प्रतिच्छेदी संख्या: Difference between revisions
m (8 revisions imported from alpha:प्रतिच्छेदी_संख्या) |
No edit summary |
||
Line 152: | Line 152: | ||
*{{Citation | last1=Kleiman | first1=Steven L. | author1-link=Steven Kleiman | title=Fundamental algebraic geometry | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Math. Surveys Monogr. | mr=2223410 | year=2005 | volume=123 | chapter=The Picard scheme: Appendix B. |arxiv=math/0504020| bibcode=2005math......4020K }} | *{{Citation | last1=Kleiman | first1=Steven L. | author1-link=Steven Kleiman | title=Fundamental algebraic geometry | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Math. Surveys Monogr. | mr=2223410 | year=2005 | volume=123 | chapter=The Picard scheme: Appendix B. |arxiv=math/0504020| bibcode=2005math......4020K }} | ||
*{{Citation | last1=Kollár | first1=János | author1-link=Janos Kollar | title=Rational Curves on Algebraic Varieties | publisher=[[Springer-Verlag]] | location=Berlin, Heidelberg | isbn=978-3-642-08219-1 | doi=10.1007/978-3-662-03276-3 | mr=1440180 | year=1996 }} | *{{Citation | last1=Kollár | first1=János | author1-link=Janos Kollar | title=Rational Curves on Algebraic Varieties | publisher=[[Springer-Verlag]] | location=Berlin, Heidelberg | isbn=978-3-642-08219-1 | doi=10.1007/978-3-662-03276-3 | mr=1440180 | year=1996 }} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | [[Category:Articles with short description]] | ||
[[Category:Created On 25/11/2022]] | [[Category:Created On 25/11/2022]] | ||
[[Category: | [[Category:Machine Translated Page]] | ||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:बीजगणितीय ज्यामिति]] |
Latest revision as of 21:51, 7 December 2022
गणित में, और विशेष रूप से बीजगणितीय ज्यामिति में, प्रतिच्छेदन संख्या उच्च विमाओं, एकाधिक (2 से अधिक) वक्रों, और स्पर्शिता के लिए उचित रूप से लेखांकन के लिए दो वक्रों के प्रतिच्छेदन की संख्या की गणना करने की सहज धारणा को सामान्यीकृत करती है। बेज़ाउट के प्रमेय जैसे परिणामों को निर्धारित करने के लिए, प्रतिच्छेदन संख्या की परिभाषा की आवश्यकता होती है।
कुछ स्थितियों में प्रतिच्छेदन संख्या स्पष्ट होती है, प्रथम स्थिति जैसे की x-अक्ष तथा y-अक्ष का प्रतिच्छेदन। स्पर्शिता के प्रतिच्छेदन बिंदु और सुनिश्चित विमीय समुच्चय के साथ प्रतिच्छेदन के गणना करते समय जटिलता प्रवेश करती है। उदाहरण के लिए, यदि कोई समतल किसी रेखा के अनुदिश किसी पृष्ठ पर स्पर्शी होता है, अतः रेखा के साथ प्रतिच्छेदन संख्या कम से कम दो होनी चाहिए। प्रतिच्छेदन सिद्धांत में इन प्रश्नों पर व्यवस्थित रूप से चर्चा की जाती है।
रीमैन पृष्ठों के लिए परिभाषा
मान लीजिए कि X एक रीमैन पृष्ठ है। तत्पश्चात X पर दो संवृत वक्रों के प्रतिच्छेदन संख्या की समाकलन के संदर्भ में एक सरल परिभाषा है। X (अर्थात, स्मूथ फलन ) पर प्रत्येक संवृत वक्र c के लिए, हम गुण धर्म के साथ सघन आश्रय के अवकल रूप को संबद्ध कर सकते हैं, जो कि c के अनुदिश इंटीग्रल X पर समाकल द्वारा गणना की जा सकती है:
- , हर संवृत (1-)अंतर के लिए X पर ,
जहाँ अवकल का वेज गुणन है और हॉज स्टार है। फिर X पर दो संवृत वक्रों, a और b की प्रतिच्छेदन संख्या को निम्न रूप में परिभाषित किया गया है।
की सहज परिभाषा निम्नानुसार है। वे वक्र c के साथ एक प्रकार का डायरैक डेल्टा होता हैं, जो इकाई चरण फलन के अवकल को ले कर प्राप्त किया जाता है जो 1 से 0 तक c तक गिरता है। अधिक औपचारिक रूप से, हम X पर एक साधारण संवृत वक्र c के लिए परिभाषित करते हुए शुरू करते हैं, एक फलन fc को वलयिका के आकार में c के चारों ओर एक छोटी सी स्ट्रीप के मानने पर। के बाएँ और दाएँ भागों को और के रूप में नाम दें। फिर c, के चारों ओर एक छोटी उप-स्ट्रिप लें, जिसमें बाएँ और दाएँ भाग और हों। फिर fc को निम्न प्रकार परिभाषित किया गया है
- .
