एफकेजी असमानता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, '''फोर्टुइन-कास्टेलिन-गिनिब्रे''' (एफकेजी) असमानता एक सहसंबंध असमानता है, जो {{harvs | last1=फ़ोर्टुइन | author1-link=सीज़ एम. फ़ोर्टुइन | first1=सीस एम. | last2=कस्टेलीन | author2-link=पीटर कस्टेलीन | first2=पीटर डब्ल्यू. | last3=गिनिब्रे | author3-link=जीन गिनीब्रे | first3=जीन | title=कुछ आंशिक रूप से आदेश किए गए सेटों पर सहसंबंध असमानताएँ | url=http://projecteuclid.org/euclid.cmp/1103857443 | mr=0309498 | year=1971 | journal=गणितीय भौतिकी में संचार  | volume=22 | pages=89–103|txt}} के कारण [[सांख्यिकीय यांत्रिकी]] और संयोजक या संभाव्य संयोजक (विशेष रूप से [[यादृच्छिक ग्राफ|यादृच्छिक आरेख]] और [[संभाव्य विधि]]) में मौलिक उपकरण है। सामान्यतः, यह कहता है कि विभिन्न यादृच्छिक प्रणालियों में, बढ़ती घटनाएँ धनात्मक रूप से सहसंबद्ध होती हैं, जबकि बढ़ती और घटती घटनाएँ ऋणात्मक रूप से सहसंबद्ध होती हैं। इसे [[यादृच्छिक क्लस्टर मॉडल]] का अध्ययन करके प्राप्त किया गया था।
गणित में, '''फोर्टुइन-कास्टेलिन-गिनिब्रे''' (एफकेजी) असमानता एक सहसंबंध असमानता है, जो {{harvs | last1=फ़ोर्टुइन | author1-link=सीज़ एम. फ़ोर्टुइन | first1=सीस एम. | last2=कस्टेलीन | author2-link=पीटर कस्टेलीन | first2=पीटर डब्ल्यू. | last3=गिनिब्रे | author3-link=जीन गिनीब्रे | first3=जीन | title=कुछ आंशिक रूप से आदेश किए गए सेटों पर सहसंबंध असमानताएँ | url=http://projecteuclid.org/euclid.cmp/1103857443 | mr=0309498 | year=1971 | journal=गणितीय भौतिकी में संचार  | volume=22 | pages=89–103|txt}} के कारण [[सांख्यिकीय यांत्रिकी]] और संयोजक या संभाव्य संयोजक (विशेष रूप से [[यादृच्छिक ग्राफ|यादृच्छिक आरेख]] और [[संभाव्य विधि]]) में मौलिक उपकरण है। सामान्यतः, यह कहता है कि विभिन्न यादृच्छिक प्रणालियों में, बढ़ती घटनाएँ धनात्मक रूप से सहसंबद्ध होती हैं, जबकि बढ़ती और घटती घटनाएँ ऋणात्मक रूप से सहसंबद्ध होती हैं। इसे [[यादृच्छिक क्लस्टर मॉडल]] का अध्ययन करके प्राप्त किया गया था।


आई.आई.डी. के विशेष स्थिति के लिए एक पूर्व संस्करण वैरिएबल को हैरिस असमानता कहा जाता है, जो {{harvs|last=[[Ted Harris (mathematician)|Harris]] |first=Theodore Edward|year=1960|txt}} के कारण है, नीचे देखें। एफकेजी असमानता का एक सामान्यीकरण नीचे होली असमानता (1974) है, और इससे भी आगे का सामान्यीकरण अहल्सवेडे-डेकिन "चार फलन प्रमेय (1978) है। इसके अतिरिक्त, इसका निष्कर्ष ग्रिफ़िथ असमानताओं के समान ही है, किन्तु परिकल्पनाएँ भिन्न हैं।
आई.आई.डी. के विशेष स्थिति के लिए एक पूर्व संस्करण वैरिएबल को हैरिस असमानता कहा जाता है, जो {{harvs|last=[[टेड हैरिस (गणितज्ञ)|हैरिस]] |first=थिओडोर एडवर्ड|year=1960|txt}} के कारण है, नीचे देखें। एफकेजी असमानता का एक सामान्यीकरण नीचे हॉली असमानता (1974) है, और इससे भी आगे का सामान्यीकरण अहल्सवेडे-डेकिन "चार फलन प्रमेय (1978) है। इसके अतिरिक्त, इसका निष्कर्ष ग्रिफ़िथ असमानताओं के समान ही है, किन्तु परिकल्पनाएँ भिन्न हैं।


==असमानता==
==असमानता==
Line 9: Line 9:
जालक में सभी x y के लिए <math>X</math>
जालक में सभी x y के लिए <math>X</math>


एफकेजी असमानता तब कहती है कि <math>X</math> पर किन्हीं दो मोटोनोकली बढ़ते कार्यों ƒ और g के लिए निम्नलिखित धनात्मक सहसंबंध असमानता है:
एफकेजी असमानता तब कहती है कि <math>X</math> पर किन्हीं दो मोटोनोकली बढ़ते फलनो ƒ और g के लिए निम्नलिखित धनात्मक सहसंबंध असमानता है:
:<math> \left(\sum _{x\in X}f(x)g(x)\mu(x)\right)\left(\sum _{x\in X}\mu(x)\right) \ge \left(\sum _{x\in X}f(x)\mu(x)\right)\left(\sum _{x\in X}g(x)\mu(x)\right).</math>
:<math> \left(\sum _{x\in X}f(x)g(x)\mu(x)\right)\left(\sum _{x\in X}\mu(x)\right) \ge \left(\sum _{x\in X}f(x)\mu(x)\right)\left(\sum _{x\in X}g(x)\mu(x)\right).</math>
वही असमानता (धनात्मक सहसंबंध) तब सत्य होती है जब ƒ और g दोनों कम हो रहे हों। यदि एक बढ़ रहा है और दूसरा कम हो रहा है तो वह ऋणात्मक रूप से सहसंबद्ध होते हैं और उपरोक्त असमानता विपरीत हो जाती है।
वही असमानता (धनात्मक सहसंबंध) तब सत्य होती है जब ƒ और g दोनों कम हो रहे हों। यदि एक बढ़ रहा है और दूसरा कम हो रहा है तो वह ऋणात्मक रूप से सहसंबद्ध होते हैं और उपरोक्त असमानता विपरीत हो जाती है।


