ध्वनिक पालीयन: Difference between revisions

From Vigyanwiki
m (Arti Shah moved page ध्वनिक लोबिंग to पालीयन ध्वनिक without leaving a redirect)
No edit summary
Line 1: Line 1:
ध्वनिक लॉबिंग एक निश्चित [[आवृत्ति]] पर दो या दो से अधिक [[ ध्वनि-विस्तारक यंत्र ]] ड्राइवरों के संयोजन के [[विकिरण]] पैटर्न को संदर्भित करता है, जैसा कि स्पीकर को उसकी तरफ से देखने पर पता चलता है। अधिकांश मल्टी-वे स्पीकर में, यह क्रॉसओवर फ़्रीक्वेंसी पर है कि लोबिंग के प्रभाव सबसे बड़ी चिंता का विषय हैं, क्योंकि यह निर्धारित करता है कि स्पीकर मूल रिकॉर्ड की गई सामग्री की टोन को कितनी अच्छी तरह से संरक्षित करता है।<ref name="ref1">[https://books.google.com/books?id=Twu0oHE1ukgC&dq=loudspeaker+lobing&pg=PA120 Loudspeaker Handbook by John Eargle], page 120</ref>
ध्वनिक लॉबिंग निश्चित [[आवृत्ति]] पर दो या दो से अधिक [[ ध्वनि-विस्तारक यंत्र ]] ड्राइवरों के संयोजन के [[विकिरण]] पैटर्न को संदर्भित करता है, जैसा कि स्पीकर को उसकी तरफ से देखने पर पता चलता है। अधिकांश मल्टी-वे स्पीकर में, यह क्रॉसओवर फ़्रीक्वेंसी पर है कि लोबिंग के प्रभाव सबसे बड़ी चिंता का विषय हैं, क्योंकि यह निर्धारित करता है कि स्पीकर मूल रिकॉर्ड की गई सामग्री की टोन को कितनी अच्छी तरह से संरक्षित करता है।<ref name="ref1">[https://books.google.com/books?id=Twu0oHE1ukgC&dq=loudspeaker+lobing&pg=PA120 Loudspeaker Handbook by John Eargle], page 120</ref>
व्यवहार में, रूम-इफेक्ट्स और इंटरैक्शन का मोटे तौर पर मतलब यह है कि आदर्श लाउडस्पीकर (या उसका संयोजन) व्यावहारिक रूप से संभव नहीं है। हालाँकि, एक स्पीकर जिसमें रुचि की सभी आवृत्तियों (विशेष रूप से क्रॉसओवर आवृत्ति) पर सबसे अच्छा फैलाव होता है, उसमें ध्वनि का रंग सबसे कम होगा - यानी, यह रिकॉर्ड की गई सामग्री को सबसे ईमानदारी से पुन: पेश करेगा। इस प्रकार, एक आदर्श वक्ता में सभी आवृत्तियों पर कोई लोब नहीं होगा - दूसरे शब्दों में यह सभी आवृत्तियों पर सर्वदिशात्मक रूप से विकिरण करने वाले एक बिंदु स्रोत के रूप में कार्य करेगा। व्यवहार में सभी वक्ता क्रॉसओवर आवृत्ति पर कुछ मात्रा में लोबिंग प्रदर्शित करेंगे। इसका प्राथमिक कारण ड्राइवरों के बीच की भौतिक दूरी और रुचि की आवृत्ति के सापेक्ष ड्राइवरों के प्रभावी व्यास हैं।
व्यवहार में, रूम-इफेक्ट्स और इंटरैक्शन का मोटे तौर पर मतलब यह है कि आदर्श लाउडस्पीकर (या उसका संयोजन) व्यावहारिक रूप से संभव नहीं है। हालाँकि, स्पीकर जिसमें रुचि की सभी आवृत्तियों (विशेष रूप से क्रॉसओवर आवृत्ति) पर सबसे अच्छा फैलाव होता है, उसमें ध्वनि का रंग सबसे कम होगा - यानी, यह रिकॉर्ड की गई सामग्री को सबसे ईमानदारी से पुन: पेश करेगा। इस प्रकार, आदर्श वक्ता में सभी आवृत्तियों पर कोई लोब नहीं होगा - दूसरे शब्दों में यह सभी आवृत्तियों पर सर्वदिशात्मक रूप से विकिरण करने वाले बिंदु स्रोत के रूप में कार्य करेगा। व्यवहार में सभी वक्ता क्रॉसओवर आवृत्ति पर कुछ मात्रा में लोबिंग प्रदर्शित करेंगे। इसका प्राथमिक कारण ड्राइवरों के बीच की भौतिक दूरी और रुचि की आवृत्ति के सापेक्ष ड्राइवरों के प्रभावी व्यास हैं।


