वक्र अभिविन्यास: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
{{unreferenced|date=September 2013}}
{{unreferenced|date=September 2013}}
}}
}}
गणित में, वक्र का एक अभिविन्यास वक्र पर यात्रा करने के लिए दो संभावित दिशाओं में से एक का विकल्प है। उदाहरण के लिए, [[ कार्तीय निर्देशांक ]] के लिए, {{mvar|x}}-अक्ष पारंपरिक रूप से दाईं ओर उन्मुख होता है, और {{mvar|y}}-अक्ष ऊपर की ओर उन्मुख है।
गणित में, वक्र का एक अभिविन्यास ,वक्र पर यात्रा करने के लिए दो संभावित दिशाओं में से एक का विकल्प है। उदाहरण के लिए, [[ कार्तीय निर्देशांक ]] के लिए, {{mvar|x}}-अक्ष पारंपरिक रूप से दाईं ओर उन्मुख होता है, और {{mvar|y}}-अक्ष ऊपर की ओर उन्मुख है।


एक समतलीय [[ सरल बंद वक्र ]] के सन्दर्भ  में (अर्थात, तल में एक वक्र जिसका प्रारंभिक बिंदु भी अंत बिंदु है और जिसमें कोई अन्य स्वप्रतिच्छेद नहीं है), वक्र को सकारात्मक रूप से उन्मुख या [[ वामावर्त ]] उन्मुख कहा जाता है, यदि एक उस पर यात्रा करते समय हमेशा बाईं ओर वक्र आंतरिक होता है (और परिणामस्वरूप, वक्र बाहरी से दाईं ओर)। अन्यथा, यदि बाएं और दाएं का आन-प्रदान किया दाजाता है, तो वक्र नकारात्मक रूप से उन्मुख या [[ दक्षिणावर्त ]] उन्मुख होता है। यह परिभाषा इस तथ्य पर निर्भर करती है कि प्रत्येक साधारण बंद वक्र एक अच्छी तरह से परिभाषित इंटीरियर को स्वीकार करता है, जो [[ जॉर्डन वक्र प्रमेय ]] से अनुसरण करता है।
एक समतलीय [[ सरल बंद वक्र ]] के सन्दर्भ  में (अर्थात, तल में एक वक्र जिसका प्रारंभिक बिंदु भी अंत बिंदु है और जिसमें कोई अन्य स्वप्रतिच्छेद नहीं है), वक्र को सकारात्मक रूप से उन्मुख या [[ वामावर्त ]] उन्मुख कहा जाता है, यदि एक उस पर यात्रा करते समय हमेशा बाईं ओर वक्र आंतरिक होता है (और परिणामस्वरूप, वक्र बाहरी से दाईं ओर)। अन्यथा, यदि बाएं और दाएं को बदल दिया जाए , तो वक्र नकारात्मक रूप से उन्मुख या [[ दक्षिणावर्त ]] उन्मुख होता है। यह परिभाषा इस तथ्य पर निर्भर करती है कि प्रत्येक साधारण बंद वक्र एक अच्छी तरह से परिभाषित आंतरिक भाग को स्वीकार करता है, जो [[ जॉर्डन वक्र प्रमेय ]] से अनुसरण करता है।


जिस देश में लोग सड़क के दाहिनी ओर ड्राइव करते हैं, उस देश में बेल्टवे रोड की आंतरिक/बाहरी लेबलिंग एक नकारात्मक उन्मुख (घड़ी की दिशा में) वक्र का एक उदाहरण है। [[ त्रिकोणमिति ]] में, [[ यूनिट सर्कल ]] पारंपरिक रूप से वामावर्त उन्मुख होता है।
जिस देश में लोग सड़क के दाहिनी ओर वाहन चलाते है , उस देश में गोलाकार सड़क की आंतरिक/बाहरी लेबलिंग एक नकारात्मक उन्मुख (घड़ी की दिशा में) वक्र का एक उदाहरण है। [[ त्रिकोणमिति ]] में, [[ यूनिट सर्कल | इकाई वृत्त]] पारंपरिक रूप से वामावर्त उन्मुख होता है।


