अल्प सम्मुचय: Difference between revisions

From Vigyanwiki
No edit summary
Line 29: Line 29:
(1) किसी छोटे समुच्चय का कोई उपसमुच्चय छोटा होता है; (2) छोटे समुच्चयों का कोई भी गणनीय संघ छोटा होता है। इस प्रकार एक निश्चित स्थान के तुच्छ उपसमुच्चय, उपसमुच्चयों के σ-मानक का निर्माण करते हैं, जो नगण्य समुच्चय की एक उपयुक्त धारणा है। और, समतुल्य (1), गैर-लघु समुच्चय का कोई भी सुपरसेट गैर-अल्प है।
(1) किसी छोटे समुच्चय का कोई उपसमुच्चय छोटा होता है; (2) छोटे समुच्चयों का कोई भी गणनीय संघ छोटा होता है। इस प्रकार एक निश्चित स्थान के तुच्छ उपसमुच्चय, उपसमुच्चयों के σ-मानक का निर्माण करते हैं, जो नगण्य समुच्चय की एक उपयुक्त धारणा है। और, समतुल्य (1), गैर-लघु समुच्चय का कोई भी सुपरसेट गैर-अल्प है।


वास्तव में, (1) कोमाग्रे सेट का कोई सुपरसेट कॉमाग्रे है; (2) सह अल्प सेट का कोई भी गणनीय सह अल्प है।
वास्तव में, (1) सह अल्प समुच्चय का कोई सुपरसेट कॉमाग्रे है; (2) सह अल्प सेट का कोई भी गणनीय सह अल्प है।


मान लीजिए <math>A\subseteq Y\subseteq X,</math> कहाँ पे <math>Y</math> सबस्पेस टोपोलॉजी से प्रेरित है <math>X.</math> सेट <math>A</math> में अल्प हो सकता है <math>X</math> में अल्प होने के बिना <math>Y.</math> हालाँकि निम्नलिखित परिणाम धारण करते हैं:{{sfn|Bourbaki|1989|p=192}}
मान लीजिए <math>A\subseteq Y\subseteq X,</math> कहाँ पे <math>Y</math> सबस्पेस टोपोलॉजी से प्रेरित है <math>X.</math> सेट <math>A</math> में अल्प हो सकता है <math>X</math> में अल्प होने के बिना <math>Y.</math> हालाँकि निम्नलिखित परिणाम धारण करते हैं:{{sfn|Bourbaki|1989|p=192}}
Line 39: Line 39:
* यदि <math>Y</math> में खुला है <math>X,</math> फिर <math>A</math> में अल्प है <math>Y</math> अगर और केवल अगर <math>A</math> में अल्प है <math>X.</math>
* यदि <math>Y</math> में खुला है <math>X,</math> फिर <math>A</math> में अल्प है <math>Y</math> अगर और केवल अगर <math>A</math> में अल्प है <math>X.</math>
* यदि <math>Y</math> में घना है <math>X,</math> फिर <math>A</math> में अल्प है <math>Y</math> अगर और केवल अगर <math>A</math> में अल्प है <math>X.</math>
* यदि <math>Y</math> में घना है <math>X,</math> फिर <math>A</math> में अल्प है <math>Y</math> अगर और केवल अगर <math>A</math> में अल्प है <math>X.</math>
विशेष रूप से, का हर सबसेट <math>X</math> जो अपने आप में अल्प है वह अपने आप में अल्प है <math>X.</math> का हर उपसमुच्चय <math>X</math> वह गैर-अल्प है <math>X</math> अपने आप में तुच्छ है। और एक खुले सेट या घने समुच्चय के लिए <math>X,</math> में अल्प होना <math>X</math> अपने आप में अल्प होने के बराबर है, और इसी तरह गैर-संपत्ति के लिए।
विशेष रूप से, का हर उपसमुच्चय <math>X</math> जो अपने आप में अल्प है वह अपने आप में अल्प है <math>X.</math> का हर उपसमुच्चय <math>X</math> वह गैर-अल्प है <math>X</math> अपने आप में तुच्छ है। और एक खुले सेट या घने समुच्चय के लिए <math>X,</math> में अल्प होना <math>X</math> अपने आप में अल्प होने के बराबर है, और इसी तरह गैर-संपत्ति के लिए।