लोबिंग को [[कंघी फ़िल्टर]]िंग प्रतिक्रिया (यानी, चोटियों और गिरावट के क्षेत्रों) के रूप में मापा जाता है क्योंकि सुनने की स्थिति लंबवत रूप से भिन्न होती है<sup>‡</sup>w.r.t. नाममात्र ऑन-अक्ष स्थिति. चूंकि एक वास्तविक गोलाकार तरंगफ्रंट को व्यवहार में हासिल नहीं किया जा सकता है, इसलिए डिजाइनर क्रॉसओवर आवृत्ति पर लोब को जितना संभव हो उतना चौड़ा बनाने की कोशिश करते हैं, जैसे कि विशिष्ट सुनने की स्थिति में, स्पीकर सर्वदिशात्मक दिखाई देता है।{{citation-needed|date=September 2018}}
लोबिंग को [[कंघी फ़िल्टर]]िंग प्रतिक्रिया (यानी, चोटियों और गिरावट के क्षेत्रों) के रूप में मापा जाता है क्योंकि सुनने की स्थिति लंबवत रूप से भिन्न होती है<sup>‡</sup>w.r.t. नाममात्र ऑन-अक्ष स्थिति. चूंकि वास्तविक गोलाकार तरंगफ्रंट को व्यवहार में हासिल नहीं किया जा सकता है, इसलिए डिजाइनर क्रॉसओवर आवृत्ति पर लोब को जितना संभव हो उतना चौड़ा बनाने की कोशिश करते हैं, जैसे कि विशिष्ट सुनने की स्थिति में, स्पीकर सर्वदिशात्मक दिखाई देता है।


== लोब गठन ==
== लोब गठन ==
सरलता के लिए, निम्नलिखित में दो बिंदु स्रोतों को लंबवत रूप से d दूरी से अलग किया गया माना गया है<sup>‡</sup>, दोनों एक निश्चित आवृत्ति f पर अर्ध-अंतरिक्ष में विकिरण कर रहे हैं। इस प्रकार हम लोबिंग को d के एक फलन और तरंग दैर्ध्य λ से इसके संबंध के रूप में व्यक्त कर सकते हैं। जैसे ही λ की तुलना में d महत्वपूर्ण (या बड़ा) हो जाता है, ध्वनिक तरंगाग्र संकीर्ण या अधिक निर्देशात्मक होने लगता है।
सरलता के लिए, निम्नलिखित में दो बिंदु स्रोतों को लंबवत रूप से d दूरी से अलग किया गया माना गया है<sup>‡</sup>, दोनों निश्चित आवृत्ति f पर अर्ध-अंतरिक्ष में विकिरण कर रहे हैं। इस प्रकार हम लोबिंग को d के फलन और तरंग दैर्ध्य λ से इसके संबंध के रूप में व्यक्त कर सकते हैं। जैसे ही λ की तुलना में d महत्वपूर्ण (या बड़ा) हो जाता है, ध्वनिक तरंगाग्र संकीर्ण या अधिक निर्देशात्मक होने लगता है।


निम्नलिखित छवि एक सरलीकृत प्रतिनिधित्व दिखाती है कि कैसे दो गैर-संयोग चालक लॉबिंग प्रदर्शित करते हैं (प्रभाव प्रदर्शित करने के लिए लॉबिंग पैटर्न के बीच का अंतर बहुत बढ़ा-चढ़ाकर बताया गया है):
निम्नलिखित छवि सरलीकृत प्रतिनिधित्व दिखाती है कि कैसे दो गैर-संयोग चालक लॉबिंग प्रदर्शित करते हैं (प्रभाव प्रदर्शित करने के लिए लॉबिंग पैटर्न के बीच का अंतर बहुत बढ़ा-चढ़ाकर बताया गया है):


