लेब्सग्यू-स्टिल्टजेस एकीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Lebesgue-Stieltjes integration}} | {{Short description|Lebesgue-Stieltjes integration}} | ||
[[माप सिद्धांत]] [[गणितीय विश्लेषण]] और गणित की संबंधित शाखाओं में, लेब्सग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस [[अभिन्न]] और लेब्सग्यू समाकलन दोनों को सामान्यीकृत करता है, और अधिक सामान्य माप-सैद्धांतिक संरचना में पूर्व के कई लाभों को संरक्षित करता है। लेब्सग्यू-स्टिल्टजेस समाकलन, लेब्सग्यू-स्टिल्टजेस माप के रूप में जाने जाने वाले माप के संबंध में सामान्य लेब्सग्यू समाकलन है, जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी फलन से संबद्ध हो सकता है। लेब्सग्यू-स्टिल्टजेस माप [[नियमित बोरेल माप]] है, और इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है। | [[माप सिद्धांत]] [[गणितीय विश्लेषण]] और गणित की संबंधित शाखाओं में, लेब्सग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस [[अभिन्न|समाकलन]] और लेब्सग्यू समाकलन दोनों को सामान्यीकृत करता है, और अधिक सामान्य माप-सैद्धांतिक संरचना में पूर्व के कई लाभों को संरक्षित करता है। लेब्सग्यू-स्टिल्टजेस समाकलन, लेब्सग्यू-स्टिल्टजेस माप के रूप में जाने जाने वाले माप के संबंध में सामान्य लेब्सग्यू समाकलन है, जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी फलन से संबद्ध हो सकता है। लेब्सग्यू-स्टिल्टजेस माप [[नियमित बोरेल माप]] है, और इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है। | ||
लेबेस्ग्यू-स्टिल्टजेस समाकलन, जिसका नाम [[ हेनरी लियोन लेब्सग्यू |हेनरी लियोन लेब्सग्यू]] और [[थॉमस जोआन्स स्टिल्टजेस]] के नाम पर रखा गया है, को [[जोहान रेडॉन]] के बाद लेबेस्गु-रेडॉन समाकलन या मात्र रेडॉन समाकलन के रूप में भी जाना जाता है, जिनके लिए अधिकांश सिद्धांत देय हैं। वे संभाव्यता सिद्धांत और प्रसंभाव्य प्रक्रियाओं और [[संभावित सिद्धांत|प्रायिकता सिद्धांत]] सहित गणितीय विश्लेषण की कुछ शाखाओं में सामान्य अनुप्रयोग पाते हैं। | लेबेस्ग्यू-स्टिल्टजेस समाकलन, जिसका नाम [[ हेनरी लियोन लेब्सग्यू |हेनरी लियोन लेब्सग्यू]] और [[थॉमस जोआन्स स्टिल्टजेस]] के नाम पर रखा गया है, को [[जोहान रेडॉन]] के बाद लेबेस्गु-रेडॉन समाकलन या मात्र रेडॉन समाकलन के रूप में भी जाना जाता है, जिनके लिए अधिकांश सिद्धांत देय हैं। वे संभाव्यता सिद्धांत और प्रसंभाव्य प्रक्रियाओं और [[संभावित सिद्धांत|प्रायिकता सिद्धांत]] सहित गणितीय विश्लेषण की कुछ शाखाओं में सामान्य अनुप्रयोग पाते हैं। | ||
Line 21: | Line 21: | ||
:<math>\int_a^b f(x)\,dg(x) := -\int_a^b f(x) \,d (-g)(x)</math> | :<math>\int_a^b f(x)\,dg(x) := -\int_a^b f(x) \,d (-g)(x)</math> | ||
को परिभाषित करें, बाद वाला | को परिभाषित करें, बाद वाला समाकलन पूर्ववर्ती निर्माण द्वारा परिभाषित किया जा रहा है। | ||
यदि {{mvar|g}} परिबद्ध भिन्नता का है और {{math| ''f'' }} परिबद्ध है, तो | यदि {{mvar|g}} परिबद्ध भिन्नता का है और {{math| ''f'' }} परिबद्ध है, तो | ||
