माध्य से वर्ग विचलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
'''माध्य से वर्ग विचलन (एसडीएम) वर्ग विचलन''' के परिणामस्वरूप होता है। संभाव्यता सिद्धांत और सांख्यिकी में, विचरण की परिभाषा या तो एसडीएम का अपेक्षित मूल्य है (सैद्धांतिक वितरण पर विचार करते समय) या इसका औसत मूल्य (वास्तविक प्रायोगिक डेटा के लिए)। भिन्नता के विश्लेषण के लिए गणना में एसडीएम के योग का विभाजन सम्मिलित है।
'''माध्य से विचलन का वर्ग (एसडीएम) वर्ग विचलन''' के परिणामस्वरूप होता है। संभाव्यता सिद्धांत और सांख्यिकी में, ''विचरण'' की परिभाषा या तो एसडीएम का अपेक्षित मूल्य है (सैद्धांतिक वितरण पर विचार करते समय) या इसका औसत मूल्य (वास्तविक प्रायोगिक डेटा के लिए)। ''भिन्नता के विश्लेषण'' के लिए गणना में एसडीएम के योग का विभाजन सम्मिलित है।


=='''पृष्ठभूमि'''==
=='''पृष्ठभूमि'''==
Line 19: Line 19:




'''नमूना''' '''विचरण'''
== '''नमूना''' '''विचरण''' ==
 
{{main|नमूना विचरण}}
{{main|नमूना विचरण}}


Line 32: Line 31:


: <math>\operatorname{E}(S) = (n - 1)\sigma^2. </math>
: <math>\operatorname{E}(S) = (n - 1)\sigma^2. </math>
यह σ<sup>2</sup> के निष्पक्ष नमूना अनुमान की गणना में विभाजक n-1 के उपयोग को प्रभावी ढंग से सिद्ध करता है।
यह σ<sup>2</sup> के '''निष्पक्ष सैंपल''' (अनबायस्ड  सैंपल) अनुमान की गणना में विभाजक n-1 के उपयोग को प्रभावी ढंग से सिद्ध करता है।


== '''विभाजन - विचरण का विश्लेषण''' ==
== '''विभाजन - विचरण का विश्लेषण''' ==
Line 101: Line 100:


==संदर्भ==
==संदर्भ==
<संदर्भ/>
 
[[Category: सांख्यिकीय विचलन और फैलाव]] [[Category: भिन्नता का विश्लेषण]]  
[[Category: सांख्यिकीय विचलन और फैलाव]] [[Category: भिन्नता का विश्लेषण]]  



Revision as of 12:14, 13 December 2023

माध्य से विचलन का वर्ग (एसडीएम) वर्ग विचलन के परिणामस्वरूप होता है। संभाव्यता सिद्धांत और सांख्यिकी में, विचरण की परिभाषा या तो एसडीएम का अपेक्षित मूल्य है (सैद्धांतिक वितरण पर विचार करते समय) या इसका औसत मूल्य (वास्तविक प्रायोगिक डेटा के लिए)। भिन्नता के विश्लेषण के लिए गणना में एसडीएम के योग का विभाजन सम्मिलित है।

पृष्ठभूमि

सांख्यिकीय मूल्य के अध्ययन से इसमें सम्मिलित गणनाओं की समझ में काफी वृद्धि होती है

, जहाँ अपेक्षित मान ऑपरेटर है.

माध्य और विचरण के साथ एक यादृच्छिक चर के लिए,

[1]

इसलिए,

उपरोक्त से, निम्नलिखित निष्कर्ष निकाला जा सकता है:


नमूना विचरण

नमूना विचरण की गणना करने के लिए आवश्यक वर्ग विचलनों का योग (यह तय करने से पहले कि n या n - 1 से विभाजित करना है या नहीं) की गणना सबसे आसानी से की जाती है

दो व्युत्पन्न अपेक्षाओं से इस योग का अपेक्षित मूल्य ऊपर है

जो ये दर्शाता हे

यह σ2 के निष्पक्ष सैंपल (अनबायस्ड  सैंपल) अनुमान की गणना में विभाजक n-1 के उपयोग को प्रभावी ढंग से सिद्ध करता है।

विभाजन - विचरण का विश्लेषण

ऐसी स्थिति में जहां k के विभिन्न निरूपण समूहों के लिए डेटा उपलब्ध है, जिनका आकार ni है, जहां i 1 से k तक भिन्न है, तो यह माना जाता है कि प्रत्येक समूह का अपेक्षित माध्य है

और प्रत्येक निरूपण समूह का भिन्नता जनसंख्या भिन्नता से अपरिवर्तित है।

शून्य परिकल्पना के तहत कि उपचारों का कोई प्रभाव नहीं है, तो प्रत्येक शून्य होगा।

अब तीन वर्गों के योग की गणना करना संभव है:

अलग अलग

निरूपण

अशक्त परिकल्पना के तहत कि निरूपणों से कोई अंतर नहीं होता है और सभी शून्य हैं, अपेक्षा सरल हो जाती है

संयोजन


वर्गीकृत विचलनों का योग

अशक्त परिकल्पना के तहत, I, T और C के किसी भी जोड़े के अंतर में पर कोई निर्भरता नहीं है, केवल है।

कुल वर्ग विचलन अर्थात वर्गों का कुल योग

निरूपण वर्ग विचलन अर्थात वर्गों का योग समझाया गया

अवशिष्ट वर्ग विचलन अर्थात वर्गों का अवशिष्ट योग

स्थिरांक (n − 1), (k − 1), और (n − k) को सामान्यतः स्वतंत्रता की डिग्री (सांख्यिकी) की संख्या के रूप में जाना जाता है।

उदाहरण

एक बहुत ही सरल उदाहरण में, दो उपचारों से 5 अवलोकन उत्पन्न होते हैं। पहला निरूपण तीन मान 1, 2, और 3 देता है, और दूसरा निरूपण दो मान 4, और 6 देता है।

दे रही है

कुल वर्ग विचलन = 66 − 51.2 = 14.8 स्वतंत्रता की 4 डिग्री के साथ।
निरूपण वर्ग विचलन = 62 − 51.2 = 10.8 1 डिग्री स्वतंत्रता के साथ।
अवशिष्ट वर्ग विचलन = 66 − 62 = 4 स्वतंत्रता की 3 डिग्री के साथ।

विचरण का दो-तरफ़ा विश्लेषण

आंकड़ों में, विचरण का दो-तरफ़ा विश्लेषण (एनोवा) एक-तरफ़ा एनोवा का विस्तार है जो एक निरंतर आश्रित चर पर दो अलग-अलग श्रेणीगत स्वतंत्र चर के प्रभाव की जांच करता है। दो-तरफ़ा एनोवा का उद्देश्य न केवल प्रत्येक स्वतंत्र चर के मुख्य प्रभाव का आकलन करना है बल्कि यह भी है कि उनके बीच कोई बातचीत है या नहीं।

यह भी देखें

संदर्भ

  1. Mood & Graybill: An introduction to the Theory of Statistics (McGraw Hill)