कोई भी टोपोलॉजिकल स्पेस जिसमें एक [[पृथक बिंदु]] होता है, नॉनमग्रे होता है (क्योंकि पृथक बिंदु वाला कोई भी सेट कहीं भी घना नहीं हो सकता है)। विशेष रूप से, प्रत्येक गैर-खाली [[असतत स्थान]] गैर-महत्वपूर्ण है।
कोई भी टोपोलॉजिकल स्पेस जिसमें एक [[पृथक बिंदु]] होता है, गैर-अल्प होता है (क्योंकि पृथक बिंदु वाला कोई भी सेट कहीं भी घना नहीं हो सकता है)। विशेष रूप से, प्रत्येक गैर-खाली [[असतत स्थान]] गैर-महत्वपूर्ण है।


एक टोपोलॉजिकल स्पेस <math>X</math> गैर-अल्प है अगर और केवल अगर <math>X</math> में घने खुले समुच्चयों का प्रत्येक गणनीय प्रतिच्छेदन गैर-रिक्त है।{{sfn|Willard|2004|loc=Theorem 25.2}}
एक टोपोलॉजिकल स्पेस <math>X</math> गैर-अल्प है अगर और केवल अगर <math>X</math> में घने खुले समुच्चयों का प्रत्येक गणनीय प्रतिच्छेदन गैर-रिक्त है।{{sfn|Willard|2004|loc=Theorem 25.2}}


हर गैर-रिक्त बायर स्थान गैर-अल्प है। विशेष रूप से, बायर श्रेणी प्रमेय द्वारा, प्रत्येक गैर-खाली [[पूर्ण मीट्रिक स्थान]] और प्रत्येक गैर-खाली [[स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ]] स्थान गैर-अल्प है।
हर गैर-रिक्त बायर स्थान गैर-अल्प है। विशेष रूप से, बायर श्रेणी प्रमेय द्वारा, प्रत्येक गैर-रिक्त [[पूर्ण मीट्रिक स्थान]] और प्रत्येक गैर-रिक्त [[स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ]] स्थान गैर-अल्प है।


=== बानाच श्रेणी प्रमेय: {{sfn|Oxtoby|1980|p=62}} ===
=== बानाच श्रेणी प्रमेय: {{sfn|Oxtoby|1980|p=62}} ===
Line 72: Line 72:
गैर अल्प स्पेस में <math>X=[0,1]\cup([2,3]\cap\Q)</math> समुच्चय <math>[2,3]\cap\Q</math> अल्प है। समुच्चय <math>[0,1]</math> गैर अल्प और सह अल्प है।
गैर अल्प स्पेस में <math>X=[0,1]\cup([2,3]\cap\Q)</math> समुच्चय <math>[2,3]\cap\Q</math> अल्प है। समुच्चय <math>[0,1]</math> गैर अल्प और सह अल्प है।


नॉनमेग्रे स्पेस में <math>X=[0,2]</math> सेट <math>[0,1]</math> नगण्य है। लेकिन यह कॉमएग्रे नहीं है, इसके पूरक के रूप में <math>(1,2]</math> क्षुद्र भी है।
गैर-अल्प स्पेस में <math>X=[0,2]</math> सेट <math>[0,1]</math> नगण्य है। लेकिन यह सह अल्प नहीं है, इसके पूरक के रूप में <math>(1,2]</math> क्षुद्र भी है।