एक वक्र के 'अभिविन्यास' की अवधारणा कई गुना के [[ अभिविन्यास (गणित) ]] की धारणा का एक विशेष मामला है (अर्थात, वक्र के उन्मुखीकरण के अलावा कोई [[ सतह (टोपोलॉजी) ]], [[ ऊनविम पृष्ठ ]] के उन्मुखीकरण की बात भी कर सकता है। , आदि।)।
एक वक्र के 'अभिविन्यास' की अवधारणा अनेक [[ अभिविन्यास (गणित) ]] की धारणा का एक विशेष विषय  है (अर्थात, वक्र के उन्मुखीकरण के अलावा कोई [[ सतह (टोपोलॉजी) ]], [[ ऊनविम पृष्ठ | ऊनविम पृष्ठ( हाइपर सरफेस )]] के उन्मुखीकरण की बात भी कर सकता है। , आदि।)।


== एक साधारण बहुभुज की ओरिएंटेशन ==
== एक साधारण बहुभुज की अभिविन्यास ==


[[Image:determining orientation.png|right|संदर्भ बिंदुओं का चयन।]]दो आयामों में, तीन या अधिक जुड़े हुए शीर्षों (बिंदुओं) (जैसे कि [[ बिंदुओ को जोडो ]]|कनेक्ट-द-डॉट्स) के एक क्रमबद्ध सेट को देखते हुए, जो एक [[ साधारण [[ बहुभुज ]] ]] बनाता है, परिणामी बहुभुज का अभिविन्यास सीधे कोण से संबंधित होता है। बहुभुज के [[ उत्तल पतवार ]] के किसी भी शीर्ष (ज्यामिति) पर धनात्मक और ऋणात्मक कोण, उदाहरण के लिए, चित्र में कोण ABC का। संगणना में, वैक्टर की एक जोड़ी द्वारा गठित छोटे कोण का संकेत आमतौर पर वैक्टर के क्रॉस उत्पाद के संकेत से निर्धारित होता है। उत्तरार्द्ध की गणना उनके अभिविन्यास मैट्रिक्स के निर्धारक के संकेत के रूप में की जा सकती है। विशेष मामले में जब दो वैक्टर को सामान्य समापन बिंदु के साथ दो [[ रेखा खंड ]] द्वारा परिभाषित किया जाता है, जैसे कि हमारे उदाहरण में कोण एबीसी के किनारे बीए और बीसी, ओरिएंटेशन मैट्रिक्स को निम्नानुसार परिभाषित किया जा सकता है:
[[Image:determining orientation.png|right|संदर्भ बिंदुओं का चयन।]]दो आयामों में, तीन या अधिक जुड़े हुए शीर्षों (बिंदुओं) (जैसे कि [[ बिंदुओ को जोडो ]]|कनेक्ट-द-डॉट्स) के एक क्रमबद्ध सेट को देखते हुए, जो एक साधारण [[ बहुभुज ]] ]बनाता है, परिणामी बहुभुज का अभिविन्यास सीधे कोण से संबंधित होता है। बहुभुज के [[ उत्तल पतवार ]] के किसी भी शीर्ष (ज्यामिति) पर धनात्मक और ऋणात्मक कोण, उदाहरण के लिए, चित्र में कोण ABC का। संगणना में, वैक्टर की एक जोड़ी द्वारा गठित छोटे कोण का संकेत साधारणतया वैक्टर के सदिश गुणन  के संकेत से निर्धारित होता है। उत्तरार्द्ध की गणना उनके अभिविन्यास आव्यूह के निर्धारक के संकेत के रूप में की जा सकती है। विशेष मामले में जब दो वैक्टर को सामान्य अंत बिन्दु  के साथ दो [[ रेखा खंड ]] द्वारा परिभाषित किया जाता है, जैसे कि हमारे उदाहरण में कोण ABC के किनारे BA और BC, अभिविन्यास आव्यूह को इस प्रकार परिभाषित किया जा सकता है:
:<math>\mathbf{O} = \begin{bmatrix}
:<math>\mathbf{O} = \begin{bmatrix}
1 & x_A & y_A \\
1 & x_A & y_A \\
1 & x_B & y_B \\
1 & x_B & y_B \\
1 & x_C & y_C \end{bmatrix}.</math>
1 & x_C & y_C \end{bmatrix}.</math>
इसके सारणिक के लिए एक सूत्र प्राप्त किया जा सकता है, उदाहरण के लिए, [[ सहकारक विस्तार ]] की विधि का उपयोग करके:
इसके सारणिक के लिए एक सूत्र प्राप्त किया जा सकता है, उदाहरण के लिए, [[ सहकारक विस्तार | सहगुणक विस्तार]] की विधि का उपयोग करके:


: <math>\begin{align}
: <math>\begin{align}
Line 34: Line 34:


=== व्यावहारिक विचार ===
=== व्यावहारिक विचार ===
व्यावहारिक अनुप्रयोगों में, निम्नलिखित बातों को आमतौर पर ध्यान में रखा जाता है।
व्यावहारिक अनुप्रयोगों में, निम्नलिखित बातों को साधारणतया ध्यान में रखा जाता है।


एक उपयुक्त शीर्ष खोजने के लिए बहुभुज के उत्तल पतवार के निर्माण की आवश्यकता नहीं है। सबसे छोटा X-निर्देशांक वाले बहुभुज का शीर्ष एक सामान्य विकल्प है। यदि उनमें से कई हैं, तो सबसे छोटा Y-निर्देशांक वाला चुना जाता है। यह बहुभुज के उत्तल पतवार का शीर्ष होने की गारंटी है। वैकल्पिक रूप से, सबसे बड़े X-निर्देशांक वाले सबसे छोटे Y-निर्देशांक वाले शीर्ष या सबसे बड़े Y-निर्देशांक वाले सबसे छोटे X-निर्देशांक वाले शीर्ष (या 8 सबसे छोटे, सबसे बड़े X/Y संयोजनों में से कोई भी अन्य) ) भी करेंगे। एक बार उत्तल पतवार का एक शीर्ष चुना जाता है, तो कोई पिछले और अगले कोने का उपयोग करके सूत्र लागू कर सकता है, भले ही वे उत्तल पतवार पर न हों, क्योंकि इस शीर्ष पर कोई स्थानीय अवतलता नहीं हो सकती है।
एक उपयुक्त शीर्ष खोजने के लिए बहुभुज के उत्तल आवरण के निर्माण की आवश्यकता नहीं है। सबसे छोटा X-निर्देशांक वाले बहुभुज का शीर्ष एक सामान्य विकल्प है। यदि उनमें से अनेक  हैं, तो सबसे छोटा Y-निर्देशांक वाला चुना जाता है। यह बहुभुज के उत्तल पतवार का शीर्ष होने की गारंटी है। वैकल्पिक रूप से, सबसे बड़े X-निर्देशांक वाले सबसे छोटे Y-निर्देशांक वाले शीर्ष या सबसे बड़े Y-निर्देशांक वाले सबसे छोटे X-निर्देशांक वाले शीर्ष (या 8 सबसे छोटे, सबसे बड़े X/Y संयोजनों में से कोई भी अन्य) ) भी करेंगे। एक बार उत्तल पतवार का एक शीर्ष चुना जाता है, तो कोई पिछले और अगले कोने का उपयोग करके सूत्र लागू कर सकता है, भले ही वे उत्तल पतवार पर न हों, क्योंकि इस शीर्ष पर कोई स्थानीय अवतलता नहीं हो सकती है।


यदि [[ उत्तल बहुभुज ]] का उन्मुखीकरण मांगा जाता है, तो निश्चित रूप से, किसी भी शीर्ष को चुना जा सकता है।
यदि [[ उत्तल बहुभुज ]] का उन्मुखीकरण मांगा जाता है, तो निश्चित रूप से, किसी भी शीर्ष को चुना जा सकता है।
Line 45: Line 45:
\det(O) = (x_B-x_A)(y_C-y_A)-(x_C-x_A)(y_B-y_A)
\det(O) = (x_B-x_A)(y_C-y_A)-(x_C-x_A)(y_B-y_A)
</math>
</math>
बाद वाले सूत्र में चार गुणा कम है। अधिकांश व्यावहारिक अनुप्रयोगों में शामिल कंप्यूटर संगणनाओं में क्या अधिक महत्वपूर्ण है, जैसे कि [[ कंप्यूटर ग्राफिक्स ]] या [[ कंप्यूटर एडेड डिजाइन ]], गुणक के निरपेक्ष मान आमतौर पर छोटे होते हैं (जैसे, जब A, B, C एक ही चतुर्थांश (प्लेन ज्योमेट्री) के भीतर होते हैं। ), इस प्रकार एक छोटी [[ संख्यात्मक त्रुटि ]] दे रही है या, चरम मामलों में, अंकगणितीय अतिप्रवाह से बचना।
बाद वाले सूत्र में चार गुणन कम है। अधिकांश व्यावहारिक अनुप्रयोगों में शामिल कंप्यूटर संगणनाओं में क्या अधिक महत्वपूर्ण है, जैसे कि [[ कंप्यूटर ग्राफिक्स | कंप्यूटर आलेखिकी (ग्राफिक्स)]] या [[ कंप्यूटर एडेड डिजाइन ]], गुणक के निरपेक्ष मान साधारणतया छोटे होते हैं (जैसे, जब A, B, C एक ही चतुर्थांश (समतल ज्यामिति) के भीतर होते हैं। ), इस प्रकार एक छोटी [[ संख्यात्मक त्रुटि ]] दे रही है या, चरम विषयो  में, अंकगणितीय अतिप्रवाह से बचना।


