.40.749. ISSN 0031-899X.
  5. Glauber, Roy J. (1963-09-15). "विकिरण क्षेत्र की सुसंगत और असंगत अवस्थाएँ". Physical Review. American Physical Society (APS). 131 (6): 2766–2788. Bibcode:1963PhRv..131.2766G. doi:10.1103/physrev.131.2766. ISSN 0031-899X.
  6. Mandel, L.; Wolf, E. (1995), Optical Coherence and Quantum Optics, Cambridge UK: Cambridge University Press, ISBN 0-521-41711-2
  7. Cohen, O. (1997-11-01). "मूल आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता". Physical Review A. American Physical Society (APS). 56 (5): 3484–3492. Bibcode:1997PhRvA..56.3484C. doi:10.1103/physreva.56.3484. ISSN 1050-2947.
  8. Banaszek, Konrad; Wódkiewicz, Krzysztof (1998-12-01). "विग्नर प्रतिनिधित्व में आइंस्टीन-पोडॉल्स्की-रोसेन राज्य की गैर-स्थानीयता". Physical Review A. 58 (6): 4345–4347. arXiv:quant-ph/9806069. Bibcode:1998PhRvA..58.4345B. doi:10.1103/physreva.58.4345. ISSN 1050-2947. S2CID 119341663.
  9. Husimi, Kôdi. घनत्व मैट्रिक्स के कुछ औपचारिक गुण. Proceedings of the Physico-Mathematical Society of Japan. Vol. 22. The Mathematical Society of Japan. pp. 264–314. doi:10.11429/ppmsj1919.22.4_264. ISSN 0370-1239.
  10. Wolfgang Schleich, Quantum Optics in Phase Space, (Wiley-VCH, 2001) ISBN 978-3527294350
  11. H. J. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker–Planck Equations, Springer-Verlag (2002).
  12. C. W. Gardiner, Quantum Noise, Springer-Verlag (1991).