एक गणनीय T1 स्थान | टी<sub>1</sub> पृथक बिंदु के बिना स्थान अल्प है। तो यह किसी भी स्थान में दुर्लभ है जिसमें इसे उप-स्थान के रूप में शामिल किया गया है। उदाहरण के लिए, <math>\Q</math> दोनों की अल्प उपसमष्टि है <math>\R</math> (अर्थात, उप-स्थान टोपोलॉजी से प्रेरित होने के साथ अपने आप में अल्प <math>\R</math>) और का एक अल्प उपसमुच्चय <math>\R.</math>
पृथक बिंदु के बिना एक गणनीय T1 स्थान अल्प है। तो यह किसी भी स्थान में दुर्लभ है जिसमें इसे उप-स्थान के रूप में शामिल किया गया है। उदाहरण के लिए, <math>\Q</math>, <math>\R</math> का अल्प उपसमूह है (अर्थात, R से प्रेरित उपस्थान टोपोलॉजी के साथ अपने आप में अल्प) और <math>\R</math> का अल्प उपसमुच्चय है।
[[कैंटर सेट]] कहीं भी सघन नहीं है <math>\R</math> और इसलिए अल्प में <math>\R.</math> लेकिन यह अपने आप में गैर-मामूली है, क्योंकि यह एक पूर्ण मीट्रिक स्थान है।


सेट <math>([0,1]\cap\Q)\cup\{2\}</math> कहीं सघन नहीं है <math>\R</math>है, लेकिन इसमें अल्प है <math>\R</math>. यह अपने आप में गैर-मामूली है (चूंकि एक उप-स्थान के रूप में इसमें एक पृथक बिंदु होता है)।
[[कैंटर सेट]] कहीं भी सघन नहीं है <math>\R</math> और इसलिए अल्प में <math>\R.</math> लेकिन यह अपने आप में गैर-अल्प है, क्योंकि यह एक पूर्ण मीट्रिक स्थान है।


रेखा <math>\R\times\{0\}</math> विमान में अल्प है <math>\R^2.</math> लेकिन यह एक नॉनमीग्रे सबस्पेस है, यानी यह अपने आप में नॉनमीग्रे है।
समुच्चय <math>([0,1]\cap\Q)\cup\{2\}</math> कहीं सघन नहीं है <math>\R</math>है, लेकिन इसमें अल्प है <math>\R</math>. यह अपने आप में गैर-अल्प है (चूंकि एक उप-स्थान के रूप में इसमें एक पृथक बिंदु होता है)।


अंतरिक्ष <math>(\Q \times \Q) \cup (\R\times\{0\})</math> (से प्रेरित टोपोलॉजी के साथ <math>\R^2</math>) अल्प है। इसका अल्प उपसमुच्चय <math>\R\times\{0\}</math> अपने आप में तुच्छ है।
रेखा <math>\R\times\{0\}</math> सतह में अल्प है <math>\R^2.</math> लेकिन यह एक गैर अल्प सबस्पेस है, यानी यह अपने आप में गैर अल्प है।


एक उपसमुच्चय है <math>H</math> वास्तविक संख्याओं का <math>\R</math> जो हर गैर-खाली खुले सेट को दो गैर-कम सेट में विभाजित करता है। यानी हर गैर-खाली खुले सेट के लिए <math>U\subseteq \mathbb{R}</math>, सेट <math>U\cap H</math> तथा <math>U \setminus H</math> दोनों ग़ैरमामूली हैं।
स्पेस <math>(\Q \times \Q) \cup (\R\times\{0\})</math> (से प्रेरित टोपोलॉजी के साथ <math>\R^2</math>) अल्प है। इसका अल्प उपसमुच्चय <math>\R\times\{0\}</math> अपने आप में कम नहीं है।