जब यह पहले से ज्ञात न हो कि बिंदुओं का क्रम एक साधारण बहुभुज को परिभाषित करता है, तो निम्नलिखित बातों को ध्यान में रखना चाहिए।
जब यह पहले से ज्ञात न हो कि बिंदुओं का क्रम एक साधारण बहुभुज को परिभाषित करता है, तो निम्नलिखित बातों को ध्यान में रखना चाहिए।
Line 51: Line 51:
एक स्व-प्रतिच्छेदी बहुभुज ([[ जटिल बहुभुज ]]) (या किसी आत्म-प्रतिच्छेद वक्र के लिए) के लिए आंतरिक की कोई प्राकृतिक धारणा नहीं है, इसलिए अभिविन्यास परिभाषित नहीं है। साथ ही, [[ ज्यामिति ]] और कंप्यूटर ग्राफिक्स में बंद गैर-सरल वक्रों के लिए इंटीरियर की धारणा को बदलने के लिए कई अवधारणाएं हैं; देखें, उदाहरण के लिए, बाढ़ भरना और [[ घुमावदार संख्या ]]।
एक स्व-प्रतिच्छेदी बहुभुज ([[ जटिल बहुभुज ]]) (या किसी आत्म-प्रतिच्छेद वक्र के लिए) के लिए आंतरिक की कोई प्राकृतिक धारणा नहीं है, इसलिए अभिविन्यास परिभाषित नहीं है। साथ ही, [[ ज्यामिति ]] और कंप्यूटर ग्राफिक्स में बंद गैर-सरल वक्रों के लिए इंटीरियर की धारणा को बदलने के लिए कई अवधारणाएं हैं; देखें, उदाहरण के लिए, बाढ़ भरना और [[ घुमावदार संख्या ]]।


आत्म-प्रतिच्छेदन के हल्के मामलों में, अध: पतन (गणित) शिखर के साथ जब तीन लगातार बिंदुओं को एक ही [[ सीधी रेखा ]] पर होने और शून्य-डिग्री कोण बनाने की अनुमति दी जाती है, तो इंटीरियर की अवधारणा अभी भी समझ में आती है, लेकिन इसमें एक अतिरिक्त देखभाल की जानी चाहिए परीक्षण कोण का चयन। दिए गए उदाहरण में, बिंदु A को खंड BC पर स्थित करने की कल्पना करें। इस स्थिति में कोण ABC और उसका सारणिक 0 होगा, अत: अनुपयोगी है। एक समाधान बहुभुज (बीसीडी, डीईएफ,...) के साथ लगातार कोनों का परीक्षण करना है जब तक कि एक गैर-शून्य निर्धारक न मिल जाए (जब तक कि सभी बिंदु एक ही सीधी रेखा पर न हों)। (ध्यान दें कि बिंदु C, D, E एक ही रेखा पर हैं और शून्य सारणिक के साथ 180 डिग्री का कोण बनाते हैं।)
आत्म-प्रतिच्छेदन के हल्के विषयो  में, अध: पतन (गणित) शिखर के साथ जब तीन लगातार बिंदुओं को एक ही [[ सीधी रेखा ]] पर होने और शून्य-डिग्री कोण बनाने की अनुमति दी जाती है, तो इंटीरियर की अवधारणा अभी भी समझ में आती है, लेकिन इसमें एक अतिरिक्त देखभाल की जानी चाहिए परीक्षण कोण का चयन। दिए गए उदाहरण में, बिंदु A को खंड BC पर स्थित करने की कल्पना करें। इस स्थिति में कोण ABC और उसका सारणिक 0 होगा, अत: अनुपयोगी है। एक समाधान बहुभुज (BCD ,DIF ,...) के साथ लगातार कोनों का परीक्षण करना है जब तक कि एक गैर-शून्य निर्धारक न मिल जाए (जब तक कि सभी बिंदु एक ही सीधी रेखा पर न हों)। (ध्यान दें कि बिंदु C, D, E एक ही रेखा पर हैं और शून्य सारणिक के साथ 180 डिग्री का कोण बनाते हैं।)