[[Image:Acoustic_lobing.png|पैरवी करना]]बड़ा काला बिंदु स्पीकर से एक निश्चित निश्चित क्षैतिज दूरी पर, केंद्र के सापेक्ष ऊर्ध्वाधर सुनने की स्थिति है। डी से बहुत अधिक तरंग दैर्ध्य के लिए, तरंगाग्र लगभग गोलाकार होता है (परिपत्र, जब पक्ष से देखा जाता है) और ध्वनि स्तर ऐसी विभिन्न श्रवण स्थितियों के लिए स्थिर होता है - स्पीकर की ऑफ-अक्ष प्रतिक्रिया लगभग सर्वदिशात्मक होती है। जैसे-जैसे दूरी d λ/4 के करीब पहुंचती है, तरंगाग्र संकरा होने लगता है। सुनने की स्थिति में, ध्वनि का स्तर वैसा नहीं है जैसा कि होता, अगर यह ड्राइवरों के ठीक बीच में होता। वह क्षेत्र जहां ध्वनि का स्तर दी गई ऊर्ध्वाधर स्थितियों (और निश्चित सुनने की दूरी) के लिए स्थिर रहता है, लोब है। लोब के बाहर, ध्वनि का स्तर बहुत कम होता है और यही कारण है कि किसी की सुनने की ऊंचाई में बदलाव के कारण स्पीकर की टोन में बदलाव होता है।
[[Image:Acoustic_lobing.png|पैरवी करना]]बड़ा काला बिंदु स्पीकर से निश्चित निश्चित क्षैतिज दूरी पर, केंद्र के सापेक्ष ऊर्ध्वाधर सुनने की स्थिति है। डी से बहुत अधिक तरंग दैर्ध्य के लिए, तरंगाग्र लगभग गोलाकार होता है (परिपत्र, जब पक्ष से देखा जाता है) और ध्वनि स्तर ऐसी विभिन्न श्रवण स्थितियों के लिए स्थिर होता है - स्पीकर की ऑफ-अक्ष प्रतिक्रिया लगभग सर्वदिशात्मक होती है। जैसे-जैसे दूरी d λ/4 के करीब पहुंचती है, तरंगाग्र संकरा होने लगता है। सुनने की स्थिति में, ध्वनि का स्तर वैसा नहीं है जैसा कि होता, अगर यह ड्राइवरों के ठीक बीच में होता। वह क्षेत्र जहां ध्वनि का स्तर दी गई ऊर्ध्वाधर स्थितियों (और निश्चित सुनने की दूरी) के लिए स्थिर रहता है, लोब है। लोब के बाहर, ध्वनि का स्तर बहुत कम होता है और यही कारण है कि किसी की सुनने की ऊंचाई में बदलाव के कारण स्पीकर की टोन में बदलाव होता है।


नोट: एक व्यक्तिगत चालक के लिए इस प्रभाव को दिशात्मकता के रूप में जाना जाता है, और ऊर्ध्वाधर और क्षैतिज दोनों विमानों में देखा जा सकता है, और डी अब तरंग दैर्ध्य के सापेक्ष चालक का व्यास है, जबकि, दो या दो से अधिक चालकों के कारण लोबिंग पैटर्न मुख्य रूप से एक प्रभाव है ऊर्ध्वाधर तल में, दो चालकों के बीच की दूरी के परिणामस्वरूप।
नोट: व्यक्तिगत चालक के लिए इस प्रभाव को दिशात्मकता के रूप में जाना जाता है, और ऊर्ध्वाधर और क्षैतिज दोनों विमानों में देखा जा सकता है, और डी अब तरंग दैर्ध्य के सापेक्ष चालक का व्यास है, जबकि, दो या दो से अधिक चालकों के कारण लोबिंग पैटर्न मुख्य रूप से प्रभाव है ऊर्ध्वाधर तल में, दो चालकों के बीच की दूरी के परिणामस्वरूप।


