ऋणात्मक आवृत्ति: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
इस प्रकार किसी भी साइनसॉइड को केवल सकारात्मक आवृत्तियों के संदर्भ में दर्शाया जा सकता है। | इस प्रकार किसी भी साइनसॉइड को केवल सकारात्मक आवृत्तियों के संदर्भ में दर्शाया जा सकता है। | ||
[[File:Negative frequency.svg|thumb|right|300px|एक नकारात्मक आवृत्ति के कारण | [[File:Negative frequency.svg|thumb|right|300px|एक नकारात्मक आवृत्ति के कारण साइन फलन (बैंगनी) कॉस (लाल) को 1/4 चक्र तक ले जाता है।]]अंतर्निहित चरण ढलान का संकेत अस्पष्ट है। क्योंकि <math>\cos(\omega t + \varphi)</math> नेतृत्व <math>\sin(\omega t + \varphi)</math> द्वारा <math>\tfrac{\pi}{2}</math> रेडियंस (या {{Sfrac|1|4}} चक्र) सकारात्मक आवृत्तियों के लिए और नकारात्मक आवृत्तियों के लिए समान मात्रा में अंतराल, चरण ढलान के बारे में अस्पष्टता को कोसाइन और साइन ऑपरेटर को एक साथ देखकर और यह देखकर हल किया जाता है कि कौन सा दूसरे से आगे है। | ||
का चिन्ह <math>\omega</math> [[जटिल-मूल्यवान फ़ंक्शन]] में भी संरक्षित है: | का चिन्ह <math>\omega</math> [[जटिल-मूल्यवान फ़ंक्शन]] में भी संरक्षित है: | ||
Line 21: | Line 21: | ||
|Eq.1}} | |Eq.1}} | ||
चूँकि <math>R(t)</math> और <math>I(t)</math> को अलग-अलग प्रेक्षित तथा तुलना की जा सकती है। '''एक सामान्य व्याख्या यह है <math>e^{i \omega t}</math>यह इसके किसी भी घटक की तुलना में एक सरल कार्य है, क्योंकि यह गुणक यूलर के सूत्र#त्रिकोणमिति से संबंध को सरल बनाता है, जो इसके [[विश्लेषणात्मक संकेत]] के रूप में इसके औपचारिक विवरण की ओर ले जाता है <math>\cos(\omega t)</math>'''.{{efn-ua | |||
| See {{section link|Euler's formula|Relationship to trigonometry}} and {{section link|Phasor|Addition}} for examples of calculations simplified by the complex representation.}} | | See {{section link|Euler's formula|Relationship to trigonometry}} and {{section link|Phasor|Addition}} for examples of calculations simplified by the complex representation.}} | ||
इसके जटिल संयुग्म के साथ एक विश्लेषणात्मक | इसके जटिल संयुग्म के साथ एक विश्लेषणात्मक निरूपण का योग तथ्यपूर्ण वास्तविक-मूल्यवान फलन का निष्कर्षण करता है जिसका वे प्रतिनिधित्व करते हैं। उदाहरण के लिए: | ||
{{NumBlk|:| | {{NumBlk|:| |
Revision as of 21:21, 30 November 2023
गणित में, हस्ताक्षरित आवृत्ति (नकारात्मक और सकारात्मक आवृत्ति) आवृत्ति की अवधारणा पर विस्तारित होती है, केवल एक निरपेक्ष मान से यह दर्शाता है कि कितनी बार कोई दोहराई जाने वाली घटना घटित होती है, साथ ही एक सकारात्मक या नकारात्मक संकेत (गणित) भी होता है जो घटनाओं के लिए दो विरोधी झुकावों में से एक का प्रतिनिधित्व करता है। उन घटनाओं का. निम्नलिखित उदाहरण इस अवधारणा को स्पष्ट करने में मदद करते हैं:
- किसी घूर्णन वस्तु के लिए, उसके घूर्णन की आवृत्ति का पूर्ण मान इंगित करता है कि वस्तु समय की प्रति इकाई कितने चक्कर लगाती है, जबकि संकेत यह संकेत दे सकता है कि वह दक्षिणावर्त घूम रही है या नहीं।