== स्थानीय अंतराल ==
== स्थानीय अंतराल ==
एक बार जब शीर्षों के एक क्रमबद्ध सेट से बने बहुभुज का अभिविन्यास ज्ञात हो जाता है, तो बहुभुज के स्थानीय क्षेत्र के [[ अवतल बहुभुज ]] को दूसरे अभिविन्यास मैट्रिक्स का उपयोग करके निर्धारित किया जा सकता है। यह मैट्रिक्स लगातार तीन शीर्षों से बना होता है, जिनकी अवतलता के लिए जांच की जा रही है। उदाहरण के लिए, ऊपर चित्रित बहुभुज में, यदि हम यह जानना चाहते हैं कि क्या बिंदुओं का क्रम F-G-H अवतल समुच्चय, उत्तल समुच्चय, या संरेख (सपाट) है, तो हम मैट्रिक्स का निर्माण करते हैं
एक बार जब शीर्षों के एक क्रमबद्ध समूह से बने बहुभुज का अभिविन्यास ज्ञात हो जाता है, तो बहुभुज के स्थानीय क्षेत्र के [[ अवतल बहुभुज ]] को दूसरे अभिविन्यास आव्यूह का उपयोग करके निर्धारित किया जा सकता है। यह आव्यूह लगातार तीन शीर्षों से बना होता है, जिनकी अवतलता के लिए जांच की जा रही है। उदाहरण के लिए, ऊपर चित्रित बहुभुज में, यदि हम यह जानना चाहते हैं कि क्या बिंदुओं का क्रम F-G-H अवतल समुच्चय, उत्तल समुच्चय, या संरेख (सपाट) है, तो हम आव्यूह का निर्माण करते हैं


:<math>\mathbf{O} = \begin{bmatrix}
:<math>\mathbf{O} = \begin{bmatrix}
Line 60: Line 60:
1 & x_{G} & y_{G} \\
1 & x_{G} & y_{G} \\
1 & x_{H} & y_{H}\end{bmatrix}.</math>
1 & x_{H} & y_{H}\end{bmatrix}.</math>
यदि इस मैट्रिक्स का सारणिक 0 है, तो अनुक्रम संरेख है - न तो अवतल और न ही उत्तल। यदि सारणिक के पास पूरे बहुभुज के लिए अभिविन्यास मैट्रिक्स के समान चिह्न है, तो अनुक्रम उत्तल है। यदि संकेत भिन्न हैं, तो अनुक्रम अवतल है। इस उदाहरण में, बहुभुज ऋणात्मक रूप से उन्मुख है, लेकिन F-G-H बिंदुओं के लिए सारणिक धनात्मक है, और इसलिए अनुक्रम F-G-H अवतल है।
यदि इस आव्यूह का सारणिक 0 है, तो अनुक्रम संरेख है - न तो अवतल और न ही उत्तल। यदि सारणिक के पास पूरे बहुभुज के लिए अभिविन्यास आव्यूह के समान चिह्न है, तो अनुक्रम उत्तल है। यदि संकेत भिन्न हैं, तो अनुक्रम अवतल है। इस उदाहरण में, बहुभुज ऋणात्मक रूप से उन्मुख है, लेकिन F-G-H बिंदुओं के लिए सारणिक धनात्मक है, और इसलिए अनुक्रम F-G-H अवतल है।