अंतरिक्ष में <math>C([0,1])</math> निरंतर वास्तविक-मूल्यवान कार्यों पर <math>[0,1]</math> समान अभिसरण की टोपोलॉजी के साथ, सेट <math>A</math> निरंतर वास्तविक-मूल्यवान कार्यों पर <math>[0,1]</math> जिसका किसी बिंदु पर व्युत्पन्न अल्प है।<ref>{{cite journal|author=Banach, S.|title=कार्यों के कुछ सेटों के बेयर की श्रेणी के बारे में|journal=Studia Math.|volume=3|issue=1|year=1931|pages=174–179|doi=10.4064/sm-3-1-174-179|url=https://eudml.org/doc/217560|doi-access=free}}</ref>{{sfn|Willard|2004|loc=Theorem 25.5}} तब से <math>C([0,1])</math> एक पूर्ण मीट्रिक स्थान है, यह गैर-मामूली है। तो का पूरक <math>A</math>, जिसमें निरंतर वास्तविक-मूल्यवान कहीं नहीं अलग-अलग कार्य होते हैं <math>[0,1],</math> कॉमएग्रे और नॉनमेग्रे है। विशेष रूप से वह सेट खाली नहीं है। यह निरंतर कहीं नहीं भिन्न होने वाले कार्यों के अस्तित्व को दिखाने का एक तरीका है।
एक उपसमुच्चय है <math>H</math> वास्तविक संख्याओं का <math>\R</math> जो हर गैर-खाली खुले समुच्चय को दो गैर-कम समुच्चय में विभाजित करता है। यानी हर गैर-खाली खुले समुच्चय के लिए <math>U\subseteq \mathbb{R}</math>, सेट <math>U\cap H</math> तथा <math>U \setminus H</math> दोनों गैर अल्प हैं।


== बनच-मजूर खेल ==
स्पेस में <math>C([0,1])</math> निरंतर वास्तविक-मूल्यवान कार्यों पर <math>[0,1]</math> समान अभिसरण की टोपोलॉजी के साथ, सेट <math>A</math> निरंतर वास्तविक-मूल्यवान कार्यों पर <math>[0,1]</math> जिसका किसी बिंदु पर व्युत्पन्न अल्प है।<ref>{{cite journal|author=Banach, S.|title=कार्यों के कुछ सेटों के बेयर की श्रेणी के बारे में|journal=Studia Math.|volume=3|issue=1|year=1931|pages=174–179|doi=10.4064/sm-3-1-174-179|url=https://eudml.org/doc/217560|doi-access=free}}</ref>{{sfn|Willard|2004|loc=Theorem 25.5}} तब से <math>C([0,1])</math> एक पूर्ण मीट्रिक स्थान है, यह गैर-अल्प है। तो का पूरक <math>A</math>, जिसमें निरंतर वास्तविक-मूल्यवान कहीं नहीं अलग-अलग कार्य होते हैं <math>[0,1],</math> सह अल्प और गैर-अल्प है। विशेष रूप से वह समुच्चय खाली नहीं है। यह निरंतर कहीं नहीं भिन्न होने वाले कार्यों के अस्तित्व को दिखाने का एक तरीका है।


बनच-मजूर गेम के संदर्भ में अल्प सेट का एक उपयोगी वैकल्पिक लक्षण वर्णन है।
== बानाच-मजूर खेल ==
होने देना <math>Y</math> एक सामयिक स्थान हो, <math>\mathcal{W}</math> के सबसेट का परिवार हो <math>Y</math> जिसमें गैर-खाली आंतरिक भाग होते हैं जैसे कि प्रत्येक गैर-खाली खुले सेट का एक उपसमुच्चय होता है <math>\mathcal{W},</math> तथा <math>X</math> का कोई उपसमुच्चय हो <math>Y.</math> इसके बाद बनच-मजूर गेम है <math>MZ(X, Y, \mathcal{W}).</math> बनच-मज़ूर खेल में, दो खिलाड़ी, <math>P</math> तथा <math>Q,</math> वैकल्पिक रूप से क्रमिक रूप से छोटे तत्वों का चयन करें <math>\mathcal{W}</math> एक क्रम उत्पन्न करने के लिए <math>W_1 \supseteq W_2 \supseteq W_3 \supseteq \cdots.</math> खिलाड़ी <math>P</math> जीतता है अगर इस अनुक्रम के चौराहे में एक बिंदु होता है <math>X</math>; अन्यथा, खिलाड़ी <math>Q</math> जीतता है।
 