- गणितीय रूप से कहें तो, वेक्टर ROTATION#आयताकार वैक्टर समय की प्रति इकाई +1 रेडियन की सकारात्मक आवृत्ति होती है और इकाई वृत्त के चारों ओर वामावर्त घूमती है, जबकि वेक्टर समय की प्रति इकाई -1 रेडियन की नकारात्मक आवृत्ति होती है, जो इसके बजाय दक्षिणावर्त घूमती है।
- लंगर जैसे एक लयबद्ध दोलक के लिए, इसकी आवृत्ति का पूर्ण मान इंगित करता है कि यह समय की प्रति इकाई कितनी बार आगे और पीछे घूमता है, जबकि संकेत यह संकेत दे सकता है कि दो विपरीत दिशाओं में से किस दिशा में इसने चलना शुरू किया।
- कार्टेशियन समन्वय प्रणाली में दर्शाए गए एक आवधिक फ़ंक्शन के लिए, इसकी आवृत्ति का पूर्ण मान इंगित करता है कि यह अपने डोमेन में कितनी बार अपने मूल्यों को दोहराता है, जबकि इसकी आवृत्ति का संकेत बदलना इसके कार्टेशियन समन्वय प्रणाली के आसपास एक प्रतिबिंब (गणित) का प्रतिनिधित्व कर सकता है#प्रतिबिंब |y-अक्ष.
ज्यावक्र
होने देना समय की प्रति इकाई रेडियंस की इकाइयों के साथ एक गैर-नकारात्मक कोणीय आवृत्ति बनें और चलो रेडियन में एक चरण (तरंगें) बनें। एक समारोह ढलान है जब साइन तरंग के तर्क के रूप में उपयोग किया जाता है, एक नकारात्मक आवृत्ति का प्रतिनिधित्व कर सकता है।
क्योंकि कोसाइन एक सम फलन है, ऋणात्मक आवृत्ति साइनसॉइड सकारात्मक आवृत्ति साइनसॉइड से अप्रभेद्य है इसी तरह, क्योंकि साइन एक विषम कार्य है, नकारात्मक आवृत्ति साइनसॉइड सकारात्मक आवृत्ति साइनसॉइड से अप्रभेद्य है या इस प्रकार किसी भी साइनसॉइड को केवल सकारात्मक आवृत्तियों के संदर्भ में दर्शाया जा सकता है।
अंतर्निहित चरण ढलान का संकेत अस्पष्ट है। क्योंकि नेतृत्व द्वारा रेडियंस (या 1/4 चक्र) सकारात्मक आवृत्तियों के लिए और नकारात्मक आवृत्तियों के लिए समान मात्रा में अंतराल, चरण ढलान के बारे में अस्पष्टता को कोसाइन और साइन ऑपरेटर को एक साथ देखकर और यह देखकर हल किया जाता है कि कौन सा दूसरे से आगे है।
का चिन्ह जटिल-मूल्यवान फ़ंक्शन में भी संरक्षित है:
-
(Eq.1)
चूँकि और को अलग-अलग प्रेक्षित तथा तुलना की जा सकती है। एक सामान्य व्याख्या यह है यह इसके किसी भी घटक की तुलना में एक सरल कार्य है, क्योंकि यह गुणक यूलर के सूत्र#त्रिकोणमिति से संबंध को सरल बनाता है, जो इसके विश्लेषणात्मक संकेत के रूप में इसके औपचारिक विवरण की ओर ले जाता है .[upper-alpha 2]
इसके जटिल संयुग्म के साथ एक विश्लेषणात्मक निरूपण का योग तथ्यपूर्ण वास्तविक-मूल्यवान फलन का निष्कर्षण करता है जिसका वे प्रतिनिधित्व करते हैं। उदाहरण के लिए:
-
(Eq.2)
जो कुछ हद तक भ्रामक व्याख्या को जन्म देता है इसमें सकारात्मक और नकारात्मक दोनों आवृत्तियाँ शामिल हैं। किन्तु "योग" में सभी काल्पनिक घटकों का निरस्तीकरण करना सम्मिलित है। उस निरस्तीकरण के परिणामस्वरूप केवल आवृत्ति के संकेत के विषय में अस्पष्टता उत्पन्न होती है। किसी भी चिह्न का उपयोग करने से समान कोज्या तरंग का समतुल्य प्रतिनिधित्व प्राप्त होता है।