Line 32: | Line 32: | ||
===डेनियल समाकलन=== | ===डेनियल समाकलन=== | ||
एक वैकल्पिक दृष्टिकोण {{harv| | एक वैकल्पिक दृष्टिकोण {{harv|हेविट|स्ट्रोमबर्ग|1965}} लेब्सग्यू-स्टिल्टजेस समाकलन को [[ डेनियल अभिन्न |डेनियल समाकलन]] के रूप में परिभाषित करना है जो सामान्य रीमैन-स्टिल्टजेस समाकलन का विस्तार करता है। मान लीजिए कि {{mvar|g}} {{math|[''a'', ''b'']}} पर एक गैर-ह्रासमान दाएँ-संतत फलन है, और {{math|''I''( ''f'' )}} को सभी सतत फलन {{math| ''f'' }} के लिए रीमैन-स्टिल्टजेस समाकलन | ||
:<math>I(f) = \int_a^b f(x)\,dg(x)</math> | :<math>I(f) = \int_a^b f(x)\,dg(x)</math> | ||
के रूप में परिभाषित करता है। [[कार्यात्मक (गणित)|फलनात्मक (गणित)]] {{mvar|I}} {{math|[''a'', ''b'']}} पर [[रेडॉन माप]] को परिभाषित करता है। फिर इस प्रकार्यात्मक को | |||
:<math>\begin{align} | :<math>\begin{align} | ||
\overline{I}(h) &= \sup \left \{I(f) \ : \ f\in C[a,b], 0\le f\le h \right \} \\ | \overline{I}(h) &= \sup \left \{I(f) \ : \ f\in C[a,b], 0\le f\le h \right \} \\ | ||
\overline{\overline{I}}(h) &= \inf \left \{I(f) \ : \ f \in C[a,b], h\le f \right \} | \overline{\overline{I}}(h) &= \inf \left \{I(f) \ : \ f \in C[a,b], h\le f \right \} | ||
\end{align}</math> | \end{align}</math> समूहित करके सभी गैर-नऋणात्मक फलन के वर्ग तक बढ़ाया जा सकता है। | ||
बोरेल माप्य फलनों के लिए, के | बोरेल माप्य फलनों के लिए, किसी के निकट | ||
:<math>\overline{I}(h) = \overline{\overline{I}}(h),</math> | :<math>\overline{I}(h) = \overline{\overline{I}}(h),</math> | ||
और | है, और तत्समक के दोनों ओर फिर {{mvar|h}} के लेब्सग्यू-स्टिल्टजेस समाकलन को परिभाषित करता है। बाह्य माप {{math|''μ<sub>g</sub>''}} को | ||
:<math>\mu_g(A) := \overline{I}(\chi_A)= \overline{\overline{I}}(\chi_A)</math> | :<math>\mu_g(A) := \overline{I}(\chi_A)= \overline{\overline{I}}(\chi_A)</math> | ||
के माध्यम से परिभाषित किया गया है जहां {{math|''χ<sub>A</sub>''}}, {{mvar|A}} का [[सूचक कार्य|सूचक फलन]] है। | |||
परिबद्ध भिन्नता के | परिबद्ध भिन्नता के समाकलन को धनात्मक और ऋणात्मक विविधताओं में विघटित करके उपरोक्त विधि से नियंत्रित किया जाता है। | ||
==उदाहरण== | ==उदाहरण== | ||
मान लीजिए कि समतल में {{math| ''γ'' : [''a'', ''b''] → '''R'''<sup>2</sup>}} एक [[सुधार योग्य वक्र|संशोधनीय वक्र]] है और {{math| ''ρ'' : '''R'''<sup>2</sup> → [0, ∞)}} बोरेल माप्य है। तब हम ρ द्वारा भारित यूक्लिडियन मापन के संबंध में {{mvar|γ}} की लंबाई को | |||
:<math>\int_a^b \rho(\gamma(t))\,d\ell(t) | :<math>\int_a^b \rho(\gamma(t))\,d\ell(t)</math> | ||
