बोरेल योग: Difference between revisions
Line 25: | Line 25: | ||
:<math>A_n(z) = \sum_{k=0}^n a_k z^k.</math> | :<math>A_n(z) = \sum_{k=0}^n a_k z^k.</math> | ||
बोरेल की योग विधि का एक | बोरेल की योग विधि का एक अशक्त रूप बोरेल योग {{math|''A''}} को परिभाषित करता है | ||
:<math> \lim_{t\rightarrow\infty} e^{-t}\sum_{n=0}^\infty \frac{t^n}{n!}A_n(z). </math> | :<math> \lim_{t\rightarrow\infty} e^{-t}\sum_{n=0}^\infty \frac{t^n}{n!}A_n(z). </math> | ||
यदि यह {{math|''z'' ∈ '''C'''}} पर किसी फ़ंक्शन {{math|''a''(''z'')}} पर अभिसरण करता है, तो हम कहते हैं कि {{math|''A''}} का | यदि यह {{math|''z'' ∈ '''C'''}} पर किसी फ़ंक्शन {{math|''a''(''z'')}} पर अभिसरण करता है, तो हम कहते हैं कि {{math|''A''}} का अशक्त बोरेल योग {{math|''z''}} पर अभिसरण करता है, और <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{wB}) </math> लिखते हैं, | ||
===बोरेल की अभिन्न योग विधि=== | ===बोरेल की अभिन्न योग विधि=== | ||
मान लीजिए कि बोरेल रूपांतरण सभी | मान लीजिए कि बोरेल रूपांतरण सभी धनात्मक वास्तविक संख्याओं के लिए एक ऐसे फ़ंक्शन में परिवर्तित हो जाता है जो काफी धीमी गति से बढ़ रहा है ताकि निम्नलिखित अभिन्न अंग अच्छी तरह से परिभाषित हो (एक अनुचित अभिन्न अंग के रूप में), {{math|''A''}} का बोरेल योग इस प्रकार दिया गया है | ||
:<math>\int_0^\infty e^{-t} \mathcal{B}A(tz) \, dt. </math> | :<math>\int_0^\infty e^{-t} \mathcal{B}A(tz) \, dt. </math> | ||
Line 39: | Line 39: | ||
===विश्लेषणात्मक निरंतरता के साथ बोरेल की अभिन्न योग विधि=== | ===विश्लेषणात्मक निरंतरता के साथ बोरेल की अभिन्न योग विधि=== | ||
यह बोरेल की अभिन्न योग विधि के समान है, सिवाय इसके कि बोरेल परिवर्तन को सभी के लिए अभिसरण की आवश्यकता नहीं है {{math|''t''}} | यह बोरेल की अभिन्न योग विधि के समान है, सिवाय इसके कि बोरेल परिवर्तन को सभी {{math|''t''}} के लिए अभिसरण की आवश्यकता नहीं है, लेकिन 0 के पास {{math|''t''}} के एक विश्लेषणात्मक कार्य में परिवर्तित हो जाता है जिसे धनात्मक वास्तविक अक्ष के साथ विश्लेषणात्मक रूप से जारी रखा जा सकता है। | ||
==बुनियादी गुण== | ==बुनियादी गुण== | ||
===नियमितता=== | ===नियमितता=== | ||
विधियाँ {{math|('''B''')}} और {{math|('''wB''')}} दोनों नियमित योग विधियाँ हैं, जिसका अर्थ है कि जब भी {{math|''A''(''z'')}} अभिसरण (मानक अर्थ में) होता है, तो बोरेल योग और अशक्त बोरेल योग भी अभिसरण करते हैं, और समान मूल्य पर ऐसा करते हैं। अर्थात | |||
:<math> \sum_{k=0}^\infty a_k z^k = A(z) < \infty \quad \Rightarrow \quad {\textstyle \sum} a_kz^k = A(z) \,\, (\boldsymbol{B},\,\boldsymbol{wB}). </math> | :<math> \sum_{k=0}^\infty a_k z^k = A(z) < \infty \quad \Rightarrow \quad {\textstyle \sum} a_kz^k = A(z) \,\, (\boldsymbol{B},\,\boldsymbol{wB}). </math> | ||
एकीकरण के क्रम में बदलाव से {{math|('''B''')}} की नियमितता आसानी से देखी जा सकती है, जो पूर्ण अभिसरण के कारण मान्य है: यदि {{math|''A''(''z'')}} {{math|''z''}} पर अभिसरण है, तो | |||
:<math> A(z) = \sum_{k=0}^\infty a_k z^k = \sum_{k=0}^\infty a_k \left( \int_{0}^\infty e^{-t}t^k dt \right) \frac{z^k}{k!} = \int_{0}^\infty e^{-t} \sum_{k=0}^\infty a_k \frac{(tz)^k}{k!}dt, </math> | :<math> A(z) = \sum_{k=0}^\infty a_k z^k = \sum_{k=0}^\infty a_k \left( \int_{0}^\infty e^{-t}t^k dt \right) \frac{z^k}{k!} = \int_{0}^\infty e^{-t} \sum_{k=0}^\infty a_k \frac{(tz)^k}{k!}dt, </math> | ||
जहां सबसे | जहां सबसे दाईं ओर की अभिव्यक्ति बिल्कुल {{math|''z''}} पर बोरेल योग है। | ||
{{math|('''B''')}} और {{math|('''wB''')}} की नियमितता का मतलब है कि ये विधियां {{math|''A''(''z'')}} को विश्लेषणात्मक विस्तार प्रदान करती हैं। | |||
===बोरेल की कोई समानता नहीं और | ===बोरेल की कोई समानता नहीं और अशक्त बोरेल योग=== | ||
कोई भी श्रृंखला {{math|''A''(''z'')}} | कोई भी श्रृंखला {{math|''A''(''z'')}} जो {{math|''z'' ∈ ''C''}} पर कमजोर बोरेल योग योग्य है, वह भी {{math|''z''}} पर योग योग्य बोरेल है। हालाँकि, कोई उन श्रृंखलाओं के उदाहरण बना सकता है जो कमजोर बोरेल योग के तहत भिन्न हैं, लेकिन जो बोरेल योग योग्य हैं। निम्नलिखित प्रमेय दो विधियों की तुल्यता की विशेषता बताता है। | ||