इसी तरह के कथन अधिक सामान्यतः तब प्रयुक्त होते हैं जब <math>X</math> आवश्यक नहीं कि परिमित हो और यहां तक कि गणनीय भी नही होटी है। उस स्थिति में μ को एक सीमित माप होना चाहिए और जालक की स्थिति को सिलेंडर घटनाओं का उपयोग करके परिभाषित किया जाना चाहिए, उदाहरण के लिए {{harvtxt|ग्रिमेट|1999}} की धारा 2.2 देखें।
इसी प्रकार के कथन अधिक सामान्यतः तब प्रयुक्त होते हैं जब <math>X</math> आवश्यक नहीं कि परिमित हो और यहां तक कि गणनीय भी नही होटी है। उस स्थिति में μ को एक सीमित माप होना चाहिए और जालक की स्थिति को सिलेंडर घटनाओं का उपयोग करके परिभाषित किया जाना चाहिए, उदाहरण के लिए {{harvtxt|ग्रिमेट|1999}} की धारा 2.2 देखें।


प्रमाण के लिए, {{harvtxt|Fortuin|Kasteleyn|Ginibre|1971}} या अहल्सवेडे-डेकिन असमानता (1978) देखें। इसके अतिरिक्त, [[मार्कोव श्रृंखला]] [[युग्मन (संभावना)]] तर्क का उपयोग करते हुए, {{harvtxt|Holley|1974}} के कारण, नीचे अपरिष्कृत रेखाचित्र भी दिया गया है
प्रमाण के लिए, {{harvtxt|फ़ोर्टुइन|कस्टेलीन|गिनिब्रे|1971}} या अहल्सवेडे-डेकिन असमानता (1978) देखें। इसके अतिरिक्त, [[मार्कोव श्रृंखला]] [[युग्मन (संभावना)]] तर्क का उपयोग करते हुए, {{harvtxt|हॉली|1974}} के कारण, नीचे अपरिष्कृत रेखाचित्र भी दिया गया है


==शब्दावली में भिन्नता==
==शब्दावली में भिन्नता==
Line 21: Line 21:
μ के लिए जालक स्थिति को 'बहुभिन्नरूपी कुल धनात्मकता' और कभी-कभी 'सशक्त एफकेजी स्थिति' भी कहा जाता है; शब्द ('गुणक') 'एफकेजी स्थिति' का प्रयोग पुराने साहित्य में भी किया जाता है।
μ के लिए जालक स्थिति को 'बहुभिन्नरूपी कुल धनात्मकता' और कभी-कभी 'सशक्त एफकेजी स्थिति' भी कहा जाता है; शब्द ('गुणक') 'एफकेजी स्थिति' का प्रयोग पुराने साहित्य में भी किया जाता है।


μ का वह गुण जिसके कारण बढ़ते कार्य धनात्मक रूप से सहसंबद्ध होते हैं, जिसको 'धनात्मक जुड़ाव' या 'अशक्त एफकेजी स्थिति' भी कहा जाता है।
μ का वह गुण जिसके कारण बढ़ते फलन धनात्मक रूप से सहसंबद्ध होते हैं, जिसको 'धनात्मक जुड़ाव' या 'अशक्त एफकेजी स्थिति' भी कहा जाता है।


इस प्रकार, एफकेजी प्रमेय को दोबारा दोहराया जा सकता है क्योंकि सशक्त एफकेजी स्थिति का तात्पर्य अशक्त एफकेजी स्थिति से है।
इस प्रकार, एफकेजी प्रमेय को दोबारा दोहराया जा सकता है क्योंकि सशक्त एफकेजी स्थिति का तात्पर्य अशक्त एफकेजी स्थिति से है।
Line 27: Line 27:
==विशेष मामला: हैरिस असमानता==
==विशेष मामला: हैरिस असमानता==


यदि जालक <math>X</math> पूर्ण रूप से व्यवस्थित है, तो किसी भी माप μ के लिए जालक की स्थिति सामान्य रूप से संतुष्ट होती है। यदि माप μ एकसमान है, तो एफकेजी असमानता चेबीशेव की योग असमानता है: यदि दो बढ़ते कार्य मान लेते हैं
यदि जालक <math>X</math> पूर्ण रूप से व्यवस्थित है, तो किसी भी माप μ के लिए जालक की स्थिति सामान्य रूप से संतुष्ट होती है। यदि माप μ एकसमान है, तो एफकेजी असमानता चेबीशेव की योग असमानता है: यदि दो बढ़ते फलन मान लेते हैं




Line 39: Line 39:
जालक की स्थिति तब भी सामान्य रूप से संतुष्ट होती है जब जालक पूर्ण रूप से व्यवस्थित जालक  <math>X=X_1\times\cdots\times X_n</math>, और <math>\mu=\mu_1\otimes\cdots\otimes\mu_n</math> का प्रोडक्ट माप  होती है । अधिकांशतः सभी कारक (जालक और माप दोनों) समान होते हैं अर्थात μ i.i.d यादृच्छिक वैरिएबल का संभाव्यता वितरण है।
जालक की स्थिति तब भी सामान्य रूप से संतुष्ट होती है जब जालक पूर्ण रूप से व्यवस्थित जालक  <math>X=X_1\times\cdots\times X_n</math>, और <math>\mu=\mu_1\otimes\cdots\otimes\mu_n</math> का प्रोडक्ट माप  होती है । अधिकांशतः सभी कारक (जालक और माप दोनों) समान होते हैं अर्थात μ i.i.d यादृच्छिक वैरिएबल का संभाव्यता वितरण है।