बनच-मजूर गेम के संदर्भ में अल्प समुच्चय का एक उपयोगी वैकल्पिक लक्षण वर्णन है। <math>Y</math> एक सामयिक स्थान हो, <math>\mathcal{W}</math> के सबसेट का परिवार हो <math>Y</math> जिसमें गैर-रिक्त आंतरिक भाग होते हैं जैसे कि प्रत्येक गैर-रिक्त खुले सेट का एक उपसमुच्चय होता है <math>\mathcal{W},</math> तथा <math>X</math> का कोई उपसमुच्चय हो <math>Y.</math> इसके बाद बानाच-मजूर खेल है <math>MZ(X, Y, \mathcal{W}).</math> बानाच-मजूर खेल में, दो खिलाड़ी, <math>P</math> तथा <math>Q,</math> वैकल्पिक रूप से क्रमिक रूप से छोटे तत्वों का चयन करें <math>\mathcal{W}</math> एक क्रम उत्पन्न करने के लिए <math>W_1 \supseteq W_2 \supseteq W_3 \supseteq \cdots.</math> खिलाड़ी <math>P</math> जीतता है अगर इस अनुक्रम के प्रतिच्छेदन में एक बिंदु होता है <math>X</math>; अन्यथा, खिलाड़ी <math>Q</math> जीतता है।




Line 96: Line 96:
== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Barrelled space}}
* {{annotated link|Barrelled space}} - टोपोलॉजिकल वेक्टर स्पेस का प्रकार
* {{annotated link|Generic property}}, अवशिष्ट के अनुरूप के लिए
* {{annotated link|Generic property}}, अवशिष्ट के अनुरूप के लिए
* {{annotated link|Negligible set}}, अल्प के अनुरूप के लिए
* {{annotated link|Negligible set}}, अल्प के अनुरूप के लिए
* {{annotated link|Property of Baire}}
* {{annotated link|Property of Baire}} बायर की संपत्ति - एक अल्प समुच्चय द्वारा एक खुले समुच्चय का अंतर
 
 
==टिप्पणियाँ==
==टिप्पणियाँ==


{{reflist|group=note}}
{{reflist|group=note}}
{{reflist}}
{{reflist}}


==ग्रन्थसूची==
==ग्रन्थसूची==

Revision as of 21:58, 5 December 2022

सामान्य टोपोलॉजी के गणितीय क्षेत्र में, एक छोटा समुच्चय (जिसे अल्प समुच्चय या पहली श्रेणी का समुच्चय भी कहा जाता है) एक टोपोलॉजिकल स्पेस का एक सबसेट है जो नीचे दिए गए सटीक अर्थों में छोटा या नगण्य है। एक समुच्चय जो अल्प नहीं है, उसे गैर-समृद्ध या दूसरी श्रेणी का कहा जाता है। अन्य संबंधित शर्तों की परिभाषाओं के लिए नीचे देखें।

एक निश्चित स्थान के न्यूनतम उपसमुच्चय एक σ-मानक उपसमुच्चय बनाते हैं; अर्थात्, छोटे समुच्चय का कोई भी उपसमुच्चय छोटा होता है, और कई छोटे समुच्चयों का संघ छोटा होता है।

बेयर स्पेस और बेयर श्रेणी प्रमेय की धारणा के निर्माण में अल्प समुच्चय एक महत्वपूर्ण भूमिका निभाते हैं, जिसका उपयोग कार्यात्मक विश्लेषण के कई मूलभूत परिणामों के प्रमाण में किया जाता है।

परिभाषाएँ

हर जगह, एक टोपोलॉजिकल स्पेस होगा।

के एक उपसमुच्चय को में अल्प कहा जाता है, का अल्प उपसमुच्चय, या में पहली श्रेणी का, यदि यह X के कहीं नहीं सघन उपसमुच्चय का एक गणनीय संघ है (जहाँ कहीं भी सघन समुच्चय एक ऐसा समुच्चय है जिसका संवरण एक रिक्त आंतरिक भाग है ).[1] क्वालिफायर " में" छोड़ा जा सकता है यदि परिवेश स्थान तय हो और संदर्भ से समझा जाए।