:प्रमेय ({{harv| | :प्रमेय ({{harv|हार्डी|1992|loc=8.5}}). | ||
:मान | :मान लें कि {{math|''A''(''z'')}} एक औपचारिक शक्ति श्रृंखला है, और {{math|''z'' ∈ ''C''}} को ठीक करें, तो: | ||
:# अगर <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{wB}) </math>, तब <math> {\textstyle \sum}a_kz^k = a(z) \, (\boldsymbol{B})</math>. | :# अगर <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{wB}) </math>, तब <math> {\textstyle \sum}a_kz^k = a(z) \, (\boldsymbol{B})</math>. | ||
:# अगर <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{B}) </math>, और <math> \lim_{t \rightarrow \infty} e^{-t}\mathcal B A(zt) = 0, </math> तब <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{wB}) </math>. | :# अगर <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{B}) </math>, और <math> \lim_{t \rightarrow \infty} e^{-t}\mathcal B A(zt) = 0, </math> तब <math> {\textstyle \sum} a_kz^k = a(z) \, (\boldsymbol{wB}) </math>. | ||
===अन्य योग विधियों से संबंध=== | ===अन्य योग विधियों से संबंध=== | ||
* {{math|('''B''')}} | * {{math|('''B''')}} {{math|1=α = 1}} के साथ मिट्टी-लैफलर सारांश की विशेष स्थिति है। | ||
* {{math|('''wB''')}} को सामान्यीकृत | *{{math|('''wB''')}} को सामान्यीकृत यूलर योग विधि {{math|('''E''',''q'')}} के सीमित मामले के रूप में देखा जा सकता है, इस अर्थ में कि {{math|''q'' → ∞}} के रूप में {{math|('''E''',''q'')}} विधि के अभिसरण का डोमेन {{math|('''B''')}} के लिए अभिसरण के डोमेन तक परिवर्तित हो जाता है। )<ref name="Hardy1992">Hardy, G. H. (1992). ''Divergent Series''. AMS Chelsea, Rhode Island.</ref> | ||
==अद्वितीयता प्रमेय== | ==अद्वितीयता प्रमेय== | ||
किसी भी | किसी भी असममित विस्तार के साथ हमेशा कई अलग-अलग कार्य होते हैं। हालाँकि, कभी-कभी एक सर्वोत्तम संभव कार्य होता है, इस अर्थ में कि परिमित-आयामी सन्निकटन में त्रुटियाँ किसी क्षेत्र में यथासंभव छोटी होती हैं। वॉटसन के प्रमेय और कार्लमैन के प्रमेय से पता चलता है कि बोरेल योग श्रृंखला का सबसे अच्छा संभव योग उत्पन्न करता है। | ||
===वाटसन का प्रमेय=== | ===वाटसन का प्रमेय=== | ||
वॉटसन का प्रमेय किसी फ़ंक्शन के लिए उसकी स्पर्शोन्मुख श्रृंखला का बोरेल योग होने की शर्तें देता है। लगता है कि {{math|''f''}} निम्नलिखित शर्तों को पूरा करने वाला एक फ़ंक्शन है: | वॉटसन का प्रमेय किसी फ़ंक्शन के लिए उसकी स्पर्शोन्मुख श्रृंखला का बोरेल योग होने की शर्तें देता है। लगता है कि {{math|''f''}} निम्नलिखित शर्तों को पूरा करने वाला एक फ़ंक्शन है: | ||
*{{math|''f''}} कुछ क्षेत्र में होलोमोर्फिक है {{math|{{!}}''z''{{!}} < ''R''}}, {{math|{{!}}arg(''z''){{!}} < {{pi}}/2 + ''ε''}} कुछ | *{{math|''f''}} कुछ क्षेत्र में होलोमोर्फिक है {{math|{{!}}''z''{{!}} < ''R''}}, {{math|{{!}}arg(''z''){{!}} < {{pi}}/2 + ''ε''}} कुछ धनात्मक के लिए {{math|''R''}} और{{math|''ε''}}. | ||
*इस क्षेत्र में {{math|''f''}} में एक स्पर्शोन्मुख श्रृंखला है {{math|''a''<sub>0</sub> + ''a''<sub>1</sub>''z'' + ...}} संपत्ति के साथ कि त्रुटि | *इस क्षेत्र में {{math|''f''}} में एक स्पर्शोन्मुख श्रृंखला है {{math|''a''<sub>0</sub> + ''a''<sub>1</sub>''z'' + ...}} संपत्ति के साथ कि त्रुटि | ||
:<math>|f(z)-a_0 -a_1z -\cdots -a_{n-1}z^{n-1}|</math> से घिरा हुआ है | :<math>|f(z)-a_0 -a_1z -\cdots -a_{n-1}z^{n-1}|</math> से घिरा हुआ है | ||
:<math>C^{n+1}n!|z|^n</math> | :<math>C^{n+1}n!|z|^n</math> | ||
सभी के लिए {{math|''z''}} क्षेत्र में (कुछ | सभी के लिए {{math|''z''}} क्षेत्र में (कुछ धनात्मक स्थिरांक के लिए {{math|''C''}}). | ||
तब वाटसन का प्रमेय कहता है कि इस क्षेत्र में {{math|''f''}} इसकी स्पर्शोन्मुख श्रृंखला के बोरेल योग द्वारा दिया गया है। अधिक सटीक रूप से, बोरेल परिवर्तन की श्रृंखला मूल के पड़ोस में परिवर्तित होती है, और विश्लेषणात्मक रूप से | तब वाटसन का प्रमेय कहता है कि इस क्षेत्र में {{math|''f''}} इसकी स्पर्शोन्मुख श्रृंखला के बोरेल योग द्वारा दिया गया है। अधिक सटीक रूप से, बोरेल परिवर्तन की श्रृंखला मूल के पड़ोस में परिवर्तित होती है, और विश्लेषणात्मक रूप से धनात्मक वास्तविक अक्ष पर जारी रखी जा सकती है, और बोरेल योग को परिभाषित करने वाला अभिन्न अंग परिवर्तित होता है {{math|''f''(''z'')}} के लिए {{math|''z''}} उपरोक्त क्षेत्र में। | ||