के रूप में परिभाषित कर सकते हैं, जहां <math>\ell(t)</math> {{mvar|γ}} से {{math|[''a'', ''t'']}} के प्रतिबंध की लंबाई है। इसे कभी-कभी {{mvar|γ}} की {{mvar|ρ}}-लंबाई भी कहा जाता है। यह धारणा विभिन्न अनुप्रयोगों के लिए अत्यधिक उपयोगी है: उदाहरण के लिए, कीचड़ भरे क्षेत्र में जिस गति से कोई व्यक्ति चल सकता है वह इस बात पर निर्भर हो सकता है कि कीचड़ कितना गहन है। यदि {{math| ''ρ''(''z'')}} {{mvar|z}} पर या उसके निकट चलने की गति के व्युत्क्रम को दर्शाता है, तो {{mvar|γ}} की {{mvar|ρ}}-लंबाईवह समय है जो {{mvar|γ}} को पार करने में लगेगा। [[चरम लंबाई]] की अवधारणा वक्रों की {{mvar|ρ}}-लंबाई की इस धारणा का उपयोग करती है और [[अनुरूप मानचित्र|अनुरूप प्रतिचित्रण]] के अध्ययन में उपयोगी है। | |||
==भागों द्वारा समाकलन== | ==भागों द्वारा समाकलन== | ||
एक | एक फलन {{math| ''f'' }} को बिंदु पर नियमित कहा जाता है {{mvar|a}} यदि दायां और बायां हाथ सीमित है {{math|''f'' (''a''+)}} और {{math|''f'' (''a''−)}} मौजूद है, और फलन चालू हो जाता है {{mvar|a}} औसत मूल्य | ||
:<math>f(a)=\frac{f(a-)+f(a+)}{2}.</math> | :<math>f(a)=\frac{f(a-)+f(a+)}{2}.</math> | ||
दो फलन दिए गए {{mvar|U}} और {{mvar|V}} परिमित भिन्नता का, यदि प्रत्येक बिंदु पर कम से कम हो {{mvar|U}} या {{mvar|V}} सतत है या {{mvar|U}} और {{mvar|V}} दोनों नियमित हैं, फिर लेब्सग्यू-स्टिल्टजेस समाकलन के लिए भागों के फार्मूले द्वारा समाकलन होता है:<ref>{{cite journal |last=Hewitt |first=Edwin |date=May 1960 |title=स्टिल्टजेस इंटीग्रल्स के लिए भागों द्वारा एकीकरण|journal=[[The American Mathematical Monthly]] |volume=67 |issue=5 |pages=419–423 |jstor=2309287 |doi=10.2307/2309287 }}</ref> | दो फलन दिए गए {{mvar|U}} और {{mvar|V}} परिमित भिन्नता का, यदि प्रत्येक बिंदु पर कम से कम हो {{mvar|U}} या {{mvar|V}} सतत है या {{mvar|U}} और {{mvar|V}} दोनों नियमित हैं, फिर लेब्सग्यू-स्टिल्टजेस समाकलन के लिए भागों के फार्मूले द्वारा समाकलन होता है:<ref>{{cite journal |last=Hewitt |first=Edwin |date=May 1960 |title=स्टिल्टजेस इंटीग्रल्स के लिए भागों द्वारा एकीकरण|journal=[[The American Mathematical Monthly]] |volume=67 |issue=5 |pages=419–423 |jstor=2309287 |doi=10.2307/2309287 }}</ref> | ||
:<math>\int_a^b U\,dV+\int_a^b V\,dU = U(b+)V(b+)-U(a-)V(a-), \qquad -\infty < a < b < \infty.</math> | :<math>\int_a^b U\,dV+\int_a^b V\,dU = U(b+)V(b+)-U(a-)V(a-), \qquad -\infty < a < b < \infty.</math> | ||
यहां प्रासंगिक लेबेस्ग-स्टिल्टजेस उपाय फलनों के सही-संतत संस्करणों से जुड़े हुए हैं {{mvar|U}} और {{mvar|V}}; यह इसके लिए है <math display="inline">\tilde U(x) = \lim_{t\to x^+} U(t)</math> और इसी तरह <math>\tilde V(x).</math> परिबद्ध अंतराल {{open-open|''a'', ''b''}} को असीमित अंतराल से बदला जा सकता है {{open-open|-∞, ''b''}}, {{open-open|''a'', ∞}} या {{open-open|-∞, ∞}} उसे उपलब्ध कराया {{mvar|U}} और {{mvar|V}} इस असीमित अंतराल पर सीमित भिन्नता वाले हैं। जटिल-मूल्यवान | यहां प्रासंगिक लेबेस्ग-स्टिल्टजेस उपाय फलनों के सही-संतत संस्करणों से जुड़े हुए हैं {{mvar|U}} और {{mvar|V}}; यह इसके लिए है <math display="inline">\tilde U(x) = \lim_{t\to x^+} U(t)</math> और इसी तरह <math>\tilde V(x).