किसी भी माप में जो दोनों आवृत्तियों को इंगित करता है, दोनों आवृत्तियों में से एक दूसरे का गलत सकारात्मक या उपनाम है, क्योंकि केवल एक ही चिन्ह हो सकता है.[upper-alpha 3] उदाहरण के लिए, फूरियर रूपांतरण हमें केवल यही बताता है समान रूप से अच्छी तरह से परस्पर-संबंध रखता है साथ ही [upper-alpha 4] फिर भी, एक वास्तविक साइनसॉइड को सकारात्मक और नकारात्मक आवृत्ति के संयोजन के रूप में मानना कभी-कभी उपयोगी (और गणितीय रूप से मान्य) होता है।
अनुप्रयोग
फूरियर रूपांतरण को सरल बनाना
संभवतः ऋणात्मक आवृत्ति का अत्यधिक प्रसिद्ध अनुप्रयोग सूत्र है:
जो आवृत्ति पर फलन में ऊर्जा का माप है। जब तर्क की निरंतरता के लिए मूल्यांकन किया जाता है तो परिणाम को फूरियर रूपांतरण कहा जाता है।[upper-alpha 5]
उदाहरण के लिए, फलन पर विचार करें:
तथा:
ध्यान दें कि यद्यपि अधिकांश फलनों में अनंत अवधि के साइन वक्र सम्मिलित नहीं होते हैं, किन्तु आदर्शीकरण एक सामान्य सरलीकरण है जो समझने में सुविधा प्रदान करता है।
इस परिणाम के पहले कार्यकाल को देखते हुए, कब नकारात्मक आवृत्ति केवल स्थिर गुणांक छोड़कर, सकारात्मक आवृत्ति को रद्द कर देता है (क्योंकि ), जो अनंत अभिन्न अंग को अलग करने का कारण बनता है। के अन्य मानों पर अवशिष्ट दोलनों के कारण पूर्ण शून्य में परिवर्तित हो जाता है। इस आदर्शीकृत फूरियर रूपांतरण को सामान्यतः इस प्रकार लिखा जाता है:
यथार्थवादी अवधियों के लिए, विचलन और अभिसरण कम चरम होते हैं, और छोटे गैर-शून्य अभिसरण (वर्णक्रमीय रिसाव) कई अन्य आवृत्तियों पर दिखाई देते हैं, लेकिन नकारात्मक आवृत्ति की अवधारणा अभी भी लागू होती है। जोसेफ फूरियर के मूल सूत्रीकरण (साइन और कोसाइन रूपांतरण) के लिए कोसाइन के लिए एक अभिन्न और साइन के लिए दूसरे की आवश्यकता होती है। और परिणामी त्रिकोणमितीय अभिव्यक्तियाँ अक्सर जटिल घातांकीय अभिव्यक्तियों की तुलना में कम सुव्यवस्थित होती हैं। (विश्लेषणात्मक संकेत देखें, Euler's formula § Relationship to trigonometry, और चरण)
सकारात्मक और नकारात्मक आवृत्तियों का नमूनाकरण और उपनाम
यह भी देखें
- कोण#चिह्न
टिप्पणियाँ
- ↑ The equivalence is called Euler's formula
- ↑ See Euler's formula § Relationship to trigonometry and Phasor § Addition for examples of calculations simplified by the complex representation.
- ↑ Conversely, any measure that indicates only one frequency has made an assumption, perhaps based on collateral information.
- ↑ cos(ωt) and sin(ωt) are orthogonal functions, so the imaginary parts of both correlations are zero.
- ↑ There are several forms of the Fourier transform. This is the non-unitary form in angular frequency of time
अग्रिम पठन
- Positive and Negative Frequencies
- Lyons, Richard G. (Nov 11, 2010). Chapt 8.4. Understanding Digital Signal Processing (3rd ed.). Prentice Hall. 944 pgs. ISBN 0137027419.
- Lyons, Richard G. (Nov 2001). "Understanding Digital Signal Processing's Frequency Domain". RF Design magazine. Retrieved Dec 29, 2022.
{{cite web}}
: CS1 maint: url-status (link)