===कार्लमैन का प्रमेय=== | ===कार्लमैन का प्रमेय=== | ||
Line 86: | Line 84: | ||
कार्लेमैन के प्रमेय से पता चलता है कि एक फ़ंक्शन विशिष्ट रूप से एक सेक्टर में एक एसिम्प्टोटिक श्रृंखला द्वारा निर्धारित किया जाता है, बशर्ते कि परिमित क्रम सन्निकटन में त्रुटियां बहुत तेजी से न बढ़ें। अधिक सटीक रूप से यह बताता है कि यदि {{math|''f''}} सेक्टर के इंटीरियर में विश्लेषणात्मक है {{math|{{!}}''z''{{!}} < ''C''}}, {{math|Re(''z'') > 0}} और {{math|{{!}}''f''(''z''){{!}} < {{!}}''b''<sub>''n''</sub>''z''{{!}}<sup>''n''</sup>}}इस क्षेत्र में सभी के लिए {{math|''n''}}, तब {{math|''f''}}शून्य है बशर्ते कि श्रृंखला {{math|1/''b''<sub>0</sub> + 1/''b''<sub>1</sub> + ...}} विचलन करता है। | कार्लेमैन के प्रमेय से पता चलता है कि एक फ़ंक्शन विशिष्ट रूप से एक सेक्टर में एक एसिम्प्टोटिक श्रृंखला द्वारा निर्धारित किया जाता है, बशर्ते कि परिमित क्रम सन्निकटन में त्रुटियां बहुत तेजी से न बढ़ें। अधिक सटीक रूप से यह बताता है कि यदि {{math|''f''}} सेक्टर के इंटीरियर में विश्लेषणात्मक है {{math|{{!}}''z''{{!}} < ''C''}}, {{math|Re(''z'') > 0}} और {{math|{{!}}''f''(''z''){{!}} < {{!}}''b''<sub>''n''</sub>''z''{{!}}<sup>''n''</sup>}}इस क्षेत्र में सभी के लिए {{math|''n''}}, तब {{math|''f''}}शून्य है बशर्ते कि श्रृंखला {{math|1/''b''<sub>0</sub> + 1/''b''<sub>1</sub> + ...}} विचलन करता है। | ||
कार्लेमैन का प्रमेय किसी भी एसिम्प्टोटिक श्रृंखला के लिए एक योग विधि देता है, जिसके पद बहुत तेजी से नहीं बढ़ते हैं, क्योंकि योग को एक उपयुक्त क्षेत्र में इस एसिम्प्टोटिक श्रृंखला के साथ अद्वितीय फ़ंक्शन के रूप में परिभाषित किया जा सकता है यदि यह मौजूद है। बोरेल योग इस समय के विशेष मामले की तुलना में थोड़ा | कार्लेमैन का प्रमेय किसी भी एसिम्प्टोटिक श्रृंखला के लिए एक योग विधि देता है, जिसके पद बहुत तेजी से नहीं बढ़ते हैं, क्योंकि योग को एक उपयुक्त क्षेत्र में इस एसिम्प्टोटिक श्रृंखला के साथ अद्वितीय फ़ंक्शन के रूप में परिभाषित किया जा सकता है यदि यह मौजूद है। बोरेल योग इस समय के विशेष मामले की तुलना में थोड़ा अशक्त है {{math|1=''b''<sub>''n''</sub> =''cn''}} कुछ स्थिरांक के लिए {{math|''c''}}. अधिक आम तौर पर कोई संख्याओं को लेकर बोरेल की तुलना में थोड़ा अधिक मजबूत योग विधियों को परिभाषित कर सकता है {{math|''b''<sub>''n''</sub>}} थोड़ा बड़ा होना, उदाहरण के लिए {{math|1=''b''<sub>''n''</sub> = ''cn''log ''n''}} या {{math|1=''b''<sub>''n''</sub> =''cn''log ''n'' log log ''n''}}. व्यवहार में इस सामान्यीकरण का बहुत कम उपयोग होता है, क्योंकि इस विधि द्वारा संक्षेपित श्रृंखला के लगभग कोई प्राकृतिक उदाहरण नहीं हैं जिन्हें बोरेल की विधि द्वारा भी सारांशित नहीं किया जा सकता है। | ||
===उदाहरण=== | ===उदाहरण=== | ||
Line 106: | Line 104: | ||
जो बड़े क्षेत्र में एकत्रित होता है {{math|Re(''z'') < 1}}, मूल श्रृंखला की विश्लेषणात्मक निरंतरता दे रहा है। | जो बड़े क्षेत्र में एकत्रित होता है {{math|Re(''z'') < 1}}, मूल श्रृंखला की विश्लेषणात्मक निरंतरता दे रहा है। | ||
इसके बजाय | इसके बजाय अशक्त बोरेल परिवर्तन को ध्यान में रखते हुए, आंशिक रकम दी गई है {{math|1=''A''<sub>''N''</sub>(''z'') = (1 − z<sup>''N''+1</sup>)/(1 − ''z'')}}, और इसलिए अशक्त बोरेल योग है | ||
:<math> \lim_{t \rightarrow \infty}e^{-t} \sum_{n=0}^\infty \frac{1 -z^{n+1}}{1-z} \frac{t^n}{n!} = \lim_{t \rightarrow \infty} \frac{e^{-t}}{1-z} \big( e^t - z e^{tz} \big) = \frac{1}{1-z}, </math> | :<math> \lim_{t \rightarrow \infty}e^{-t} \sum_{n=0}^\infty \frac{1 -z^{n+1}}{1-z} \frac{t^n}{n!} = \lim_{t \rightarrow \infty} \frac{e^{-t}}{1-z} \big( e^t - z e^{tz} \big) = \frac{1}{1-z}, </math> | ||
Line 130: | Line 128: | ||
फिर से, तब से | फिर से, तब से | ||
: <math> \lim_{t \rightarrow \infty} e^{-t} (\mathcal B A)(zt) = \lim_{t \rightarrow \infty} \frac{e^{-t}}{1 + zt} = 0, </math> | : <math> \lim_{t \rightarrow \infty} e^{-t} (\mathcal B A)(zt) = \lim_{t \rightarrow \infty} \frac{e^{-t}}{1 + zt} = 0, </math> | ||