एक उपसमुच्चय जो में कम नहीं है, में गैर अल्प उपसमुच्चय है या में दूसरी श्रेणी का है।[1]

एक टोपोलॉजिकल स्पेस को अल्प (क्रमशः, गैर अल्प उपसमुच्चय) कहा जाता है यदि यह स्वयं का अल्प (क्रमशः, गैर अल्प उपसमुच्चय) उपसमुच्चय है।[1]

X का एक उपसमुच्चय को में कोमेग्रे कहा जाता है, या में अवशिष्ट कहा जाता है, यदि इसका पूरक (सेट सिद्धांत सेट माइनस में अल्प है। (उपसर्ग "co" का यह प्रयोग अन्य शब्दों में इसके उपयोग के अनुरूप है जैसे " कोफिनिट"।) एक उपसमुच्चय में कमग्रे है अगर और केवल अगर यह समुच्चय के एक गणनीय क्रॉस के बराबर है, जिसका प्रत्येक इंटीरियर में घना है।

गैर अल्प और कॉमेग्रे की धारणाओं को भ्रमित नहीं किया जाना चाहिए। यदि स्थान अल्प है, तो प्रत्येक उपसमुच्चय अल्प और लघु दोनों है, और कोई भी अल्पांश समुच्चय नहीं है। यदि स्पेस नॉनमेयर है, तो कोई भी सेट एक ही समय में कम और कम नहीं है, प्रत्येक कॉमेग्रे सेट नॉनमेयर है, और ऐसे गैर अल्प समुच्चय हो सकते हैं जो कॉमेग्रे नहीं हैं, यानी गैर अल्प कॉम्प्लिमेंट के साथ। नीचे उदाहरण अनुभाग देखें।

शब्दावली के एक अतिरिक्त बिंदु के रूप में, यदि एक टोपोलॉजिकल स्पेस के एक उपसमुच्चय को से प्रेरित सबस्पेस टोपोलॉजी दिया जाता है, तो कोई इसके बारे में बात कर सकता है कि यह एक अल्प स्थान है, अर्थात् स्वयं का एक अल्प उपसमुच्चय (जब एक टोपोलॉजिकल स्पेस के रूप में माना जाता है) इसका अपना अधिकार)। इस मामले में, को का अल्प उप-स्थान भी कहा जा सकता है, जिसका अर्थ उप-स्थान टोपोलॉजी दिए जाने पर अल्प स्थान है। महत्वपूर्ण रूप से, यह संपूर्ण स्थान में अल्प होने के समान नहीं है। (दोनों के बीच संबंध के लिए नीचे गुण और उदाहरण अनुभाग देखें।) , जो पूरे स्पेस में गैर-अल्प होने के समान नहीं है। हालांकि जागरूक रहें कि टोपोलॉजिकल वेक्टर रिक्त स्थान के संदर्भ में कुछ लेखक "अल्प/गैर-अल्प उप-स्थान" वाक्यांश का उपयोग एक वेक्टर उप-स्थान के अर्थ में कर सकते हैं जो पूरे स्थान के सापेक्ष एक अल्प/गैर-अल्प समुच्चय है।[2]

पहली श्रेणी और दूसरी श्रेणी के शब्दों का मूल रूप से रेने बेयर ने अपने 1899 थीसिस में उपयोग किया था।[3] 1948 में निकोलस बोरबाकी द्वारा अल्पावधि पेश की गई थी।[4][5]

गुण

का हर कहीं नहीं-सघन उपसमुच्चय अल्प है। नतीजतन, एक खाली इंटीरियर के साथ कोई भी बंद उपसमुच्चय अल्प है। इस प्रकार के एक बंद गैर-मामूली उपसमुच्चय में एक गैर-खाली इंटीरियर होना चाहिए।