प्रोडक्ट माप के स्थिति में एफकेजी असमानता को [[टेड हैरिस (गणितज्ञ)|टेड हैरिस {{harv|Harris|1960}}]] के पश्चात् 'हैरिस असमानता' के रूप में भी जाना जाता है। , जिन्होंने विमान में अंतःस्त्राव सिद्धांत के अपने अध्ययन में इसे पाया और इसका उपयोग किया। हैरिस असमानता का एक प्रमाण जो <math>\R</math> पर उपरोक्त डबल इंटीग्रल ट्रिक का उपयोग करता है, उदाहरण के लिए, {{harvtxt|ग्रिमेट|1999}} की धारा 2.2 में पाया जा सकता है।
प्रोडक्ट माप के स्थिति में एफकेजी असमानता को [[टेड हैरिस (गणितज्ञ)|टेड हैरिस {{harv|हैरिस|1960}}]] के पश्चात् 'हैरिस असमानता' के रूप में भी जाना जाता है। , जिन्होंने विमान में अंतःस्त्राव सिद्धांत के अपने अध्ययन में इसे पाया और इसका उपयोग किया। हैरिस असमानता का एक प्रमाण जो <math>\R</math> पर उपरोक्त डबल इंटीग्रल ट्रिक का उपयोग करता है, उदाहरण के लिए, {{harvtxt|ग्रिमेट|1999}} की धारा 2.2 में पाया जा सकता है।


===सरल उदाहरण===
===सामान्य उदाहरण===


एक विशिष्ट उदाहरण निम्नलिखित है अनंत हनीकांब  जालक के प्रत्येक षट्भुज को प्रायिकता <math>p</math> के साथ काला और प्रायिकता <math>1-p</math>  के साथ व्हाइट रंग दें, एक दूसरे से स्वतंत्र। मान लीजिए कि a, b, c, d चार षट्भुज हैं, आवश्यक नहीं कि भिन्न-भिन्न हों। मान लीजिए कि  <math>a \leftrightarrow b</math> और <math>c\leftrightarrow d</math> क्रमशः घटनाएँ हैं कि a से b तक एक काला पथ है, और c से d तक एक काला पथ है। फिर हैरिस असमानता कहती है कि यह घटनाएँ <math>\Pr(a \leftrightarrow b,\ c\leftrightarrow d) \geq \Pr(a \leftrightarrow b)\Pr(c\leftrightarrow d)</math> धनात्मक रूप से सहसंबद्ध हैं  दूसरे शब्दों में, एक पथ की उपस्थिति मानने से केवल दूसरे की संभावना बढ़ सकती है।
एक विशिष्ट उदाहरण निम्नलिखित है अनंत हनीकांब  जालक के प्रत्येक षट्भुज को प्रायिकता <math>p</math> के साथ काला और प्रायिकता <math>1-p</math>  के साथ व्हाइट रंग दें, एक दूसरे से स्वतंत्र। मान लीजिए कि a, b, c, d चार षट्भुज हैं, आवश्यक नहीं कि भिन्न-भिन्न हों। मान लीजिए कि  <math>a \leftrightarrow b</math> और <math>c\leftrightarrow d</math> क्रमशः घटनाएँ हैं कि a से b तक एक काला पथ है, और c से d तक एक काला पथ है। फिर हैरिस असमानता कहती है कि यह घटनाएँ <math>\Pr(a \leftrightarrow b,\ c\leftrightarrow d) \geq \Pr(a \leftrightarrow b)\Pr(c\leftrightarrow d)</math> धनात्मक रूप से सहसंबद्ध हैं  दूसरे शब्दों में, एक पथ की उपस्थिति मानने से केवल दूसरे की संभावना बढ़ सकती है।


इसी प्रकार यदि हम <math>n\times n</math> रोम्बस के आकार वाले हेक्स बोर्ड के अंदर हेक्सागोन्स को अनुचित  विधि से रंगते हैं तो बोर्ड के बाईं ओर से दाईं ओर ब्लैक क्रॉसिंग होने की घटना सकारात्मक रूप से ऊपर की ओर से ब्लैक क्रॉसिंग होने के साथ सहसंबद्ध होती है। दूसरी ओर, बाएं से दाएं ब्लैक क्रॉसिंग होने का ऊपर से नीचे व्हाइट क्रॉसिंग होने के साथ ऋणात्मक संबंध है, क्योंकि पहला बढ़ती हुई घटना है (कालेपन की मात्रा में), जबकि दूसरा कम हो रहा है। वास्तव में, हेक्स बोर्ड के किसी भी रंग में इन दो घटनाओं में से पूर्णतः घटित होती है - यही कारण है कि हेक्स अच्छी तरह से परिभाषित खेल है।
इसी प्रकार यदि हम <math>n\times n</math> रोम्बस के आकार वाले हेक्स बोर्ड के अंदर हेक्सागोन्स को अनुचित  विधि से रंगते हैं तो बोर्ड के बाईं ओर से दाईं ओर ब्लैक क्रॉसिंग होने की घटना धनात्मक रूप से ऊपर की ओर से ब्लैक क्रॉसिंग होने के साथ सहसंबद्ध होती है। दूसरी ओर, बाएं से दाएं ब्लैक क्रॉसिंग होने का ऊपर से नीचे व्हाइट क्रॉसिंग होने के साथ ऋणात्मक संबंध है, क्योंकि पहला बढ़ती हुई घटना है (कालेपन की मात्रा में), जबकि दूसरा कम हो रहा है। वास्तव में, हेक्स बोर्ड के किसी भी रंग में इन दो घटनाओं में से पूर्णतः घटित होती है - यही कारण है कि हेक्स अच्छी प्रकार से परिभाषित खेल है।




एर्डोस-रेनी मॉडल या एर्डोस-रेनी यादृच्छिक आरेख में, [[हैमिल्टनियन चक्र|हैमिल्टनियन साईकल]] का अस्तित्व आरेख के रंग या 3-रंग योग्यता के साथ ऋणात्मक रूप से सहसंबद्ध है, क्योंकि पहली बढ़ती हुई घटना है, जबकि पश्चात् वाली कम हो रही है।
एर्डोस-रेनी मॉडल या एर्डोस-रेनी यादृच्छिक आरेख में, [[हैमिल्टनियन चक्र|हैमिल्टनियन साईकल]] का अस्तित्व आरेख के रंग या 3-रंग योग्यता के साथ ऋणात्मक रूप से सहसंबद्ध है, क्योंकि पहली बढ़ती हुई घटना है, जबकि पश्चात् वाली कम हो रही है।