सभी के लिए {{math|''z''}}, तुल्यता प्रमेय यह सुनिश्चित करता है कि | सभी के लिए {{math|''z''}}, तुल्यता प्रमेय यह सुनिश्चित करता है कि अशक्त बोरेल योग में अभिसरण का समान डोमेन है, {{math|''z'' ≥ 0}}. | ||
===एक उदाहरण जिसमें तुल्यता विफल हो जाती है=== | ===एक उदाहरण जिसमें तुल्यता विफल हो जाती है=== | ||
Line 154: | Line 152: | ||
कहाँ {{math|''S''(''x'')}} [[फ़्रेज़नेल इंटीग्रल]] है। कॉर्ड के साथ #Convergence_Properties के माध्यम से, बोरेल इंटीग्रल सभी के लिए अभिसरण करता है {{math|''z'' ≤ 2}} (अभिन्न के लिए विचलन होता है {{math|''z'' > 2}}). | कहाँ {{math|''S''(''x'')}} [[फ़्रेज़नेल इंटीग्रल]] है। कॉर्ड के साथ #Convergence_Properties के माध्यम से, बोरेल इंटीग्रल सभी के लिए अभिसरण करता है {{math|''z'' ≤ 2}} (अभिन्न के लिए विचलन होता है {{math|''z'' > 2}}). | ||
अशक्त बोरेल योग के लिए हम इसे नोट करते हैं | |||
:<math> \lim_{t \rightarrow \infty} e^{(z-1)t}\sin(e^{zt}) = 0 </math> | :<math> \lim_{t \rightarrow \infty} e^{(z-1)t}\sin(e^{zt}) = 0 </math> | ||
केवल के लिए धारण करता है {{math|''z'' < 1}}, और इसलिए | केवल के लिए धारण करता है {{math|''z'' < 1}}, और इसलिए अशक्त बोरेल योग इस छोटे डोमेन पर एकत्रित होता है। | ||
==अस्तित्व परिणाम और अभिसरण का क्षेत्र== | ==अस्तित्व परिणाम और अभिसरण का क्षेत्र== | ||
Line 170: | Line 168: | ||
===बोरेल बहुभुज=== | ===बोरेल बहुभुज=== | ||
लगता है कि {{math|''A''(''z'')}} में अभिसरण की सख्ती से | लगता है कि {{math|''A''(''z'')}} में अभिसरण की सख्ती से धनात्मक त्रिज्या है, ताकि यह मूल वाले गैर-तुच्छ क्षेत्र में विश्लेषणात्मक हो, और चलो {{math|''S''<sub>''A''</sub>}} की विलक्षणताओं के समुच्चय को निरूपित करें {{math|''A''}}. इस का मतलब है कि {{math|''P'' ∈ ''S''<sub>''A''</sub>}} अगर और केवल अगर {{math|''A''}} को 0 से लेकर ओपन कॉर्ड के साथ विश्लेषणात्मक रूप से जारी रखा जा सकता है {{math|''P''}}, लेकिन नहीं {{math|''P''}} अपने आप। के लिए {{math|''P'' ∈ ''S<sub>A</sub>''}}, मान लीजिए {{math|''L<sub>P</sub>''}} गुजरने वाली रेखा को निरूपित करें {{math|''P''}} जो जीवा के लंबवत है {{math|''OP''}}. सेट को परिभाषित करें | ||
:<math> \Pi_P = \{z \in \mathbb{C} \, \colon \, Oz \cap L_P = \varnothing \}, </math> | :<math> \Pi_P = \{z \in \mathbb{C} \, \colon \, Oz \cap L_P = \varnothing \}, </math> | ||
Line 201: | Line 199: | ||
===एक ताउबेरियन प्रमेय=== | ===एक ताउबेरियन प्रमेय=== | ||
एबेलियन और टबेरियन प्रमेय # टबेरियन प्रमेय ऐसी स्थितियाँ प्रदान करते हैं जिनके तहत एक योग विधि का अभिसरण किसी अन्य विधि के तहत अभिसरण का तात्पर्य है। प्रमुख टूबेरियन प्रमेय<ref name="Hardy1992" />बोरेल योग के लिए ऐसी स्थितियाँ प्रदान की जाती हैं जिनके तहत | एबेलियन और टबेरियन प्रमेय # टबेरियन प्रमेय ऐसी स्थितियाँ प्रदान करते हैं जिनके तहत एक योग विधि का अभिसरण किसी अन्य विधि के तहत अभिसरण का तात्पर्य है। प्रमुख टूबेरियन प्रमेय<ref name="Hardy1992" />बोरेल योग के लिए ऐसी स्थितियाँ प्रदान की जाती हैं जिनके तहत अशक्त बोरेल विधि श्रृंखला के अभिसरण का तात्पर्य करती है। | ||
:प्रमेय {{harv|Hardy|1992|loc=9.13}}. अगर {{math|''A''}} है {{math|('''wB''')}} संक्षेपण योग्य {{math|''z''<sub>0</sub> ∈ '''C'''}}, <math>{\textstyle \sum}a_kz_0^k = a(z_0) \, (\boldsymbol{wB}) </math>, और | :प्रमेय {{harv|Hardy|1992|loc=9.13}}. अगर {{math|''A''}} है {{math|('''wB''')}} संक्षेपण योग्य {{math|''z''<sub>0</sub> ∈ '''C'''}}, <math>{\textstyle \sum}a_kz_0^k = a(z_0) \, (\boldsymbol{wB}) </math>, और |
Revision as of 09:47, 13 December 2023
Borel, then an unknown young man, discovered that his summation method gave the 'right' answer for many classical divergent series. He decided to make a pilgrimage to Stockholm to see Mittag-Leffler, who was the recognized lord of complex analysis. Mittag-Leffler listened politely to what Borel had to say and then, placing his hand upon the complete works by Weierstrass, his teacher, he said in Latin, 'The Master forbids it'.