लोब के बनने का भौतिक कारण यह तथ्य है कि किसी भी बिंदु पर जो दोनों चालकों से असमान स्थिति में है, कुछ आवृत्तियों (यानी, तरंग दैर्ध्य) पर और सुनने की स्थिति की दूरी के बीच डी और सापेक्ष अंतर के आधार पर, तरंगफ्रंट प्रत्येक चालक से रचनात्मक या विनाशकारी रूप से [[हस्तक्षेप (तरंग प्रसार)]] होगा। यह रचनात्मक या विनाशकारी हस्तक्षेप प्रत्येक चालक से तरंगों के सापेक्ष चरण (तरंगों) के कारण होता है क्योंकि वे सुनने की स्थिति तक पहुंचते हैं।
लोब के बनने का भौतिक कारण यह तथ्य है कि किसी भी बिंदु पर जो दोनों चालकों से असमान स्थिति में है, कुछ आवृत्तियों (यानी, तरंग दैर्ध्य) पर और सुनने की स्थिति की दूरी के बीच डी और सापेक्ष अंतर के आधार पर, तरंगफ्रंट प्रत्येक चालक से रचनात्मक या विनाशकारी रूप से [[हस्तक्षेप (तरंग प्रसार)]] होगा। यह रचनात्मक या विनाशकारी हस्तक्षेप प्रत्येक चालक से तरंगों के सापेक्ष चरण (तरंगों) के कारण होता है क्योंकि वे सुनने की स्थिति तक पहुंचते हैं।


इस प्रकार, किसी भी आवृत्ति के लिए, स्पीकर से न्यूनतम दूरी होगी जिसके नीचे सुनने की स्थिति लंबवत रूप से बदलने पर ध्वनि स्तर में आमूल-चूल परिवर्तन होंगे। और जैसे-जैसे ड्राइवरों के बीच दूरी बढ़ती है यह दूरी और भी बड़ी हो जाती है। इस प्रकार, सबसे अच्छा समझौता तब प्राप्त होता है, जब व्यावहारिक सुनने की दूरी के लिए, हम ड्राइवरों को इतना बड़ा चुन सकते हैं कि जितना संभव हो उतना ऑडियो बैंड को कवर कर सकें, लेकिन साथ ही इतना छोटा भी कि उन्हें यथासंभव निकट दूरी पर रखा जा सके ताकि वे दिखाई दे सकें। किसी भी व्यावहारिक श्रवण दूरी के लिए एक बिंदु स्रोत।<ref name="ref2">[https://books.google.com/books?id=Twu0oHE1ukgC&dq=loudspeaker+lobing&pg=PA120 Loudspeaker Handbook by John Eargle], page 123</ref>
इस प्रकार, किसी भी आवृत्ति के लिए, स्पीकर से न्यूनतम दूरी होगी जिसके नीचे सुनने की स्थिति लंबवत रूप से बदलने पर ध्वनि स्तर में आमूल-चूल परिवर्तन होंगे। और जैसे-जैसे ड्राइवरों के बीच दूरी बढ़ती है यह दूरी और भी बड़ी हो जाती है। इस प्रकार, सबसे अच्छा समझौता तब प्राप्त होता है, जब व्यावहारिक सुनने की दूरी के लिए, हम ड्राइवरों को इतना बड़ा चुन सकते हैं कि जितना संभव हो उतना ऑडियो बैंड को कवर कर सकें, लेकिन साथ ही इतना छोटा भी कि उन्हें यथासंभव निकट दूरी पर रखा जा सके ताकि वे दिखाई दे सकें। किसी भी व्यावहारिक श्रवण दूरी के लिए बिंदु स्रोत।<ref name="ref2">[https://books.google.com/books?id=Twu0oHE1ukgC&dq=loudspeaker+lobing&pg=PA120 Loudspeaker Handbook by John Eargle], page 123</ref>
''‡ - लेख एक विशिष्ट लाउडस्पीकर कॉन्फ़िगरेशन मानता है जहां कई ड्राइवरों को लंबवत रूप से व्यवस्थित किया जाता है। इसलिए, लोबिंग घटना ऊर्ध्वाधर तल में देखने योग्य है। क्षैतिज रूप से व्यवस्थित ड्राइवरों के लिए, लोबिंग घटना क्षैतिज विमान में देखने योग्य होगी।''
''‡ - लेख विशिष्ट लाउडस्पीकर कॉन्फ़िगरेशन मानता है जहां कई ड्राइवरों को लंबवत रूप से व्यवस्थित किया जाता है। इसलिए, लोबिंग घटना ऊर्ध्वाधर तल में देखने योग्य है। क्षैतिज रूप से व्यवस्थित ड्राइवरों के लिए, लोबिंग घटना क्षैतिज विमान में देखने योग्य होगी।''