=='''सांख्यिकीय''' यांत्रिकी से उदाहरण==
==सांख्यिकीय यांत्रिकी से उदाहरण==
सांख्यिकीय यांत्रिकी में, जालक की स्थिति (और इसलिए एफकेजी असमानता) को संतुष्ट करने वाले उपायों का सामान्य स्रोत निम्नलिखित है:
सांख्यिकीय यांत्रिकी में, जालक की स्थिति (और इसलिए एफकेजी असमानता) को संतुष्ट करने वाले विधियों का सामान्य स्रोत निम्नलिखित है:


अगर <math>S</math> ऑर्डर किया गया सेट है (जैसे <math>\{-1,+1\}</math>), और <math>\Gamma</math> परिमित या अनंत [[ग्राफ़ (अलग गणित)|आरेख़ (भिन्न गणित)]] है, तो सेट <math>S^\Gamma</math> का <math>S</math>-वैल्यूड कॉन्फ़िगरेशन [[पोसेट]] है जो वितरणात्मक जालक है।
यदि <math>S</math> एक क्रमित समुच्चय है (जैसे कि<math>\{-1,+1\}</math> और <math>\Gamma</math> एक परिमित या अनंत आरेख है, तो <math>S</math>-वैल्यू विन्यास का समुच्चय <math>S^\Gamma</math> एक पोसेट है जो एक वितरणात्मक जालक है


अब अगर <math>\Phi</math> सबमॉड्यूलर [[गिब्स माप]] है (अर्थात, कार्यों का परिवार)।
अब यदि <math>\Phi</math> एक सबमॉड्यूलर [[गिब्स माप]] है (अर्थात फलनो का एक वर्ग)।
:<math>\Phi_\Lambda: S^\Lambda \longrightarrow \R\cup\{\infty\},</math>
:<math>\Phi_\Lambda: S^\Lambda \longrightarrow \R\cup\{\infty\},</math>
प्रत्येक परिमित के लिए <math>\Lambda \subset \Gamma</math>, ऐसा कि प्रत्येक <math>\Phi_\Lambda</math> [[सबमॉड्यूलर]] है), तो कोई संबंधित गिब्स माप को इस प्रकार परिभाषित करता है
प्रत्येक परिमित <math>\Lambda \subset \Gamma</math> के लिए एक जैसे कि प्रत्येक <math>\Phi_\Lambda</math> सबमॉड्यूलर है) तो कोई संबंधित हैमिल्टनियन को इस प्रकार परिभाषित करता है
:<math>H_\Lambda(\varphi):=\sum_{\Delta\cap\Lambda\not=\emptyset} \Phi_\Delta(\varphi).</math>
:<math>H_\Lambda(\varphi):=\sum_{\Delta\cap\Lambda\not=\emptyset} \Phi_\Delta(\varphi).</math>
यदि μ कॉन्फ़िगरेशन के सेट पर इस हैमिल्टनियन के लिए गिब्स माप है <math>\varphi</math>, तो यह दिखाना आसान है कि μ जालक की स्थिति को संतुष्ट करता है, देखें {{harvtxt|Sheffield|2005}}.
यदि विन्यास <math>\varphi</math> के समुच्चय पर इस हैमिल्टनियन के लिए μ एक चरम गिब्स माप है तो यह दिखाना सरल है कि μ जालक की स्थिति को संतुष्ट करता है, {{harvtxt|शेफील्ड|2005}} देखें।


आरेख़ पर [[आइसिंग मॉडल]] प्रमुख उदाहरण है <math>\Gamma</math>. होने देना <math>S=\{-1,+1\}</math>, जिसे स्पिन कहा जाता है, और <math>\beta\in [0,\infty]</math>. निम्नलिखित क्षमता लें:
एक प्रमुख उदाहरण आरेख <math>S=\{-1,+1\}</math> पर आइसिंग मॉडल है जिसे स्पिन और <math>\beta\in [0,\infty]</math> कहा जाता है। निम्नलिखित क्षमता लें:


:<math>\Phi_\Lambda(\varphi)=\begin{cases}  
:<math>\Phi_\Lambda(\varphi)=\begin{cases}  
Line 67: Line 67:
0 & \text{otherwise.}\end{cases}
0 & \text{otherwise.}\end{cases}
</math>
</math>
सबमॉड्यूलैरिटी की जांच करना आसान है; सहज रूप से, न्यूनतम या अधिकतम दो कॉन्फ़िगरेशन लेने से असहमत स्पिनों की संख्या कम हो जाती है। फिर, आरेख़ पर निर्भर करता है <math>\Gamma</math> और का मूल्य <math>\beta</math>, या अधिक चरम गिब्स उपाय हो सकते हैं, देखें, उदाहरणार्थ, {{harvtxt|Georgii|Häggström|Maes|2001}} और {{harvtxt|Lyons|2000}}.
सबमॉड्यूलैरिटी की जांच करना सरल है; सामान्यतः, न्यूनतम या अधिकतम दो विन्यास लेने से असहमत स्पिनों की संख्या कम हो जाती है। फिर, आरेख़ <math>\Gamma</math> और <math>\beta</math> का  मान ,एक या अधिक चरम गिब्स विधि हो सकते हैं, देखें, उदाहरणार्थ, {{harvtxt|जॉर्जी|हैगस्ट्रॉम|माएस|2001}} और {{harvtxt|लियोन्स|2000}}.