Mark Kac, quoted by Reed & Simon (1978, p. 38)
गणित में, बोरेल योग अपसारी श्रृंखला के लिए एक योग विधि है, जिसे एमिल बोरेल (1899) द्वारा प्रस्तुत किया गया है। यह विशेष रूप से अपसारी स्पर्शोन्मुख श्रृंखला के योग के लिए उपयोगी है, और कुछ अर्थों में ऐसी श्रृंखला के लिए सर्वोत्तम संभव योग देता है। इस विधि के कई रूप हैं जिन्हें बोरेल योग भी कहा जाता है, और इसके सामान्यीकरण को मिट्टाग-लेफ़लर योग भी कहा जाता है।
परिभाषा
बोरेल योगन कहलाने वाली (कम से कम) तीन अलग-अलग विधियाँ हैं। वे इस बात में भिन्न हैं कि वे किस श्रृंखला का योग कर सकते हैं, लेकिन सुसंगत हैं, जिसका अर्थ है कि यदि दो तरीकों से एक ही श्रृंखला का योग किया जाता है तो वे एक ही उत्तर देते हैं।
मान लीजिए कि A(z) एक औपचारिक घात श्रृंखला को दर्शाता है
और A के बोरेल रूपांतरण को इसकी समकक्ष घातांकीय श्रृंखला के रूप में परिभाषित करें
बोरेल की घातांकीय योग विधि
मान लीजिए An(z) आंशिक योग को निरूपित करता है
बोरेल की योग विधि का एक अशक्त रूप बोरेल योग A को परिभाषित करता है
यदि यह z ∈ C पर किसी फ़ंक्शन a(z) पर अभिसरण करता है, तो हम कहते हैं कि A का अशक्त बोरेल योग z पर अभिसरण करता है, और लिखते हैं,
बोरेल की अभिन्न योग विधि
मान लीजिए कि बोरेल रूपांतरण सभी धनात्मक वास्तविक संख्याओं के लिए एक ऐसे फ़ंक्शन में परिवर्तित हो जाता है जो काफी धीमी गति से बढ़ रहा है ताकि निम्नलिखित अभिन्न अंग अच्छी तरह से परिभाषित हो (एक अनुचित अभिन्न अंग के रूप में), A का बोरेल योग इस प्रकार दिया गया है
यदि इंटीग्रल z ∈ C से कुछ a(z) पर अभिसरण होता है, तो हम कहते हैं कि A का बोरेल योग z पर अभिसरण होता है, और लिखते हैं।
विश्लेषणात्मक निरंतरता के साथ बोरेल की अभिन्न योग विधि
यह बोरेल की अभिन्न योग विधि के समान है, सिवाय इसके कि बोरेल परिवर्तन को सभी t के लिए अभिसरण की आवश्यकता नहीं है, लेकिन 0 के पास t के एक विश्लेषणात्मक कार्य में परिवर्तित हो जाता है जिसे धनात्मक वास्तविक अक्ष के साथ विश्लेषणात्मक रूप से जारी रखा जा सकता है।
बुनियादी गुण
नियमितता
विधियाँ (B) और (wB) दोनों नियमित योग विधियाँ हैं, जिसका अर्थ है कि जब भी A(z) अभिसरण (मानक अर्थ में) होता है, तो बोरेल योग और अशक्त बोरेल योग भी अभिसरण करते हैं, और समान मूल्य पर ऐसा करते हैं। अर्थात
एकीकरण के क्रम में बदलाव से (B) की नियमितता आसानी से देखी जा सकती है, जो पूर्ण अभिसरण के कारण मान्य है: यदि A(z) z पर अभिसरण है, तो
जहां सबसे दाईं ओर की अभिव्यक्ति बिल्कुल z पर बोरेल योग है।
(B) और (wB) की नियमितता का मतलब है कि ये विधियां A(z) को विश्लेषणात्मक विस्तार प्रदान करती हैं।
बोरेल की कोई समानता नहीं और अशक्त बोरेल योग
कोई भी श्रृंखला A(z) जो z ∈ C पर कमजोर बोरेल योग योग्य है, वह भी z पर योग योग्य बोरेल है। हालाँकि, कोई उन श्रृंखलाओं के उदाहरण बना सकता है जो कमजोर बोरेल योग के तहत भिन्न हैं, लेकिन जो बोरेल योग योग्य हैं। निम्नलिखित प्रमेय दो विधियों की तुल्यता की विशेषता बताता है।
- प्रमेय ((हार्डी 1992, 8.5) ).