(1) किसी छोटे समुच्चय का कोई उपसमुच्चय छोटा होता है; (2) छोटे समुच्चयों का कोई भी गणनीय संघ छोटा होता है। इस प्रकार एक निश्चित स्थान के तुच्छ उपसमुच्चय, उपसमुच्चयों के σ-मानक का निर्माण करते हैं, जो नगण्य समुच्चय की एक उपयुक्त धारणा है। और, समतुल्य (1), गैर-लघु समुच्चय का कोई भी सुपरसेट गैर-अल्प है।

वास्तव में, (1) सह अल्प समुच्चय का कोई सुपरसेट कॉमाग्रे है; (2) सह अल्प सेट का कोई भी गणनीय सह अल्प है।

मान लीजिए कहाँ पे सबस्पेस टोपोलॉजी से प्रेरित है सेट में अल्प हो सकता है में अल्प होने के बिना हालाँकि निम्नलिखित परिणाम धारण करते हैं:[5]

  • यदि में अल्प है फिर में अल्प है
  • यदि में खुला है फिर में अल्प है अगर और केवल अगर में अल्प है
  • यदि में घना है फिर में अल्प है अगर और केवल अगर में अल्प है

और तदनुसार गैर अल्प सेट के लिए:

  • यदि में अल्प है फिर में अल्प है
  • यदि में खुला है फिर में अल्प है अगर और केवल अगर में अल्प है
  • यदि में घना है फिर में अल्प है अगर और केवल अगर में अल्प है

विशेष रूप से, का हर उपसमुच्चय जो अपने आप में अल्प है वह अपने आप में अल्प है का हर उपसमुच्चय वह गैर-अल्प है अपने आप में तुच्छ है। और एक खुले सेट या घने समुच्चय के लिए में अल्प होना अपने आप में अल्प होने के बराबर है, और इसी तरह गैर-संपत्ति के लिए।

कोई भी टोपोलॉजिकल स्पेस जिसमें एक पृथक बिंदु होता है, गैर-अल्प होता है (क्योंकि पृथक बिंदु वाला कोई भी सेट कहीं भी घना नहीं हो सकता है)। विशेष रूप से, प्रत्येक गैर-खाली असतत स्थान गैर-महत्वपूर्ण है।

एक टोपोलॉजिकल स्पेस गैर-अल्प है अगर और केवल अगर में घने खुले समुच्चयों का प्रत्येक गणनीय प्रतिच्छेदन गैर-रिक्त है।[6]

हर गैर-रिक्त बायर स्थान गैर-अल्प है। विशेष रूप से, बायर श्रेणी प्रमेय द्वारा, प्रत्येक गैर-रिक्त पूर्ण मीट्रिक स्थान और प्रत्येक गैर-रिक्त स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ स्थान गैर-अल्प है।

बानाच श्रेणी प्रमेय: [7]

किसी भी स्थलाकृतिक स्पेस में, अल्प खुले समुच्चयों के एक मनमाना संघ का मिलन एक अल्प समुच्चय है।

अल्प उपसमुच्चय और लेबेस्ग्यू माप

में अल्प समुच्चय के लिए आवश्यक नहीं है कि लेबेस्ग का माप शून्य हो, और पूर्ण माप भी हो सकता है। उदाहरण के लिए, अंतराल में मोटा कैंटर सेट घने कहीं भी बंद नहीं होते हैं और उन्हें मनमाने ढंग से के करीब एक माप के साथ बनाया जा सकता है। ऐसे समुच्चयों की एक गणनीय संख्या का मिलन 1 के करीब आने वाले माप के साथ होता है। माप 1 के साथ का अल्प उपसमुच्चय देता है।[8]

वास्तव में, माप शून्य के साथ गैर-अल्प समुच्चय हो सकते हैं। में माप के किसी भी अल्प सेट का पूरक (उदाहरण के लिए पिछले पैराग्राफ में एक) का माप है और में कम है, और इसलिए में गैर-अल्प है एक बेयर स्पेस है।