==सामान्यीकरण: होली असमानता==
है


होली असमानता, के कारण {{harvs|last=Holley|first=Richard|year=1974|txt}}, बताता है कि [[अपेक्षित मूल्य]]
==सामान्यीकरण: हॉली असमानता==
 
{{harvs|last=हॉली|first=रिचर्ड|year=1974|txt}} के कारण हॉली असमानता  बताती है कि [[अपेक्षित मूल्य|अपेक्षित  मान]]
:<math> \langle f\rangle_i = \frac{\sum _{x\in X}f(x)\mu_i(x)}{\sum_{x\in X}\mu_i(x)} </math>
:<math> \langle f\rangle_i = \frac{\sum _{x\in X}f(x)\mu_i(x)}{\sum_{x\in X}\mu_i(x)} </math>
परिमित वितरण जालक पर मोटोनोकली बढ़ते फलन का <math>X</math> दो धनात्मक कार्यों के संबंध में μ<sub>1</sub>, एम<sub>2</sub> जालक पर शर्त को पूरा करें
एक परिमित वितरण जालक पर मोटोनोकली बढ़ते फलन का धनात्मक  फलनो के संबंध में <math>X</math> जालक पर μ<sub>1</sub> μ<sub>2</sub> स्थिति को संतुष्ट करता है


:<math> \langle f\rangle_1 \ge \langle f\rangle_2, </math>
:<math> \langle f\rangle_1 \ge \langle f\rangle_2, </math>
बशर्ते कार्य हॉली शर्त (मानदंड) को पूरा करते हों
किन्तु फलन हॉली नियम (मानदंड) को संतुष्ट करते है


:<math>\mu_2(x\wedge y)\mu_1(x\vee y) \ge \mu_1(x)\mu_2(y)</math>
:<math>\mu_2(x\wedge y)\mu_1(x\vee y) \ge \mu_1(x)\mu_2(y)</math>
जालक में सभी x, y के लिए।
जालक में सभी x, y के लिए।


#असमानता को पुनर्प्राप्त करने के लिए: यदि μ जालक की स्थिति को संतुष्ट करता है और ƒ और g पर कार्य बढ़ रहे हैं <math>X</math>, फिर μ<sub>1</sub>(x)=g(x)μ(x) और μ<sub>2</sub>(x)= μ(x) होली असमानता की जालक -प्रकार की स्थिति को संतुष्ट करेगा। फिर होली असमानता यह बताती है
#एफकेजी असमानता को पुनर्प्राप्त करने के लिए यदि μ जालक की स्थिति को संतुष्ट करता है और ƒ और g <math>X</math> पर बढ़ते कार्य हैं, तो μ<sub>1</sub>(x)=g(x)μ(x) और μ<sub>2</sub>(x)= μ(x) जालक प्रकार को संतुष्ट करेंगे होली असमानता की स्थिति तब होली असमानता बताती है कि


:<math> \frac{ \langle fg\rangle_\mu }{\langle g\rangle_\mu} = \langle f\rangle_1 \ge \langle f\rangle_2 =\langle f\rangle_\mu, </math>
:<math> \frac{ \langle fg\rangle_\mu }{\langle g\rangle_\mu} = \langle f\rangle_1 \ge \langle f\rangle_2 =\langle f\rangle_\mu, </math>
जो कि सिर्फ एफकेजी असमानता है।
जो कि केवल एफकेजी असमानता है।


जहां तक ​​एफकेजी का सवाल है, होली असमानता अहल्सवेड-डेकिन असमानता से आती है।
जहां तक ​​एफकेजी का प्रश्न है, हॉली असमानता अहल्सवेड-डेकिन असमानता से आती है।


==जालक की स्थिति को अशक्त करना: एकरसता==
==जालक की स्थिति को अशक्त करना: मोनोटोनीसिटी==
के सामान्य स्थिति पर विचार करें <math>X</math> प्रोडक्ट होना <math>\R^V</math> कुछ सीमित सेट के लिए <math>V</math>. μ पर जालक की स्थिति को आसानी से निम्नलिखित 'एकरसता' के रूप में देखा जा सकता है, जिसका गुण यह है कि इसे जालक की स्थिति की तुलना में जांचना अधिकांशतः आसान होता है:
कुछ परिमित समुच्चय V के लिए <math>X</math> के प्रोडक्ट <math>\R^V</math> होने के सामान्य स्थिति पर विचार करें। μ पर जालक की स्थिति को सरलता से निम्नलिखित मोनोटोनीसिटी के रूप में देखा जा सकता है, जिसमें यह गुण है कि इसे जालक की स्थिति की तुलना में जांचना अधिकांशतः सरल होता है।


जब भी कोई शीर्ष तय करता है <math>v \in V</math> और दो विन्यास φ और ψ बाहर v ऐसे कि <math>\varphi(w) \geq \psi(w)</math> सभी के लिए <math>w\not=v</math>, φ(v) का μ-सशर्त वितरण दिया गया है <math>\{\varphi(w) : w\not=v\}</math> दिए गए ψ(v) के μ-सशर्त वितरण को स्टोकेस्टिक क्रम में रखते हुए <math>\{\psi(w) : w\not=v\}</math>.
जब भी कोई एक शीर्ष<math>v \in V</math> को सही करता है और दो विन्यास φ और ψ v के बाहर इस प्रकार से करता है कि सभी <math>w\not=v</math> के लिए, μ- <math>\{\varphi(w) : w\not=v\}</math> दिए गए φ(v) का नियमबद्ध वितरण, <math>\{\psi(w) : w\not=v\}</math> दिए गए ψ(v) के μ-नियमबद्ध वितरण पर अधिकृत है


अब, यदि μ इस एकरसता गुण को संतुष्ट करता है, तो यह एफकेजी असमानता (धनात्मक संघ) को बनाए रखने के लिए पहले से ही पर्याप्त है।
अब, यदि μ इस मोनोटोनीसिटी गुण को संतुष्ट करता है, तो यह एफकेजी असमानता (धनात्मक संघ) को बनाए रखने के लिए पहले से ही पर्याप्त है।