== संदर्भ ==
== संदर्भ ==

Revision as of 17:00, 13 December 2023

ध्वनिक लॉबिंग निश्चित आवृत्ति पर दो या दो से अधिक ध्वनि-विस्तारक यंत्र ड्राइवरों के संयोजन के विकिरण पैटर्न को संदर्भित करता है, जैसा कि स्पीकर को उसकी तरफ से देखने पर पता चलता है। अधिकांश मल्टी-वे स्पीकर में, यह क्रॉसओवर फ़्रीक्वेंसी पर है कि लोबिंग के प्रभाव सबसे बड़ी चिंता का विषय हैं, क्योंकि यह निर्धारित करता है कि स्पीकर मूल रिकॉर्ड की गई सामग्री की टोन को कितनी अच्छी तरह से संरक्षित करता है।[1] व्यवहार में, रूम-इफेक्ट्स और इंटरैक्शन का मोटे तौर पर मतलब यह है कि आदर्श लाउडस्पीकर (या उसका संयोजन) व्यावहारिक रूप से संभव नहीं है। हालाँकि, स्पीकर जिसमें रुचि की सभी आवृत्तियों (विशेष रूप से क्रॉसओवर आवृत्ति) पर सबसे अच्छा फैलाव होता है, उसमें ध्वनि का रंग सबसे कम होगा - यानी, यह रिकॉर्ड की गई सामग्री को सबसे ईमानदारी से पुन: पेश करेगा। इस प्रकार, आदर्श वक्ता में सभी आवृत्तियों पर कोई लोब नहीं होगा - दूसरे शब्दों में यह सभी आवृत्तियों पर सर्वदिशात्मक रूप से विकिरण करने वाले बिंदु स्रोत के रूप में कार्य करेगा। व्यवहार में सभी वक्ता क्रॉसओवर आवृत्ति पर कुछ मात्रा में लोबिंग प्रदर्शित करेंगे। इसका प्राथमिक कारण ड्राइवरों के बीच की भौतिक दूरी और रुचि की आवृत्ति के सापेक्ष ड्राइवरों के प्रभावी व्यास हैं।

लोबिंग को कंघी फ़िल्टरिंग प्रतिक्रिया (यानी, चोटियों और गिरावट के क्षेत्रों) के रूप में मापा जाता है क्योंकि सुनने की स्थिति लंबवत रूप से भिन्न होती हैw.r.t. नाममात्र ऑन-अक्ष स्थिति. चूंकि वास्तविक गोलाकार तरंगफ्रंट को व्यवहार में हासिल नहीं किया जा सकता है, इसलिए डिजाइनर क्रॉसओवर आवृत्ति पर लोब को जितना संभव हो उतना चौड़ा बनाने की कोशिश करते हैं, जैसे कि विशिष्ट सुनने की स्थिति में, स्पीकर सर्वदिशात्मक दिखाई देता है।

लोब गठन

सरलता के लिए, निम्नलिखित में दो बिंदु स्रोतों को लंबवत रूप से d दूरी से अलग किया गया माना गया है, दोनों निश्चित आवृत्ति f पर अर्ध-अंतरिक्ष में विकिरण कर रहे हैं। इस प्रकार हम लोबिंग को d के फलन और तरंग दैर्ध्य λ से इसके संबंध के रूप में व्यक्त कर सकते हैं। जैसे ही λ की तुलना में d महत्वपूर्ण (या बड़ा) हो जाता है, ध्वनिक तरंगाग्र संकीर्ण या अधिक निर्देशात्मक होने लगता है।

निम्नलिखित छवि सरलीकृत प्रतिनिधित्व दिखाती है कि कैसे दो गैर-संयोग चालक लॉबिंग प्रदर्शित करते हैं (प्रभाव प्रदर्शित करने के लिए लॉबिंग पैटर्न के बीच का अंतर बहुत बढ़ा-चढ़ाकर बताया गया है):