फिर परिभाषा को यादृच्छिक संवृत वक्रों तक विस्तारित किया जाता है। X पर प्रत्येक संवृत वक्र c कुछ सरल संवृत वक्र ci के लिए के समरूप होता है, अर्थात,
- , प्रत्येक अवकल के लिए ।
निम्न द्वारा परिभाषित किया गया है
- .
बीजगणितीय प्रकारों के लिए परिभाषा
बीजगणितीय प्रकारों की स्थिति में सामान्य रचनात्मक परिभाषा चरणों में होती है। नीचे दी गई परिभाषा एक व्युत्क्रमणीय प्रकार X पर विभाजकों की प्रतिच्छेदन संख्या के लिए है।
1. एकमात्र प्रतिच्छेदन संख्या जिसकी सीधे परिभाषा से गणना की जा सकती है, अति-पृष्ठ (हाइपरसर्फ्स) (एक सह-विमा के X का उप-प्रकार) का प्रतिच्छेदन है जो x पर सामान्य स्थिति में होता हैं। विशेष रूप से, माना कि हमारे पास एक व्युत्क्रमणीय प्रकार X है, और n अति-पृष्ठ (हाइपरसर्फ्स) Z1, ..., Zn जिसमें बहुपद fi(t1, ..., tn) के लिए x के पास स्थानीय समीकरण f1, ..., fn हैं, जैसे कि निम्नलिखित दिया गया है:
- .
- प्रत्येक i के लिए (अर्थात, x अति-पृष्ठ (हाइपरसर्फ्स) के प्रतिच्छेदन पर है।)
- (अर्थात भाजक सामान्य स्थिति में हैं।)
- x पर व्युत्क्रमणीय हैं।
अतः बिंदु x पर प्रतिच्छेदन संख्या (जिसे x पर 'प्रतिच्छेदन बहुलता' कहा जाता है) है
- ,
जहाँ x पर X का स्थानीय वलय है, और विमा k-सदिश समष्टि के रूप में विमा है। इसकी गणना स्थानीयकरण के रूप में की जा सकती है, जहाँ x पर लुप्त होने वाले बहुपदों का अधिकतम आदर्श है, और U एक विवृत सजातीय समुच्चय है जो x और fi की कोई भी विलक्षणता नहीं रखता है।
2. सामान्य स्थिति में अति-पृष्ठ (हाइपरसर्फ्स) की प्रतिच्छेदन संख्या को तत्पश्चात प्रतिच्छेदन के प्रत्येक बिंदु पर प्रतिच्छेदन संख्याओं के योग के रूप में परिभाषित किया जाता है।
3. रैखिकता द्वारा प्रभावी विभाजकों की परिभाषा का विस्तार करें, अर्थात
- तथा
4. प्रत्येक विभाजक को कुछ प्रभावी विभाजक P और N के लिए D = P - N के रूप में एक अद्वितीय अभिव्यक्ति की सूचना देकर सामान्य स्थिति में यादृच्छिक भाजक की परिभाषा का विस्तार करें। अतः Di = Pi - Ni, और निम्न रूप के नियमों का उपयोग करें
प्रतिच्छेदन को रूपांतरित करने के लिए।
5. यादृच्छिक विभाजकों की प्रतिच्छेदन संख्या को "चाउ का प्रगामी स्वीकृत सिद्धांत (मूविंग लेम्मा)" का उपयोग करके परिभाषित किया जाता है, जो गारंटी देता है कि हम सामान्य स्थिति में रैखिक रूप से समतुल्य विभाजक प्राप्त कर सकते हैं, जिसे हम तत्पश्चात प्रतिच्छेदित कर सकते है।
ध्यान दें कि प्रतिच्छेदन संख्या की परिभाषा उस क्रम पर निर्भर नहीं करती है जिसमें विभाजक इस संख्या की गणना में दिखाई देते हैं।
सेरे का टोर सूत्र