</math> परिबद्ध अंतराल {{open-open|''a'', ''b''}} को असीमित अंतराल से बदला जा सकता है {{open-open|-∞, ''b''}}, {{open-open|''a'', ∞}} या {{open-open|-∞, ∞}} उसे उपलब्ध कराया {{mvar|U}} और {{mvar|V}} इस असीमित अंतराल पर सीमित भिन्नता वाले हैं। जटिल-मूल्यवान फलन का भी उपयोग किया जा सकता है। | ||
[[स्टोकेस्टिक कैलकुलस|प्रसंभाव्य कैलकुलस]] के सिद्धांत में महत्वपूर्ण महत्व का वैकल्पिक परिणाम निम्नलिखित है। दो फलन दिए गए {{mvar|U}} और {{mvar|V}} परिमित भिन्नता के, जो दाएं-संतत दोनों हैं और बाईं-सीमाएं हैं (वे कैडलैग फलन हैं) | [[स्टोकेस्टिक कैलकुलस|प्रसंभाव्य कैलकुलस]] के सिद्धांत में महत्वपूर्ण महत्व का वैकल्पिक परिणाम निम्नलिखित है। दो फलन दिए गए {{mvar|U}} और {{mvar|V}} परिमित भिन्नता के, जो दाएं-संतत दोनों हैं और बाईं-सीमाएं हैं (वे कैडलैग फलन हैं) | ||
Line 73: | Line 73: | ||
===लेब्सग्यू समाकलन=== | ===लेब्सग्यू समाकलन=== | ||
कब {{math|''g''(''x'') {{=}} ''x''}} सभी वास्तविक के लिए {{mvar|x}}, तब {{math|''μ<sub>g</sub>''}} [[लेब्सेग माप]] है, और लेब्सेग-स्टिल्टजेस का | कब {{math|''g''(''x'') {{=}} ''x''}} सभी वास्तविक के लिए {{mvar|x}}, तब {{math|''μ<sub>g</sub>''}} [[लेब्सेग माप]] है, और लेब्सेग-स्टिल्टजेस का समाकलन है {{math| ''f'' }} इसके संबंध में {{mvar|g}} लेबेस्ग समाकलन के समतुल्य है {{math| ''f'' }}. | ||
===रीमैन-स्टिल्टजेस समाकलन और संभाव्यता सिद्धांत=== | ===रीमैन-स्टिल्टजेस समाकलन और संभाव्यता सिद्धांत=== |
Revision as of 20:50, 11 December 2023
माप सिद्धांत गणितीय विश्लेषण और गणित की संबंधित शाखाओं में, लेब्सग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस समाकलन और लेब्सग्यू समाकलन दोनों को सामान्यीकृत करता है, और अधिक सामान्य माप-सैद्धांतिक संरचना में पूर्व के कई लाभों को संरक्षित करता है। लेब्सग्यू-स्टिल्टजेस समाकलन, लेब्सग्यू-स्टिल्टजेस माप के रूप में जाने जाने वाले माप के संबंध में सामान्य लेब्सग्यू समाकलन है, जो वास्तविक रेखा पर सीमित भिन्नता के किसी भी फलन से संबद्ध हो सकता है। लेब्सग्यू-स्टिल्टजेस माप नियमित बोरेल माप है, और इसके विपरीत वास्तविक रेखा पर प्रत्येक नियमित बोरेल माप इस प्रकार का होता है।
लेबेस्ग्यू-स्टिल्टजेस समाकलन, जिसका नाम हेनरी लियोन लेब्सग्यू और थॉमस जोआन्स स्टिल्टजेस के नाम पर रखा गया है, को जोहान रेडॉन के बाद लेबेस्गु-रेडॉन समाकलन या मात्र रेडॉन समाकलन के रूप में भी जाना जाता है, जिनके लिए अधिकांश सिद्धांत देय हैं। वे संभाव्यता सिद्धांत और प्रसंभाव्य प्रक्रियाओं और प्रायिकता सिद्धांत सहित गणितीय विश्लेषण की कुछ शाखाओं में सामान्य अनुप्रयोग पाते हैं।
परिभाषा
लेब्सग्यू-स्टिल्टजेस समाकलन