यहाँ प्रमाण का मोटा खाका दिया गया है {{harvtxt|Holley|1974}}: किसी भी प्रारंभिक कॉन्फ़िगरेशन से शुरू करना पर <math>V</math>, कोई साधारण मार्कोव श्रृंखला ([[महानगर एल्गोरिथ्म]]) चला सकता है जो प्रत्येक चरण में कॉन्फ़िगरेशन को अद्यतन करने के लिए स्वतंत्र यूनिफ़ॉर्म [0,1] यादृच्छिक वैरिएबल का उपयोग करता है, जैसे कि श्रृंखला में अद्वितीय स्थिर माप होता है, दिया गया μ। μ की एकरसता का तात्पर्य है कि प्रत्येक चरण पर कॉन्फ़िगरेशन स्वतंत्र वैरिएबल का मोनोटोन फलन है, इसलिए # विशेष मामला: हैरिस असमानता का तात्पर्य है कि इसमें धनात्मक जुड़ाव है। इसलिए, सीमित स्थिर माप μ में भी यह गुण है।
यहां प्रमाण का एक स्केच दिया गया है : {{harvtxt|हॉली|1974}} के कारण <math>V</math> पर किसी भी प्रारंभिक विन्यास से प्रारंभ होने पर, कोई एक साधारण मार्कोव श्रृंखला (मेट्रोपोलिस एल्गोरिदम) चला सकता है जो प्रत्येक चरण में विन्यास को अद्यतन करने के लिए स्वतंत्र यूनिफ़ॉर्म [0,1] यादृच्छिक वैरिएबल का उपयोग करता है, जैसे कि श्रृंखला में अद्वितीय स्थिर माप होता है, दिया गया μ या μ की मोनोटोनीसिटी का तात्पर्य है कि प्रत्येक चरण पर विन्यास स्वतंत्र वैरिएबल का मोनोटोन फलन है, इसलिए हैरिस के प्रोडक्ट माप संस्करण का तात्पर्य है कि इसमें धनात्मक जुड़ाव है। इसलिए, सीमित स्थिर माप μ में भी यह गुण है।


एकरसता गुण का दो मापों के लिए प्राकृतिक संस्करण है, जो कहता है कि μ<sub>1</sub> सशर्त रूप से बिंदुवार μ पर हावी है<sub>2</sub>. यह देखना फिर आसान है कि यदि μ<sub>1</sub> और μ<sub>2</sub> #A सामान्यीकरण की जालक -प्रकार की स्थिति को संतुष्ट करें: होली असमानता, फिर μ<sub>1</sub> सशर्त रूप से बिंदुवार μ पर हावी है<sub>2</sub>. दूसरी ओर, मार्कोव श्रृंखला युग्मन (संभावना) तर्क उपरोक्त के समान है, किन्तु अब हैरिस असमानता का आह्वान किए बिना, यह दर्शाता है कि सशर्त बिंदुवार वर्चस्व, वास्तव में, स्टोकेस्टिक ऑर्डरिंग का तात्पर्य है। स्टोकेस्टिक वर्चस्व ऐसा कहने के बराबर है <math> \langle f\rangle_1 \ge \langle f\rangle_2</math> सभी के लिए बढ़ते हुए, इस प्रकार हमें होली असमानता का प्रमाण मिलता है। (और इस प्रकार हैरिस असमानता का उपयोग किए बिना, एफकेजी असमानता का प्रमाण भी है।)
मोनोटोनीसिटी गुण का दो मापों के लिए प्राकृतिक संस्करण है, जो कहता है कि μ<sub>1</sub> सनियम रूप से बिंदुवार μ<sub>2</sub> पर अधिकृत है यह देखना पुनः  सरल है कि यदि μ<sub>1</sub> और μ<sub>2</sub> हॉली असमानता सामान्यीकरण की जालक-प्रकार की स्थिति को संतुष्ट करें: , पुनः μ<sub>1</sub> सनियम रूप से बिंदुवार μ<sub>2</sub> पर अधिकृत है. दूसरी ओर, मार्कोव श्रृंखला युग्मन (संभावना) तर्क उपरोक्त के समान है, किन्तु अब हैरिस असमानता का आह्वान किए बिना, यह दर्शाता है कि स्टोकेस्टिक डोमिनेशन , वास्तव में, स्टोकेस्टिक ऑर्डरिंग का तात्पर्य है। स्टोकेस्टिक डोमिनेशन  <math> \langle f\rangle_1 \ge \langle f\rangle_2</math> के समान है  सभी के लिए बढ़ते हुए, इस प्रकार हमें हॉली असमानता का प्रमाण मिलता है। (और इस प्रकार हैरिस असमानता का उपयोग किए बिना, एफकेजी असमानता का प्रमाण भी है।)


देखना {{harvtxt|Holley|1974}} और {{harvtxt|Georgii|Häggström|Maes|2001}} जानकारी के लिए।
विवरण के लिए  {{harvtxt|हाली|1974}} और {{harvtxt|जॉर्जी|हैगस्ट्रॉम|माएस|2001}} देखें।


==यह भी देखें==
==यह भी देखें==
*अहलस्वेड-डेकिन असमानता
*अहलस्वेड-डेकिन असमानता
* [[XYZ असमानता]]
* [[XYZ असमानता|एक्सवाईजेड असमानता]]
* [[बीके असमानता]]
* [[बीके असमानता]]



Revision as of 18:25, 6 December 2023

गणित में, फोर्टुइन-कास्टेलिन-गिनिब्रे (एफकेजी) असमानता एक सहसंबंध असमानता है, जो सीस एम. फ़ोर्टुइन, पीटर डब्ल्यू. कस्टेलीन, and जीन गिनिब्रे (1971) के कारण सांख्यिकीय यांत्रिकी और संयोजक या संभाव्य संयोजक (विशेष रूप से यादृच्छिक आरेख और संभाव्य विधि) में मौलिक उपकरण है। सामान्यतः, यह कहता है कि विभिन्न यादृच्छिक प्रणालियों में, बढ़ती घटनाएँ धनात्मक रूप से सहसंबद्ध होती हैं, जबकि बढ़ती और घटती घटनाएँ ऋणात्मक रूप से सहसंबद्ध होती हैं। इसे यादृच्छिक क्लस्टर मॉडल का अध्ययन करके प्राप्त किया गया था।

आई.आई.डी. के विशेष स्थिति के लिए एक पूर्व संस्करण वैरिएबल को हैरिस असमानता कहा जाता है, जो थिओडोर एडवर्ड हैरिस (1960) के कारण है, नीचे देखें। एफकेजी असमानता का एक सामान्यीकरण नीचे हॉली असमानता (1974) है, और इससे भी आगे का सामान्यीकरण अहल्सवेडे-डेकिन "चार फलन प्रमेय (1978) है। इसके अतिरिक्त, इसका निष्कर्ष ग्रिफ़िथ असमानताओं के समान ही है, किन्तु परिकल्पनाएँ भिन्न हैं।