- मान लें कि A(z) एक औपचारिक शक्ति श्रृंखला है, और z ∈ C को ठीक करें, तो:
- अगर , तब .
- अगर , और तब .
अन्य योग विधियों से संबंध
- (B) α = 1 के साथ मिट्टी-लैफलर सारांश की विशेष स्थिति है।
- (wB) को सामान्यीकृत यूलर योग विधि (E,q) के सीमित मामले के रूप में देखा जा सकता है, इस अर्थ में कि q → ∞ के रूप में (E,q) विधि के अभिसरण का डोमेन (B) के लिए अभिसरण के डोमेन तक परिवर्तित हो जाता है। )[1]
अद्वितीयता प्रमेय
किसी भी असममित विस्तार के साथ हमेशा कई अलग-अलग कार्य होते हैं। हालाँकि, कभी-कभी एक सर्वोत्तम संभव कार्य होता है, इस अर्थ में कि परिमित-आयामी सन्निकटन में त्रुटियाँ किसी क्षेत्र में यथासंभव छोटी होती हैं। वॉटसन के प्रमेय और कार्लमैन के प्रमेय से पता चलता है कि बोरेल योग श्रृंखला का सबसे अच्छा संभव योग उत्पन्न करता है।
वाटसन का प्रमेय
वॉटसन का प्रमेय किसी फ़ंक्शन के लिए उसकी स्पर्शोन्मुख श्रृंखला का बोरेल योग होने की शर्तें देता है। लगता है कि f निम्नलिखित शर्तों को पूरा करने वाला एक फ़ंक्शन है:
- f कुछ क्षेत्र में होलोमोर्फिक है |z| < R, |arg(z)| < π/2 + ε कुछ धनात्मक के लिए R औरε.
- इस क्षेत्र में f में एक स्पर्शोन्मुख श्रृंखला है a0 + a1z + ... संपत्ति के साथ कि त्रुटि
- से घिरा हुआ है
सभी के लिए z क्षेत्र में (कुछ धनात्मक स्थिरांक के लिए C).
तब वाटसन का प्रमेय कहता है कि इस क्षेत्र में f इसकी स्पर्शोन्मुख श्रृंखला के बोरेल योग द्वारा दिया गया है। अधिक सटीक रूप से, बोरेल परिवर्तन की श्रृंखला मूल के पड़ोस में परिवर्तित होती है, और विश्लेषणात्मक रूप से धनात्मक वास्तविक अक्ष पर जारी रखी जा सकती है, और बोरेल योग को परिभाषित करने वाला अभिन्न अंग परिवर्तित होता है f(z) के लिए z उपरोक्त क्षेत्र में।
कार्लमैन का प्रमेय
कार्लेमैन के प्रमेय से पता चलता है कि एक फ़ंक्शन विशिष्ट रूप से एक सेक्टर में एक एसिम्प्टोटिक श्रृंखला द्वारा निर्धारित किया जाता है, बशर्ते कि परिमित क्रम सन्निकटन में त्रुटियां बहुत तेजी से न बढ़ें। अधिक सटीक रूप से यह बताता है कि यदि f सेक्टर के इंटीरियर में विश्लेषणात्मक है |z| < C, Re(z) > 0 और |f(z)| < |bnz|nइस क्षेत्र में सभी के लिए n, तब fशून्य है बशर्ते कि श्रृंखला 1/b0 + 1/b1 + ... विचलन करता है।
कार्लेमैन का प्रमेय किसी भी एसिम्प्टोटिक श्रृंखला के लिए एक योग विधि देता है, जिसके पद बहुत तेजी से नहीं बढ़ते हैं, क्योंकि योग को एक उपयुक्त क्षेत्र में इस एसिम्प्टोटिक श्रृंखला के साथ अद्वितीय फ़ंक्शन के रूप में परिभाषित किया जा सकता है यदि यह मौजूद है। बोरेल योग इस समय के विशेष मामले की तुलना में थोड़ा अशक्त है bn =cn कुछ स्थिरांक के लिए c. अधिक आम तौर पर कोई संख्याओं को लेकर बोरेल की तुलना में थोड़ा अधिक मजबूत योग विधियों को परिभाषित कर सकता है bn थोड़ा बड़ा होना, उदाहरण के लिए bn = cnlog n या bn =cnlog n log log n. व्यवहार में इस सामान्यीकरण का बहुत कम उपयोग होता है, क्योंकि इस विधि द्वारा संक्षेपित श्रृंखला के लगभग कोई प्राकृतिक उदाहरण नहीं हैं जिन्हें बोरेल की विधि द्वारा भी सारांशित नहीं किया जा सकता है।
उदाहरण
कार्यक्रम f(z) = exp(–1/z) में स्पर्शोन्मुख श्रृंखला है 0 + 0z + ... क्षेत्र में ऊपर दिए गए फॉर्म में एक त्रुटि आबद्ध है |arg(z)| < θ किसी के लिए θ < π/2, लेकिन इसकी स्पर्शोन्मुख श्रृंखला के बोरेल योग द्वारा नहीं दिया गया है। इससे पता चलता है कि संख्या {{math|π/2}वॉटसन के प्रमेय में } को किसी भी छोटी संख्या से प्रतिस्थापित नहीं किया जा सकता (जब तक कि त्रुटि पर सीमा छोटी नहीं की जाती)।
उदाहरण
ज्यामितीय श्रृंखला
ज्यामितीय श्रृंखला पर विचार करें
जो (मानक अर्थ में) अभिसरण करता है 1/(1 − z) के लिए |z| < 1. बोरेल परिवर्तन है
जिससे हमें बोरेल योग प्राप्त होता है
जो बड़े क्षेत्र में एकत्रित होता है Re(z) < 1, मूल श्रृंखला की विश्लेषणात्मक निरंतरता दे रहा है।
इसके बजाय अशक्त बोरेल परिवर्तन को ध्यान में रखते हुए, आंशिक रकम दी गई है AN(z) = (1 − zN+1)/(1 − z), और इसलिए अशक्त बोरेल योग है
जहां, फिर से, अभिसरण चालू है Re(z) < 1. वैकल्पिक रूप से इसे तुल्यता प्रमेय के भाग 2 की अपील करके देखा जा सकता है, क्योंकि Re(z) < 1,
एक वैकल्पिक भाज्य श्रृंखला
श्रृंखला पर विचार करें
तब A(z) किसी भी गैरशून्य के लिए अभिसरण नहीं होता है z ∈ C. बोरेल परिवर्तन है
के लिए |t| < 1, जिसे विश्लेषणात्मक रूप से सभी के लिए जारी रखा जा सकता है t ≥ 0. तो बोरेल योग है
(कहाँ Γ अधूरा गामा फ़ंक्शन है)।
यह अभिन्नता सभी के लिए अभिसरित होती है z ≥ 0, इसलिए मूल अपसारी श्रृंखला ऐसे सभी के लिए बोरेल योग्य है z. इस फ़ंक्शन का एक स्पर्शोन्मुख विस्तार है z 0 की ओर प्रवृत्त होता है जो मूल अपसारी श्रृंखला द्वारा दिया गया है। यह इस तथ्य का एक विशिष्ट उदाहरण है कि बोरेल योग कभी-कभी भिन्न स्पर्शोन्मुख विस्तारों का सही योग करेगा।
फिर से, तब से
सभी के लिए z, तुल्यता प्रमेय यह सुनिश्चित करता है कि अशक्त बोरेल योग में अभिसरण का समान डोमेन है, z ≥ 0.