को तब परिभाषित किया जाता है जब बोरेल-माप्य फलन और परिबद्ध फलन होता है और [a, b] और दाएं-संतत में सीमित भिन्नता का होता है, या जब f गैर-ऋणात्मक होता है और g एकदिष्ट फलन और सतत फलन होता है। आरंभ करने के लिए, यह मान लें f गैर-ऋणात्मक है और g एकदिष्ट ह्वासमान और सम-संतत है। w((s, t]) = g(t) − g(s) और w({a}) = 0 को परिभाषित करें (वैकल्पिक रूप से, g वाम-संतत, w([s,t)) = g(t) − g(s) और w({b}) = 0) के लिए निर्माण कार्य करता है।
कैराथोडोरी के विस्तार प्रमेय के अनुसार, [a, b] पर एक अद्वितीय बोरेल माप μg है जो प्रत्येक अंतराल I पर w से सहमत है। माप μg एक बाह्य माप (वस्तुतः, एक मीट्रिक बाह्य माप) से उत्पन्न होता है जो
द्वारा दिया जाता है, जो कि E के सभी आवरणों पर अगणनीय अर्ध-विवृत अंतरालों द्वारा लिया जाता है। इस माप को कभी-कभी[1] g से संबद्ध लेबेस्गु-स्टिल्टजेस माप भी कहा जाता है।
लेब्सग्यू-स्टिल्टजेस समाकलन
को सामान्य विधि से माप μg के संबंध में f के लेब्सग्यू समाकलन के रूप में परिभाषित किया गया है। यदि g गैर वर्द्धमान है, तो
को परिभाषित करें, बाद वाला समाकलन पूर्ववर्ती निर्माण द्वारा परिभाषित किया जा रहा है।
यदि g परिबद्ध भिन्नता का है और f परिबद्ध है, तो
लिखना संभव है जहां g1(x) = V x
ag अंतराल [a, x], और g2(x) = g1(x) − g(x) में g की कुल भिन्नता है। दोनों g1 और g2 एकदिष्ट ह्वासमान हैं। अब g के संबंध में लेब्सग्यू-स्टिल्टजेस समाकलन को
द्वारा परिभाषित किया गया है, जहां बाद के दो समाकलन पूर्ववर्ती निर्माण द्वारा ठीक रूप से परिभाषित हैं।
डेनियल समाकलन
एक वैकल्पिक दृष्टिकोण (हेविट & स्ट्रोमबर्ग 1965) लेब्सग्यू-स्टिल्टजेस समाकलन को डेनियल समाकलन के रूप में परिभाषित करना है जो सामान्य रीमैन-स्टिल्टजेस समाकलन का विस्तार करता है। मान लीजिए कि g [a, b] पर एक गैर-ह्रासमान दाएँ-संतत फलन है, और I( f ) को सभी सतत फलन f के लिए रीमैन-स्टिल्टजेस समाकलन
के रूप में परिभाषित करता है। फलनात्मक (गणित) I [a, b] पर रेडॉन माप को परिभाषित करता है। फिर इस प्रकार्यात्मक को
- समूहित करके सभी गैर-नऋणात्मक फलन के वर्ग तक बढ़ाया जा सकता है।
बोरेल माप्य फलनों के लिए, किसी के निकट
है, और तत्समक के दोनों ओर फिर h के लेब्सग्यू-स्टिल्टजेस समाकलन को परिभाषित करता है। बाह्य माप μg को
के माध्यम से परिभाषित किया गया है जहां χA, A का सूचक फलन है।
परिबद्ध भिन्नता के समाकलन को धनात्मक और ऋणात्मक विविधताओं में विघटित करके उपरोक्त विधि से नियंत्रित किया जाता है।
उदाहरण
मान लीजिए कि समतल में γ : [a, b] → R2 एक संशोधनीय वक्र है और ρ : R2 → [0, ∞) बोरेल माप्य है। तब हम ρ द्वारा भारित यूक्लिडियन मापन के संबंध में γ की लंबाई को
के रूप में परिभाषित कर सकते हैं, जहां γ से [a, t] के प्रतिबंध की लंबाई है। इसे कभी-कभी γ की ρ-लंबाई भी कहा जाता है। यह धारणा विभिन्न अनुप्रयोगों के लिए अत्यधिक उपयोगी है: उदाहरण के लिए, कीचड़ भरे क्षेत्र में जिस गति से कोई व्यक्ति चल सकता है वह इस बात पर निर्भर हो सकता है कि कीचड़ कितना गहन है। यदि ρ(z) z पर या उसके निकट चलने की गति के व्युत्क्रम को दर्शाता है, तो γ की ρ-लंबाईवह समय है जो γ को पार करने में लगेगा। चरम लंबाई की अवधारणा वक्रों की ρ-लंबाई की इस धारणा का उपयोग करती है और अनुरूप प्रतिचित्रण के अध्ययन में उपयोगी है।