असमानता

मान लीजिए एक परिमित वितरणात्मक जालक है और μ उस पर एक गैर-ऋणात्मक फलन है जिसे (एफकेजी) जालक स्थिति को संतुष्ट करने के लिए माना जाता है (कभी-कभी इस स्थिति को संतुष्ट करने वाले फलन को लॉग सुपरमॉड्यूलर कहा जाता है) अर्थात

जालक में सभी x y के लिए

एफकेजी असमानता तब कहती है कि पर किन्हीं दो मोटोनोकली बढ़ते फलनो ƒ और g के लिए निम्नलिखित धनात्मक सहसंबंध असमानता है:

वही असमानता (धनात्मक सहसंबंध) तब सत्य होती है जब ƒ और g दोनों कम हो रहे हों। यदि एक बढ़ रहा है और दूसरा कम हो रहा है तो वह ऋणात्मक रूप से सहसंबद्ध होते हैं और उपरोक्त असमानता विपरीत हो जाती है।

इसी प्रकार के कथन अधिक सामान्यतः तब प्रयुक्त होते हैं जब आवश्यक नहीं कि परिमित हो और यहां तक कि गणनीय भी नही होटी है। उस स्थिति में μ को एक सीमित माप होना चाहिए और जालक की स्थिति को सिलेंडर घटनाओं का उपयोग करके परिभाषित किया जाना चाहिए, उदाहरण के लिए ग्रिमेट (1999) की धारा 2.2 देखें।

प्रमाण के लिए, फ़ोर्टुइन, कस्टेलीन & गिनिब्रे (1971) या अहल्सवेडे-डेकिन असमानता (1978) देखें। इसके अतिरिक्त, मार्कोव श्रृंखला युग्मन (संभावना) तर्क का उपयोग करते हुए, हॉली (1974) के कारण, नीचे अपरिष्कृत रेखाचित्र भी दिया गया है

शब्दावली में भिन्नता

μ के लिए जालक स्थिति को 'बहुभिन्नरूपी कुल धनात्मकता' और कभी-कभी 'सशक्त एफकेजी स्थिति' भी कहा जाता है; शब्द ('गुणक') 'एफकेजी स्थिति' का प्रयोग पुराने साहित्य में भी किया जाता है।

μ का वह गुण जिसके कारण बढ़ते फलन धनात्मक रूप से सहसंबद्ध होते हैं, जिसको 'धनात्मक जुड़ाव' या 'अशक्त एफकेजी स्थिति' भी कहा जाता है।

इस प्रकार, एफकेजी प्रमेय को दोबारा दोहराया जा सकता है क्योंकि सशक्त एफकेजी स्थिति का तात्पर्य अशक्त एफकेजी स्थिति से है।

विशेष मामला: हैरिस असमानता

यदि जालक पूर्ण रूप से व्यवस्थित है, तो किसी भी माप μ के लिए जालक की स्थिति सामान्य रूप से संतुष्ट होती है। यदि माप μ एकसमान है, तो एफकेजी असमानता चेबीशेव की योग असमानता है: यदि दो बढ़ते फलन मान लेते हैं


और , तब

अधिक सामान्यतः किसी भी संभाव्यता के लिए μ को पर मापें और फलन और g को बढ़ाएं

जो तुरंत अनुसरण करता है

जालक की स्थिति तब भी सामान्य रूप से संतुष्ट होती है जब जालक पूर्ण रूप से व्यवस्थित जालक , और का प्रोडक्ट माप होती है । अधिकांशतः सभी कारक (जालक और माप दोनों) समान होते हैं अर्थात μ i.i.d यादृच्छिक वैरिएबल का संभाव्यता वितरण है।

प्रोडक्ट माप के स्थिति में एफकेजी असमानता को [[टेड हैरिस (गणितज्ञ)|टेड हैरिस (हैरिस 1960)]] के पश्चात् 'हैरिस असमानता' के रूप में भी जाना जाता है। , जिन्होंने विमान में अंतःस्त्राव सिद्धांत के अपने अध्ययन में इसे पाया और इसका उपयोग किया। हैरिस असमानता का एक प्रमाण जो पर उपरोक्त डबल इंटीग्रल ट्रिक का उपयोग करता है, उदाहरण के लिए, ग्रिमेट (1999) की धारा 2.2 में पाया जा सकता है।

सामान्य उदाहरण

एक विशिष्ट उदाहरण निम्नलिखित है अनंत हनीकांब जालक के प्रत्येक षट्भुज को प्रायिकता के साथ काला और प्रायिकता के साथ व्हाइट रंग दें, एक दूसरे से स्वतंत्र। मान लीजिए कि a, b, c, d चार षट्भुज हैं, आवश्यक नहीं कि भिन्न-भिन्न हों। मान लीजिए कि और क्रमशः घटनाएँ हैं कि a से b तक एक काला पथ है, और c से d तक एक काला पथ है। फिर हैरिस असमानता कहती है कि यह घटनाएँ धनात्मक रूप से सहसंबद्ध हैं दूसरे शब्दों में, एक पथ की उपस्थिति मानने से केवल दूसरे की संभावना बढ़ सकती है।

इसी प्रकार यदि हम रोम्बस के आकार वाले हेक्स बोर्ड के अंदर हेक्सागोन्स को अनुचित विधि से रंगते हैं तो बोर्ड के बाईं ओर से दाईं ओर ब्लैक क्रॉसिंग होने की घटना धनात्मक रूप से ऊपर की ओर से ब्लैक क्रॉसिंग होने के साथ सहसंबद्ध होती है। दूसरी ओर, बाएं से दाएं ब्लैक क्रॉसिंग होने का ऊपर से नीचे व्हाइट क्रॉसिंग होने के साथ ऋणात्मक संबंध है, क्योंकि पहला बढ़ती हुई घटना है (कालेपन की मात्रा में), जबकि दूसरा कम हो रहा है। वास्तव में, हेक्स बोर्ड के किसी भी रंग में इन दो घटनाओं में से पूर्णतः घटित होती है - यही कारण है कि हेक्स अच्छी प्रकार से परिभाषित खेल है।


एर्डोस-रेनी मॉडल या एर्डोस-रेनी यादृच्छिक आरेख में, हैमिल्टनियन साईकल का अस्तित्व आरेख के रंग या 3-रंग योग्यता के साथ ऋणात्मक रूप से सहसंबद्ध है, क्योंकि पहली बढ़ती हुई घटना है, जबकि पश्चात् वाली कम हो रही है।