निम्न तालिका यह निर्धारित करने के लिए नियमों को दर्शाती है कि क्या बिंदुओं का क्रम उत्तल, अवतल या समतल है:
निम्न तालिका यह निर्धारित करने के लिए नियमों को दर्शाती है कि क्या बिंदुओं का क्रम उत्तल, अवतल या समतल है:
Line 67: Line 67:
|-
|-
! width="200"|
! width="200"|
! Negatively oriented polygon (clockwise)
! नकारात्मक रूप से उन्मुख बहुभुज (घड़ी की दिशा में)
! Positively oriented polygon (counterclockwise)
! सकारात्मक रूप से उन्मुख बहुभुज (वामावर्त)
|-
|-
| determinant of orientation matrix for local points is negative
| स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक ऋणात्मक है
| convex sequence of points
| बिंदुओं का उत्तल क्रम
| concave sequence of points
| बिंदुओं का अवतल क्रम
|-
|-
| determinant of orientation matrix for local points is positive
| स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक सकारात्मक है
| concave sequence of points
| बिंदुओं का अवतल क्रम
| convex sequence of points
| बिंदुओं का उत्तल क्रम
|-
|-
| determinant of orientation matrix for local points is 0
| स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक 0 है
| collinear sequence of points
| बिंदुओं का संरेखीय क्रम
| collinear sequence of points
| बिंदुओं का संरेखीय क्रम
|}
|}



Revision as of 13:04, 17 November 2022

गणित में, वक्र का एक अभिविन्यास ,वक्र पर यात्रा करने के लिए दो संभावित दिशाओं में से एक का विकल्प है। उदाहरण के लिए, कार्तीय निर्देशांक के लिए, x-अक्ष पारंपरिक रूप से दाईं ओर उन्मुख होता है, और y-अक्ष ऊपर की ओर उन्मुख है।

एक समतलीय सरल बंद वक्र के सन्दर्भ में (अर्थात, तल में एक वक्र जिसका प्रारंभिक बिंदु भी अंत बिंदु है और जिसमें कोई अन्य स्वप्रतिच्छेद नहीं है), वक्र को सकारात्मक रूप से उन्मुख या वामावर्त उन्मुख कहा जाता है, यदि एक उस पर यात्रा करते समय हमेशा बाईं ओर वक्र आंतरिक होता है (और परिणामस्वरूप, वक्र बाहरी से दाईं ओर)। अन्यथा, यदि बाएं और दाएं को बदल दिया जाए , तो वक्र नकारात्मक रूप से उन्मुख या दक्षिणावर्त उन्मुख होता है। यह परिभाषा इस तथ्य पर निर्भर करती है कि प्रत्येक साधारण बंद वक्र एक अच्छी तरह से परिभाषित आंतरिक भाग को स्वीकार करता है, जो जॉर्डन वक्र प्रमेय से अनुसरण करता है।

जिस देश में लोग सड़क के दाहिनी ओर वाहन चलाते है , उस देश में गोलाकार सड़क की आंतरिक/बाहरी लेबलिंग एक नकारात्मक उन्मुख (घड़ी की दिशा में) वक्र का एक उदाहरण है। त्रिकोणमिति में, इकाई वृत्त पारंपरिक रूप से वामावर्त उन्मुख होता है।

एक वक्र के 'अभिविन्यास' की अवधारणा अनेक अभिविन्यास (गणित) की धारणा का एक विशेष विषय है (अर्थात, वक्र के उन्मुखीकरण के अलावा कोई सतह (टोपोलॉजी) , ऊनविम पृष्ठ( हाइपर सरफेस ) के उन्मुखीकरण की बात भी कर सकता है। , आदि।)।