भागों द्वारा समाकलन
एक फलन f को बिंदु पर नियमित कहा जाता है a यदि दायां और बायां हाथ सीमित है f (a+) और f (a−) मौजूद है, और फलन चालू हो जाता है a औसत मूल्य
दो फलन दिए गए U और V परिमित भिन्नता का, यदि प्रत्येक बिंदु पर कम से कम हो U या V सतत है या U और V दोनों नियमित हैं, फिर लेब्सग्यू-स्टिल्टजेस समाकलन के लिए भागों के फार्मूले द्वारा समाकलन होता है:[2]
यहां प्रासंगिक लेबेस्ग-स्टिल्टजेस उपाय फलनों के सही-संतत संस्करणों से जुड़े हुए हैं U और V; यह इसके लिए है और इसी तरह परिबद्ध अंतराल (a, b) को असीमित अंतराल से बदला जा सकता है (-∞, b), (a, ∞) या (-∞, ∞) उसे उपलब्ध कराया U और V इस असीमित अंतराल पर सीमित भिन्नता वाले हैं। जटिल-मूल्यवान फलन का भी उपयोग किया जा सकता है।
प्रसंभाव्य कैलकुलस के सिद्धांत में महत्वपूर्ण महत्व का वैकल्पिक परिणाम निम्नलिखित है। दो फलन दिए गए U और V परिमित भिन्नता के, जो दाएं-संतत दोनों हैं और बाईं-सीमाएं हैं (वे कैडलैग फलन हैं)
कहाँ ΔUt = U(t) − U(t−). इस परिणाम को इटो के लेम्मा के अग्रदूत के रूप में देखा जा सकता है, और यह प्रसंभाव्य समाकलन के सामान्य सिद्धांत में उपयोग में आता है। अंतिम पद है ΔU(t)ΔV(t) = d[U, V],जो के द्विघात सहसंयोजन से उत्पन्न होता है U और V. (पहले के परिणाम को स्ट्रैटोनोविच समाकलन से संबंधित परिणाम के रूप में देखा जा सकता है।)
संबंधित अवधारणाएँ
लेब्सग्यू समाकलन
कब g(x) = x सभी वास्तविक के लिए x, तब μg लेब्सेग माप है, और लेब्सेग-स्टिल्टजेस का समाकलन है f इसके संबंध में g लेबेस्ग समाकलन के समतुल्य है f .
रीमैन-स्टिल्टजेस समाकलन और संभाव्यता सिद्धांत
कहाँ f वास्तविक चर का सतत फलन वास्तविक-मूल्यवान फलन है और v गैर-घटता हुआ वास्तविक फलन है, लेबेस्ग्यू-स्टिल्टजेस समाकलन रीमैन-स्टिल्टजेस समाकलन के बराबर है, जिस स्थिति में हम अक्सर लिखते हैं
लेब्सग्यू-स्टिल्टजेस समाकलन के लिए, माप देना μv निहित रहें. संभाव्यता सिद्धांत में यह विशेष रूप से आम है जब v वास्तविक-मूल्यवान यादृच्छिक चर का संचयी वितरण फलन है X, किस स्थिति में
(ऐसे मामलों से निपटने के बारे में अधिक जानकारी के लिए रीमैन-स्टिल्टजेस समाकलन|रीमैन-स्टिल्टजेस इंटीग्रेशन पर लेख देखें।)
टिप्पणियाँ
- ↑ Halmos (1974), Sec. 15
- ↑ Hewitt, Edwin (May 1960). "स्टिल्टजेस इंटीग्रल्स के लिए भागों द्वारा एकीकरण". The American Mathematical Monthly. 67 (5): 419–423. doi:10.2307/2309287. JSTOR 2309287.
Also see Henstock-kurzweil-stiltjes integral
संदर्भ
- Halmos, Paul R. (1974), Measure Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90088-9
- Hewitt, Edwin; Stromberg, Karl (1965), Real and abstract analysis, Springer-Verlag.
- Saks, Stanisław (1937) Theory of the Integral.
- Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.