सांख्यिकीय यांत्रिकी से उदाहरण

सांख्यिकीय यांत्रिकी में, जालक की स्थिति (और इसलिए एफकेजी असमानता) को संतुष्ट करने वाले विधियों का सामान्य स्रोत निम्नलिखित है:

यदि एक क्रमित समुच्चय है (जैसे कि और एक परिमित या अनंत आरेख है, तो -वैल्यू विन्यास का समुच्चय एक पोसेट है जो एक वितरणात्मक जालक है

अब यदि एक सबमॉड्यूलर गिब्स माप है (अर्थात फलनो का एक वर्ग)।

प्रत्येक परिमित के लिए एक जैसे कि प्रत्येक सबमॉड्यूलर है) तो कोई संबंधित हैमिल्टनियन को इस प्रकार परिभाषित करता है

यदि विन्यास के समुच्चय पर इस हैमिल्टनियन के लिए μ एक चरम गिब्स माप है तो यह दिखाना सरल है कि μ जालक की स्थिति को संतुष्ट करता है, शेफील्ड (2005) देखें।

एक प्रमुख उदाहरण आरेख पर आइसिंग मॉडल है जिसे स्पिन और कहा जाता है। निम्नलिखित क्षमता लें:

सबमॉड्यूलैरिटी की जांच करना सरल है; सामान्यतः, न्यूनतम या अधिकतम दो विन्यास लेने से असहमत स्पिनों की संख्या कम हो जाती है। फिर, आरेख़ और का मान ,एक या अधिक चरम गिब्स विधि हो सकते हैं, देखें, उदाहरणार्थ, जॉर्जी, हैगस्ट्रॉम & माएस (2001) और लियोन्स (2000).

है

सामान्यीकरण: हॉली असमानता

रिचर्ड हॉली (1974) के कारण हॉली असमानता बताती है कि अपेक्षित मान

एक परिमित वितरण जालक पर मोटोनोकली बढ़ते फलन का धनात्मक फलनो के संबंध में जालक पर μ1 μ2 स्थिति को संतुष्ट करता है

किन्तु फलन हॉली नियम (मानदंड) को संतुष्ट करते है

जालक में सभी x, y के लिए।

  1. एफकेजी असमानता को पुनर्प्राप्त करने के लिए यदि μ जालक की स्थिति को संतुष्ट करता है और ƒ और g पर बढ़ते कार्य हैं, तो μ1(x)=g(x)μ(x) और μ2(x)= μ(x) जालक प्रकार को संतुष्ट करेंगे होली असमानता की स्थिति तब होली असमानता बताती है कि

जो कि केवल एफकेजी असमानता है।

जहां तक ​​एफकेजी का प्रश्न है, हॉली असमानता अहल्सवेड-डेकिन असमानता से आती है।

जालक की स्थिति को अशक्त करना: मोनोटोनीसिटी

कुछ परिमित समुच्चय V के लिए के प्रोडक्ट होने के सामान्य स्थिति पर विचार करें। μ पर जालक की स्थिति को सरलता से निम्नलिखित मोनोटोनीसिटी के रूप में देखा जा सकता है, जिसमें यह गुण है कि इसे जालक की स्थिति की तुलना में जांचना अधिकांशतः सरल होता है।

जब भी कोई एक शीर्ष को सही करता है और दो विन्यास φ और ψ v के बाहर इस प्रकार से करता है कि सभी के लिए, μ- दिए गए φ(v) का नियमबद्ध वितरण, दिए गए ψ(v) के μ-नियमबद्ध वितरण पर अधिकृत है

अब, यदि μ इस मोनोटोनीसिटी गुण को संतुष्ट करता है, तो यह एफकेजी असमानता (धनात्मक संघ) को बनाए रखने के लिए पहले से ही पर्याप्त है।

यहां प्रमाण का एक स्केच दिया गया है : हॉली (1974) के कारण पर किसी भी प्रारंभिक विन्यास से प्रारंभ होने पर, कोई एक साधारण मार्कोव श्रृंखला (मेट्रोपोलिस एल्गोरिदम) चला सकता है जो प्रत्येक चरण में विन्यास को अद्यतन करने के लिए स्वतंत्र यूनिफ़ॉर्म [0,1] यादृच्छिक वैरिएबल का उपयोग करता है, जैसे कि श्रृंखला में अद्वितीय स्थिर माप होता है, दिया गया μ या μ की मोनोटोनीसिटी का तात्पर्य है कि प्रत्येक चरण पर विन्यास स्वतंत्र वैरिएबल का मोनोटोन फलन है, इसलिए हैरिस के प्रोडक्ट माप संस्करण का तात्पर्य है कि इसमें धनात्मक जुड़ाव है। इसलिए, सीमित स्थिर माप μ में भी यह गुण है।

मोनोटोनीसिटी गुण का दो मापों के लिए प्राकृतिक संस्करण है, जो कहता है कि μ1 सनियम रूप से बिंदुवार μ2 पर अधिकृत है यह देखना पुनः सरल है कि यदि μ1 और μ2 हॉली असमानता सामान्यीकरण की जालक-प्रकार की स्थिति को संतुष्ट करें: , पुनः μ1 सनियम रूप से बिंदुवार μ2 पर अधिकृत है. दूसरी ओर, मार्कोव श्रृंखला युग्मन (संभावना) तर्क उपरोक्त के समान है, किन्तु अब हैरिस असमानता का आह्वान किए बिना, यह दर्शाता है कि स्टोकेस्टिक डोमिनेशन , वास्तव में, स्टोकेस्टिक ऑर्डरिंग का तात्पर्य है। स्टोकेस्टिक डोमिनेशन के समान है सभी के लिए बढ़ते हुए, इस प्रकार हमें हॉली असमानता का प्रमाण मिलता है। (और इस प्रकार हैरिस असमानता का उपयोग किए बिना, एफकेजी असमानता का प्रमाण भी है।)

विवरण के लिए हाली (1974) और जॉर्जी, हैगस्ट्रॉम & माएस (2001) देखें।

यह भी देखें

संदर्भ