एक साधारण बहुभुज की अभिविन्यास

संदर्भ बिंदुओं का चयन।

दो आयामों में, तीन या अधिक जुड़े हुए शीर्षों (बिंदुओं) (जैसे कि बिंदुओ को जोडो |कनेक्ट-द-डॉट्स) के एक क्रमबद्ध सेट को देखते हुए, जो एक साधारण बहुभुज ]बनाता है, परिणामी बहुभुज का अभिविन्यास सीधे कोण से संबंधित होता है। बहुभुज के उत्तल पतवार के किसी भी शीर्ष (ज्यामिति) पर धनात्मक और ऋणात्मक कोण, उदाहरण के लिए, चित्र में कोण ABC का। संगणना में, वैक्टर की एक जोड़ी द्वारा गठित छोटे कोण का संकेत साधारणतया वैक्टर के सदिश गुणन के संकेत से निर्धारित होता है। उत्तरार्द्ध की गणना उनके अभिविन्यास आव्यूह के निर्धारक के संकेत के रूप में की जा सकती है। विशेष मामले में जब दो वैक्टर को सामान्य अंत बिन्दु के साथ दो रेखा खंड द्वारा परिभाषित किया जाता है, जैसे कि हमारे उदाहरण में कोण ABC के किनारे BA और BC, अभिविन्यास आव्यूह को इस प्रकार परिभाषित किया जा सकता है:

इसके सारणिक के लिए एक सूत्र प्राप्त किया जा सकता है, उदाहरण के लिए, सहगुणक विस्तार की विधि का उपयोग करके:

यदि सारणिक ऋणात्मक है, तो बहुभुज दक्षिणावर्त उन्मुख होता है। यदि सारणिक धनात्मक है, तो बहुभुज वामावर्त उन्मुख होता है। यदि बिंदु A, B और C असंरेखित हैं, तो सारणिक शून्य नहीं है। उपरोक्त उदाहरण में, अंक A, B, C, आदि के क्रम में, सारणिक ऋणात्मक है, और इसलिए बहुभुज दक्षिणावर्त है।

व्यावहारिक विचार

व्यावहारिक अनुप्रयोगों में, निम्नलिखित बातों को साधारणतया ध्यान में रखा जाता है।

एक उपयुक्त शीर्ष खोजने के लिए बहुभुज के उत्तल आवरण के निर्माण की आवश्यकता नहीं है। सबसे छोटा X-निर्देशांक वाले बहुभुज का शीर्ष एक सामान्य विकल्प है। यदि उनमें से अनेक हैं, तो सबसे छोटा Y-निर्देशांक वाला चुना जाता है। यह बहुभुज के उत्तल पतवार का शीर्ष होने की गारंटी है। वैकल्पिक रूप से, सबसे बड़े X-निर्देशांक वाले सबसे छोटे Y-निर्देशांक वाले शीर्ष या सबसे बड़े Y-निर्देशांक वाले सबसे छोटे X-निर्देशांक वाले शीर्ष (या 8 सबसे छोटे, सबसे बड़े X/Y संयोजनों में से कोई भी अन्य) ) भी करेंगे। एक बार उत्तल पतवार का एक शीर्ष चुना जाता है, तो कोई पिछले और अगले कोने का उपयोग करके सूत्र लागू कर सकता है, भले ही वे उत्तल पतवार पर न हों, क्योंकि इस शीर्ष पर कोई स्थानीय अवतलता नहीं हो सकती है।

यदि उत्तल बहुभुज का उन्मुखीकरण मांगा जाता है, तो निश्चित रूप से, किसी भी शीर्ष को चुना जा सकता है।

संख्यात्मक कारणों के लिए, सारणिक के लिए निम्नलिखित समतुल्य सूत्र सामान्यतः प्रयोग किया जाता है:

बाद वाले सूत्र में चार गुणन कम है। अधिकांश व्यावहारिक अनुप्रयोगों में शामिल कंप्यूटर संगणनाओं में क्या अधिक महत्वपूर्ण है, जैसे कि कंप्यूटर आलेखिकी (ग्राफिक्स) या कंप्यूटर एडेड डिजाइन , गुणक के निरपेक्ष मान साधारणतया छोटे होते हैं (जैसे, जब A, B, C एक ही चतुर्थांश (समतल ज्यामिति) के भीतर होते हैं। ), इस प्रकार एक छोटी संख्यात्मक त्रुटि दे रही है या, चरम विषयो में, अंकगणितीय अतिप्रवाह से बचना।

जब यह पहले से ज्ञात न हो कि बिंदुओं का क्रम एक साधारण बहुभुज को परिभाषित करता है, तो निम्नलिखित बातों को ध्यान में रखना चाहिए।