माना V और W को एक व्युत्क्रमणीय प्रक्षेपी प्रकार X की दो उप-प्रकारें है जैसे कि dim(V)+dim(W)=dim(X)। तत्पश्चात हम अपेक्षा करते हैं कि प्रतिच्छेदन V∩W बिंदुओं का एक परिमित समुच्चय होगा। यदि हम इनकी गणना करने का प्रयास करें तो दो प्रकार की समस्याएँ उत्पन्न हो सकती हैं। सर्वप्रथम, भले ही V∩W का अपेक्षित विमा शून्य हो, वास्तविक प्रतिच्छेदन बड़ी विमा का हो सकती है। उदाहरण के लिए, हम एक प्रक्षेपी तल में एक प्रक्षेपी रेखा के स्वयं-प्रतिच्छेदन संख्या को खोजने का प्रयास कर सकते हैं। दूसरी संभावित समस्या यह है कि यदि प्रतिच्छेदन शून्य-विमीय है, तो भी यह गैर-अनुप्रस्थ हो सकता है। उदाहरण के लिए, V समतल वक्र W के लिए एक स्पर्श रेखा हो सकती है।
पहली समस्या के लिए प्रतिच्छेदन सिद्धांत की मशीनरी की आवश्यकता होती है, जिसकी ऊपर विस्तार से चर्चा की गई है। आवश्यक विचार यह है कि प्रगामी स्वीकृत सिद्धांत का उपयोग करके V और W को अधिक सुविधाजनक उप-प्रकारों से प्रतिस्थापित किया जाए। दूसरी ओर, दूसरी समस्या को सीधे V या W को स्थानांतरित किए बिना हल किया जा सकता है। 1965 में जीन पियरे सेरे ने वर्णन किया कि कैसे क्रमविनिमेय बीजगणित और समरूप बीजगणित के तरीकों से प्रत्येक प्रतिच्छेदन बिंदु की बहुलता को खोजा जाए।[1] प्रतिच्छेदन की एक ज्यामितीय धारणा और एक व्युत्पन्न टेन्सर गुणन की एक समरूप धारणा के बीच यह संबंध प्रभावशाली रहा है और विशेष रूप से कम्यूटेटिव बीजगणित में कई समरूप अनुमानों का नेतृत्व किया।
सेर्रे का टोर सूत्र निम्नलिखित परिणाम है। बता दें कि X एक नियमित प्रकार है, V और W दो पूरक विमा की उप-प्रकारें हैं जैसे V∩W शून्य-विमीय है। किसी भी बिंदु x∈V∩W के लिए, A को x का स्थानीय रिंग होने दें। X पर V और W की संरचना शीफ आदर्श I, J⊆A के अनुरूप है। फिर बिंदु X पर V∩W की बहुलता है
जहाँ लंबाई स्थानीय वलय के ऊपर एक प्रमात्रक की लंबाई है, और टोर, टोर प्रकार्यक है। जब V और W को एक अनुप्रस्थ स्थिति में स्थानांतरित किया जा सकता है, तो यह तुल्यता (होमोलॉजिकल) सूत्र अपेक्षित उत्तर उत्पन्न करता है। इसलिए, उदाहरण के लिए, यदि V और W x पर अनुप्रस्थतः मिलते हैं, अतः बहुलता 1 है। यदि V किसी बिंदु x पर एक परवलय W के बिंदु x पर एक स्पर्श रेखा है, अतः x पर बहुलता 2 है।
यदि V और W दोनों नियमित अनुक्रमों द्वारा स्थानीय रूप से कर्तित किया जाता हैं, उदाहरण के लिए यदि वे व्युत्क्रमणीय हैं, तो सभी उच्च टोर के ऊपर के सूत्र में लुप्त हो जाते हैं, इसलिए बहुलता धनात्मक है। स्वेच्छिक स्थिति में धनात्मकता सेरे के बहुलता अनुमानों में से एक है।
अग्रिम परिभाषाएँ
परिभाषा को व्यापक रूप से सामान्यीकृत किया जा सकता है, उदाहरण के लिए केवल बिंदुओं के बजाय उप-प्रकारों के साथ प्रतिच्छेदनों पर, या पूरी तरह से यादृच्छिक करने के लिए।
बीजगणितीय टोपोलॉजी में, प्रतिच्छेदन संख्या कप गुणन के पोंकारे द्वैत के रूप में प्रकट होती है। विशेष रूप से, यदि दो कई गुना, X और Y, कई गुना M में अनुप्रस्थ रूप से प्रतिच्छेद करते हैं, तो प्रतिच्छेदन का समरूपता वर्ग X और Y के पोंकारे द्वैत के कप गुणन का पोंकारे द्वैत है।
स्नैपर-क्लेमन प्रतिच्छेदन संख्या की परिभाषा