एक उदाहरण जिसमें तुल्यता विफल हो जाती है
निम्नलिखित उदाहरण उसमें दिए गए उदाहरण पर आधारित है (Hardy 1992, 8.5). विचार करना
योग के क्रम को बदलने के बाद, बोरेल परिवर्तन द्वारा दिया जाता है
पर z = 2 बोरेल योग द्वारा दिया जाता है
कहाँ S(x) फ़्रेज़नेल इंटीग्रल है। कॉर्ड के साथ #Convergence_Properties के माध्यम से, बोरेल इंटीग्रल सभी के लिए अभिसरण करता है z ≤ 2 (अभिन्न के लिए विचलन होता है z > 2).
अशक्त बोरेल योग के लिए हम इसे नोट करते हैं
केवल के लिए धारण करता है z < 1, और इसलिए अशक्त बोरेल योग इस छोटे डोमेन पर एकत्रित होता है।
अस्तित्व परिणाम और अभिसरण का क्षेत्र
कोर्ड्स पर योग्यता
यदि एक औपचारिक श्रृंखला A(z) बोरेल संक्षेपण योग्य है z0 ∈ C, तो यह कॉर्ड के सभी बिंदुओं पर बोरेल योग्य भी है Oz0 कनेक्ट करना z0 मूल की ओर. इसके अलावा, एक फ़ंक्शन मौजूद है a(z) त्रिज्या के साथ संपूर्ण डिस्क का विश्लेषणात्मक Oz0 ऐसा है कि
सभी के लिए z = θz0, θ ∈ [0,1].
इसका तात्कालिक परिणाम यह है कि बोरेल योग के अभिसरण का क्षेत्र एक स्टार डोमेन है C. बोरेल योग के अभिसरण के क्षेत्र के बारे में इससे अधिक कहा जा सकता है कि यह एक सितारा डोमेन है, जिसे बोरेल बहुभुज के रूप में जाना जाता है, और श्रृंखला की विलक्षणताओं द्वारा निर्धारित किया जाता है A(z).
बोरेल बहुभुज
लगता है कि A(z) में अभिसरण की सख्ती से धनात्मक त्रिज्या है, ताकि यह मूल वाले गैर-तुच्छ क्षेत्र में विश्लेषणात्मक हो, और चलो SA की विलक्षणताओं के समुच्चय को निरूपित करें A. इस का मतलब है कि P ∈ SA अगर और केवल अगर A को 0 से लेकर ओपन कॉर्ड के साथ विश्लेषणात्मक रूप से जारी रखा जा सकता है P, लेकिन नहीं P अपने आप। के लिए P ∈ SA, मान लीजिए LP गुजरने वाली रेखा को निरूपित करें P जो जीवा के लंबवत है OP. सेट को परिभाषित करें
बिंदुओं का वह समूह जो एक ही तरफ स्थित है LP मूल के रूप में. का बोरेल बहुभुज A सेट है
बोरेल और फ्राग्मेन द्वारा एक वैकल्पिक परिभाषा का उपयोग किया गया था (Sansone & Gerretsen 1960, 8.3). मान लीजिए सबसे बड़े स्टार डोमेन को निरूपित करें जिस पर विश्लेषणात्मक विस्तार है A, तब का सबसे बड़ा उपसमूह है ऐसा कि सभी के लिए ओपी व्यास वाले वृत्त का आंतरिक भाग समाहित है . सेट का जिक्र करते हुए चूँकि बहुभुज कुछ हद तक एक मिथ्या नाम है, चूँकि समुच्चय का बहुभुज होना आवश्यक नहीं है; जो कुछ भी हो, A(z) में तब केवल सीमित संख्या में विलक्षणताएँ होती हैं वास्तव में एक बहुभुज होगा.
निम्नलिखित प्रमेय, बोरेल और लार्स एडवर्ड फ्रैग्मेन के कारण | फ्रैग्मेन बोरेल योग के लिए अभिसरण मानदंड प्रदान करता है।
- प्रमेय (Hardy 1992, 8.8).
- श्रृंखला A(z) है (B) बिल्कुल संक्षेपणीय , और है (B) बिल्कुल भिन्न .
ध्यान दें कि (B) के लिए संक्षेपण बिंदु की प्रकृति पर निर्भर करता है.