एक स्व-प्रतिच्छेदी बहुभुज (जटिल बहुभुज ) (या किसी आत्म-प्रतिच्छेद वक्र के लिए) के लिए आंतरिक की कोई प्राकृतिक धारणा नहीं है, इसलिए अभिविन्यास परिभाषित नहीं है। साथ ही, ज्यामिति और कंप्यूटर ग्राफिक्स में बंद गैर-सरल वक्रों के लिए इंटीरियर की धारणा को बदलने के लिए कई अवधारणाएं हैं; देखें, उदाहरण के लिए, बाढ़ भरना और घुमावदार संख्या

आत्म-प्रतिच्छेदन के हल्के विषयो में, अध: पतन (गणित) शिखर के साथ जब तीन लगातार बिंदुओं को एक ही सीधी रेखा पर होने और शून्य-डिग्री कोण बनाने की अनुमति दी जाती है, तो इंटीरियर की अवधारणा अभी भी समझ में आती है, लेकिन इसमें एक अतिरिक्त देखभाल की जानी चाहिए परीक्षण कोण का चयन। दिए गए उदाहरण में, बिंदु A को खंड BC पर स्थित करने की कल्पना करें। इस स्थिति में कोण ABC और उसका सारणिक 0 होगा, अत: अनुपयोगी है। एक समाधान बहुभुज (BCD ,DIF ,...) के साथ लगातार कोनों का परीक्षण करना है जब तक कि एक गैर-शून्य निर्धारक न मिल जाए (जब तक कि सभी बिंदु एक ही सीधी रेखा पर न हों)। (ध्यान दें कि बिंदु C, D, E एक ही रेखा पर हैं और शून्य सारणिक के साथ 180 डिग्री का कोण बनाते हैं।)

स्थानीय अंतराल

एक बार जब शीर्षों के एक क्रमबद्ध समूह से बने बहुभुज का अभिविन्यास ज्ञात हो जाता है, तो बहुभुज के स्थानीय क्षेत्र के अवतल बहुभुज को दूसरे अभिविन्यास आव्यूह का उपयोग करके निर्धारित किया जा सकता है। यह आव्यूह लगातार तीन शीर्षों से बना होता है, जिनकी अवतलता के लिए जांच की जा रही है। उदाहरण के लिए, ऊपर चित्रित बहुभुज में, यदि हम यह जानना चाहते हैं कि क्या बिंदुओं का क्रम F-G-H अवतल समुच्चय, उत्तल समुच्चय, या संरेख (सपाट) है, तो हम आव्यूह का निर्माण करते हैं

यदि इस आव्यूह का सारणिक 0 है, तो अनुक्रम संरेख है - न तो अवतल और न ही उत्तल। यदि सारणिक के पास पूरे बहुभुज के लिए अभिविन्यास आव्यूह के समान चिह्न है, तो अनुक्रम उत्तल है। यदि संकेत भिन्न हैं, तो अनुक्रम अवतल है। इस उदाहरण में, बहुभुज ऋणात्मक रूप से उन्मुख है, लेकिन F-G-H बिंदुओं के लिए सारणिक धनात्मक है, और इसलिए अनुक्रम F-G-H अवतल है।

निम्न तालिका यह निर्धारित करने के लिए नियमों को दर्शाती है कि क्या बिंदुओं का क्रम उत्तल, अवतल या समतल है:

नकारात्मक रूप से उन्मुख बहुभुज (घड़ी की दिशा में) सकारात्मक रूप से उन्मुख बहुभुज (वामावर्त)
स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक ऋणात्मक है बिंदुओं का उत्तल क्रम बिंदुओं का अवतल क्रम
स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक सकारात्मक है बिंदुओं का अवतल क्रम बिंदुओं का उत्तल क्रम
स्थानीय बिंदुओं के लिए अभिविन्यास आव्यूह का निर्धारक 0 है बिंदुओं का संरेखीय क्रम बिंदुओं का संरेखीय क्रम


यह भी देखें

संदर्भ


इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची

  • अंक शास्त्र
  • विविध
  • पार उत्पाद
  • वर्टेक्स (ज्यामिति)
  • सिद्ध
  • समरेख
  • स्व-प्रतिच्छेद बहुभुज
  • अंकगणित अतिप्रवाह
  • विकृति (गणित)
  • चतुर्थांश (समतल ज्यामिति)
  • बाढ़ भराव
  • अवतल सेट
  • उत्तल सेट
  • उन्मुखता

बाहरी संबंध