1959-60 में स्नैपर द्वारा प्रस्तुत किया गया और बाद में कार्टियर और क्लेमन द्वारा विकसित, प्रतिच्छेदन संख्या के लिए एक दृष्टिकोण है, जो एक प्रतिच्छेदन संख्या को यूलर विशेषता के रूप में परिभाषित करता है।
माना X को एक योजना S, पीआईसी(X) X और G के पिकार्ड समूह पर X पर सामंजस्यपूर्ण शीवेस की श्रेणी के ग्रोथेंडिक समूह पर एक योजना है, जिसका समर्थन S के आर्टिनियन सबस्कैम पर उचित है।
पीआईसी(X) में प्रत्येक L के लिए, G के अंतःरूपांतरण c1(L) को परिभाषित करें (जिसे L का पहला चेर्न वर्ग कहा जाता है)
यह G पर योगात्मक है चूंकि रेखा समूह के साथ टेंसरिंग यथार्थ है। यह भी ज्ञात है:
- ; विशेष रूप से, तथा कम्यूट।
- (यह असतहीय है और एक विचलन तर्क से आता है।)
प्रतिच्छेदन संख्या
लाइन बंडलों की Li's इसके द्वारा परिभाषित किया गया है:
जहाँ χ यूलर विशेषता को दर्शाता है। वैकल्पिक रूप से, किसी के पास प्रेरण है:
सदैव F नियत होता है, Li's में एक सममित कार्यात्मक है।
यदि Li = OX(Di) कुछ कार्टियर विभाजकों के लिए Di's है, अतः हम लिखेंगे प्रतिच्छेदन संख्या के लिए।
माना S-योजनाओं का एक रूपवाद हो, के साथ 'G' में X और F पर लाइन बंडल . फिर
- .[2]
समतल वक्रों के लिए प्रतिच्छेदन गुणक
प्रक्षेप्य वक्रों की एक जोड़ी, और , में और एक बिंदु , एक संख्या , जिसे पर और की प्रतिच्छेदन बहुलता कहा जाता है, जो निम्नलिखित गुणों को संतुष्ट करता है, प्रत्येक ट्रिपलेट को निर्दिष्ट करने वाला एक अनूठा कार्य है:
- यदि और केवल यदि तथा एक सामान्य कारक है जो शून्य है
- यदि और केवल यदि में से एक या अशून्य है (अर्थात बिंदु एक वक्र से बाहर है)
- जहाँ
- किसी के लिए
यद्यपि ये गुण पूरी तरह से प्रतिच्छेदन बहुलता की विशेषता रखते हैं, व्यवहार में इसे कई अलग-अलग तरीकों से महसूस किया जाता है।
प्रतिच्छेदन बहुलता का एक बोध शक्ति श्रृंखला वलय के एक निश्चित भागफल स्थान के विमा के माध्यम से होता है। यदि आवश्यक हो तो चर में परिवर्तन करके, हम मान सकते हैं। और को बीजगणितीय वक्रों को परिभाषित करने वाले बहुपदों में रुचि रखते हैं। यदि मूल समीकरण सजातीय रूप में दिए गए हैं, तो इन्हें समुच्चय करके प्राप्त किया जा सकता है। मान लीजिए कि और द्वारा उत्पन्न के आदर्श को दर्शाता है। प्रतिच्छेदन बहुलता से अधिक सदिश समष्टि के रूप में का विमा है।
प्रतिच्छेदन बहुलता का एक अन्य बोध दो बहुपदों और के परिणाम से आता है। निर्देशांक में जहाँ , वक्रों में के साथ कोई अन्य प्रतिच्छेदन नहीं है, और के संबंध में की डिग्री की कुल डिग्री के बराबर है, को की उच्चतम शक्ति के रूप में परिभाषित किया जा सकता है जो और के परिणाम को विभाजित करता है ( और के साथ से अधिक बहुपदों के रूप में देखा जाता है)।