उदाहरण 1
मान लीजिए ωi ∈ C निरूपित करें m-एकता की जड़ें, i = 1, ..., m, और विचार करें
जो एकत्रित हो जाता है B(0,1) ⊂ C. पर एक समारोह के रूप में देखा गया C, A(z) में विलक्षणताएं हैं SA = {ωi : i = 1, ..., m}, और परिणामस्वरूप बोरेल बहुभुज नियमित नियमित बहुभुज द्वारा दिया गया है|m-गॉन मूल पर केंद्रित है, और ऐसा है 1 ∈ C एक किनारे का मध्यबिंदु है।
उदाहरण 2
औपचारिक शृंखला
सभी के लिए जुटता है (उदाहरण के लिए, ज्यामितीय श्रृंखला के साथ प्रत्यक्ष तुलना परीक्षण द्वारा)। हालाँकि इसे दिखाया जा सकता है[2] वह A किसी भी बिंदु के लिए अभिसरण नहीं होता है z ∈ C ऐसा है कि z2n = 1 कुछ के लिए n. ऐसे के सेट के बाद से z इकाई वृत्त में सघन है, इसका कोई विश्लेषणात्मक विस्तार नहीं हो सकता A के बाहर B(0,1). जिसके बाद सबसे बड़ा स्टार डोमेन A को विश्लेषणात्मक रूप से बढ़ाया जा सकता है S = B(0,1) जिससे (दूसरी परिभाषा के माध्यम से) कोई प्राप्त करता है . विशेष रूप से कोई यह देखता है कि बोरेल बहुभुज बहुभुज नहीं है।
एक ताउबेरियन प्रमेय
एबेलियन और टबेरियन प्रमेय # टबेरियन प्रमेय ऐसी स्थितियाँ प्रदान करते हैं जिनके तहत एक योग विधि का अभिसरण किसी अन्य विधि के तहत अभिसरण का तात्पर्य है। प्रमुख टूबेरियन प्रमेय[1]बोरेल योग के लिए ऐसी स्थितियाँ प्रदान की जाती हैं जिनके तहत अशक्त बोरेल विधि श्रृंखला के अभिसरण का तात्पर्य करती है।
- प्रमेय (Hardy 1992, 9.13). अगर A है (wB) संक्षेपण योग्य z0 ∈ C, , और
- तब , और श्रृंखला सभी के लिए एकत्रित होती है |z| < |z0|.
अनुप्रयोग
बोरेल योग क्वांटम क्षेत्र सिद्धांत में गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी) में आवेदन पाता है। विशेष रूप से 2-आयामी यूक्लिडियन क्षेत्र सिद्धांत में श्विंगर कार्यों को अक्सर बोरेल योग का उपयोग करके उनकी गड़बड़ी श्रृंखला से पुनर्प्राप्त किया जा सकता है (Glimm & Jaffe 1987, p. 461). बोरेल परिवर्तन की कुछ विलक्षणताएं क्वांटम क्षेत्र सिद्धांत में एक पल और रेननॉर्मलन से संबंधित हैं (Weinberg 2005, 20.7).
सामान्यीकरण
बोरेल योग के लिए आवश्यक है कि गुणांक बहुत तेजी से न बढ़ें: अधिक सटीक रूप से, an से घिरा होना चाहिए n!Cn+1 कुछ के लिए C. बोरेल योग की एक भिन्नता है जो कारख़ाने का को प्रतिस्थापित करती है n! साथ (kn)! किसी धनात्मक पूर्णांक के लिए k, जो कुछ श्रृंखलाओं के योग की अनुमति देता है an से घिरा (kn)!Cn+1 कुछ के लिए C. यह सामान्यीकरण मिट्टाग-लेफ़लर सारांश द्वारा दिया गया है।
सबसे सामान्य मामले में, बोरेल योग को नचबिन पुनर्संयोजन द्वारा सामान्यीकृत किया जाता है, जिसका उपयोग तब किया जा सकता है जब बाउंडिंग फ़ंक्शन घातीय प्रकार के बजाय कुछ सामान्य प्रकार (पीएसआई-प्रकार) का होता है।
यह भी देखें
- हाबिल योग
- हाबिल का प्रमेय
- हाबिल-सादा सूत्र
- यूलर योग
- सीज़र का सारांश
- लैंबर्ट सारांश
- नचबिन सारांश
- एबेलियन और टूबेरियन प्रमेय
- वैन विजनगार्डन परिवर्तन
टिप्पणियाँ
- ↑ 1.0 1.1 Hardy, G. H. (1992). Divergent Series. AMS Chelsea, Rhode Island.
- ↑ "प्राकृतिक सीमा". MathWorld. Retrieved 19 October 2016.
संदर्भ
- Borel, E. (1899), "Mémoire sur les séries divergentes", Ann. Sci. Éc. Norm. Supér., Series 3, 16: 9–131, doi:10.24033/asens.463
- Glimm, James; Jaffe, Arthur (1987), Quantum physics (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-4728-9, ISBN 978-0-387-96476-8, MR 0887102
- Hardy, Godfrey Harold (1992) [1949], Divergent Series, New York: Chelsea, ISBN 978-0-8218-2649-2, MR 0030620
- Reed, Michael; Simon, Barry (1978), Methods of modern mathematical physics. IV. Analysis of operators, New York: Academic Press [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-585004-9, MR 0493421
- Sansone, Giovanni; Gerretsen, Johan (1960), Lectures on the theory of functions of a complex variable. I. Holomorphic functions, P. Noordhoff, Groningen, MR 0113988
- Weinberg, Steven (2005), The quantum theory of fields., vol. II, Cambridge University Press, ISBN 978-0-521-55002-4, MR 2148467
- Zakharov, A. A. (2001) [1994], "Borel summation method", Encyclopedia of Mathematics, EMS Press