पैरवी करनाबड़ा काला बिंदु स्पीकर से निश्चित निश्चित क्षैतिज दूरी पर, केंद्र के सापेक्ष ऊर्ध्वाधर सुनने की स्थिति है। डी से बहुत अधिक तरंग दैर्ध्य के लिए, तरंगाग्र लगभग गोलाकार होता है (परिपत्र, जब पक्ष से देखा जाता है) और ध्वनि स्तर ऐसी विभिन्न श्रवण स्थितियों के लिए स्थिर होता है - स्पीकर की ऑफ-अक्ष प्रतिक्रिया लगभग सर्वदिशात्मक होती है। जैसे-जैसे दूरी d λ/4 के करीब पहुंचती है, तरंगाग्र संकरा होने लगता है। सुनने की स्थिति में, ध्वनि का स्तर वैसा नहीं है जैसा कि होता, अगर यह ड्राइवरों के ठीक बीच में होता। वह क्षेत्र जहां ध्वनि का स्तर दी गई ऊर्ध्वाधर स्थितियों (और निश्चित सुनने की दूरी) के लिए स्थिर रहता है, लोब है। लोब के बाहर, ध्वनि का स्तर बहुत कम होता है और यही कारण है कि किसी की सुनने की ऊंचाई में बदलाव के कारण स्पीकर की टोन में बदलाव होता है।

नोट: व्यक्तिगत चालक के लिए इस प्रभाव को दिशात्मकता के रूप में जाना जाता है, और ऊर्ध्वाधर और क्षैतिज दोनों विमानों में देखा जा सकता है, और डी अब तरंग दैर्ध्य के सापेक्ष चालक का व्यास है, जबकि, दो या दो से अधिक चालकों के कारण लोबिंग पैटर्न मुख्य रूप से प्रभाव है ऊर्ध्वाधर तल में, दो चालकों के बीच की दूरी के परिणामस्वरूप।

लोब के बनने का भौतिक कारण यह तथ्य है कि किसी भी बिंदु पर जो दोनों चालकों से असमान स्थिति में है, कुछ आवृत्तियों (यानी, तरंग दैर्ध्य) पर और सुनने की स्थिति की दूरी के बीच डी और सापेक्ष अंतर के आधार पर, तरंगफ्रंट प्रत्येक चालक से रचनात्मक या विनाशकारी रूप से हस्तक्षेप (तरंग प्रसार) होगा। यह रचनात्मक या विनाशकारी हस्तक्षेप प्रत्येक चालक से तरंगों के सापेक्ष चरण (तरंगों) के कारण होता है क्योंकि वे सुनने की स्थिति तक पहुंचते हैं।

इस प्रकार, किसी भी आवृत्ति के लिए, स्पीकर से न्यूनतम दूरी होगी जिसके नीचे सुनने की स्थिति लंबवत रूप से बदलने पर ध्वनि स्तर में आमूल-चूल परिवर्तन होंगे। और जैसे-जैसे ड्राइवरों के बीच दूरी बढ़ती है यह दूरी और भी बड़ी हो जाती है। इस प्रकार, सबसे अच्छा समझौता तब प्राप्त होता है, जब व्यावहारिक सुनने की दूरी के लिए, हम ड्राइवरों को इतना बड़ा चुन सकते हैं कि जितना संभव हो उतना ऑडियो बैंड को कवर कर सकें, लेकिन साथ ही इतना छोटा भी कि उन्हें यथासंभव निकट दूरी पर रखा जा सके ताकि वे दिखाई दे सकें। किसी भी व्यावहारिक श्रवण दूरी के लिए बिंदु स्रोत।[2] ‡ - लेख विशिष्ट लाउडस्पीकर कॉन्फ़िगरेशन मानता है जहां कई ड्राइवरों को लंबवत रूप से व्यवस्थित किया जाता है। इसलिए, लोबिंग घटना ऊर्ध्वाधर तल में देखने योग्य है। क्षैतिज रूप से व्यवस्थित ड्राइवरों के लिए, लोबिंग घटना क्षैतिज विमान में देखने योग्य होगी।

संदर्भ