प्रतिच्छेदनों की बहुलता को अलग-अलग प्रतिच्छेदनों की संख्या के रूप में भी महसूस किया जा सकता है जो वक्रों थोड़ा क्षुब्ध हो। अधिक विशेष रूप से, यदि और वक्र परिभाषित करते हैं जो एक विवृत समुच्चय के समापन होने पर केवल एक बार प्रतिच्छेद करते हैं, फिर , और के एक सघन समुच्चय के लिए चिकने होते हैं और अनुप्रस्थ रूप से प्रतिच्छेद करते हैं (अर्थात अलग-अलग स्पर्श रेखाएँ हैं) में ठीक बिंदुओं पर। हम कहते हैं कि ।
उदाहरण
परवलय के साथ x-अक्ष के प्रतिच्छेदन पर विचार करें
फिर
तथा
अतः
इस प्रकार, प्रतिच्छेदन की डिग्री दो है; यह एक साधारण स्पर्शरेखा है।
स्व-प्रतिच्छेदन
गणना करने के लिए सबसे दिलचस्प प्रतिच्छेदन संख्याओं में से कुछ स्वयं-प्रतिच्छेदन संख्याएं हैं I इसे भोले भाव में नहीं लेना चाहिए। इसका अर्थ यह है कि, किसी विशिष्ट प्रकार के विभाजकों के एक समतुल्य वर्ग में, दो प्रतिनिधि प्रतिच्छेदित होते हैं जो एक दूसरे के संबंध में सामान्य स्थिति में होते हैं। इस तरह, स्व-प्रतिच्छेदन संख्या अच्छी तरह से परिभाषित हो सकती है, और यहां तक कि नकारात्मक भी हो सकती है।
अनुप्रयोग
प्रतिच्छेदन संख्या आंशिक रूप से बेजाउट के प्रमेय को संतुष्ट करने के लिए प्रतिच्छेदन को परिभाषित करने की इच्छा से प्रेरित है।
प्रतिच्छेदन संख्या निश्चित बिंदुओं के अध्ययन में उत्पन्न होती है, जिसे चतुराई से एक विकर्ण के साथ फलन ग्राफ़ के प्रतिच्छेदनों के रूप में परिभाषित किया जा सकता है। नियत बिंदुओं पर प्रतिच्छेदन संख्याओं की गणना बहुलता के साथ नियत बिंदुओं की गणना करता है, और मात्रात्मक रूप में लेफस्केटज़ नियत-बिंदु प्रमेय की ओर जाता है।
टिप्पणियाँ
- ↑ Serre, Jean-Pierre (1965). स्थानीय बीजगणित, गुणक. Lecture Notes in Mathematics. Vol. 11. Springer-Verlag. pp. x+160.
- ↑ Kollár 1996, Ch VI. Proposition 2.11
संदर्भ
- William Fulton (1974). Algebraic Curves. Mathematics Lecture Note Series. W.A. Benjamin. pp. 74–83. ISBN 0-8053-3082-8.
- Robin Hartshorne (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. ISBN 0-387-90244-9. Appendix A.
- William Fulton (1998). Intersection Theory (2nd ed.). Springer. ISBN 9780387985497.
- Algebraic Curves: An Introduction To Algebraic Geometry, by William Fulton with Richard Weiss. New York: Benjamin, 1969. Reprint ed.: Redwood City, CA, USA: Addison-Wesley, Advanced Book Classics, 1989. ISBN 0-201-51010-3. Full text online.
- Hershel M. Farkas; Irwin Kra (1980). Riemann Surfaces. Graduate Texts in Mathematics. Vol. 71. pp. 40–41, 55–56. ISBN 0-387-90465-4.
- Kleiman, Steven L. (2005), "The Picard scheme: Appendix B.", Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: American Mathematical Society, arXiv:math/0504020, Bibcode:2005math......4020K, MR 2223410
- Kollár, János (1996), Rational Curves on Algebraic Varieties, Berlin, Heidelberg: Springer-Verlag, doi:10.1007/978-3-662-03276-3, ISBN 978-3-642-08219-1, MR 1440180