यहाँ माप के साथ में एक गैर-अल्प समुच्चय का एक और उदाहरण है:

कहाँ पे एक अनुक्रम है जो परिमेय संख्याओं की गणना करता है।

बोरेल पदानुक्रम से संबंध

जिस तरह कहीं नहीं के घने उपसमुच्चय को बंद करने की आवश्यकता नहीं है, लेकिन हमेशा कहीं नहीं (यानी, इसके बंद होने) का एक बंद घना उपसमुच्चय होता है, विरल सेट को समुच्चय (बंद सेटों का गणनीय संघ) नहीं होना चाहिए। लेकिन हमेशा कहीं से भी घने सेट (हर सेट को बंद करना) से बना एक समुच्चय होता है।

वास्तव में, जिस तरह कहीं नहीं घने समुच्चय के पूरक के लिए खुले होने की आवश्यकता नहीं है, लेकिन एक घने इंटीरियर (घने खुले समुच्चय होते हैं) है, सह अल्प समुच्चय के लिए समुच्चय होना आवश्यक नहीं है (गणनीय प्रतिच्छेदन) खुला सेट), लेकिन घने खुले समुच्चय से बने घने समुच्चय होते हैं।

उदाहरण

रिक्त समुच्चय प्रत्येक सांस्थितिक स्थान का अल्प उपसमुच्चय होता है।

गैर अल्प स्पेस में समुच्चय अल्प है। समुच्चय गैर अल्प और सह अल्प है।

गैर-अल्प स्पेस में सेट नगण्य है। लेकिन यह सह अल्प नहीं है, इसके पूरक के रूप में क्षुद्र भी है।

पृथक बिंदु के बिना एक गणनीय T1 स्थान अल्प है। तो यह किसी भी स्थान में दुर्लभ है जिसमें इसे उप-स्थान के रूप में शामिल किया गया है। उदाहरण के लिए, , का अल्प उपसमूह है (अर्थात, R से प्रेरित उपस्थान टोपोलॉजी के साथ अपने आप में अल्प) और का अल्प उपसमुच्चय है।

कैंटर सेट कहीं भी सघन नहीं है और इसलिए अल्प में लेकिन यह अपने आप में गैर-अल्प है, क्योंकि यह एक पूर्ण मीट्रिक स्थान है।

समुच्चय कहीं सघन नहीं है है, लेकिन इसमें अल्प है . यह अपने आप में गैर-अल्प है (चूंकि एक उप-स्थान के रूप में इसमें एक पृथक बिंदु होता है)।

रेखा सतह में अल्प है लेकिन यह एक गैर अल्प सबस्पेस है, यानी यह अपने आप में गैर अल्प है।

स्पेस (से प्रेरित टोपोलॉजी के साथ ) अल्प है। इसका अल्प उपसमुच्चय अपने आप में कम नहीं है।

एक उपसमुच्चय है वास्तविक संख्याओं का जो हर गैर-खाली खुले समुच्चय को दो गैर-कम समुच्चय में विभाजित करता है। यानी हर गैर-खाली खुले समुच्चय के लिए , सेट तथा दोनों गैर अल्प हैं।

स्पेस में निरंतर वास्तविक-मूल्यवान कार्यों पर समान अभिसरण की टोपोलॉजी के साथ, सेट निरंतर वास्तविक-मूल्यवान कार्यों पर जिसका किसी बिंदु पर व्युत्पन्न अल्प है।[9][10] तब से एक पूर्ण मीट्रिक स्थान है, यह गैर-अल्प है। तो का पूरक , जिसमें निरंतर वास्तविक-मूल्यवान कहीं नहीं अलग-अलग कार्य होते हैं सह अल्प और गैर-अल्प है। विशेष रूप से वह समुच्चय खाली नहीं है। यह निरंतर कहीं नहीं भिन्न होने वाले कार्यों के अस्तित्व को दिखाने का एक तरीका है।

बानाच-मजूर खेल

बनच-मजूर गेम के संदर्भ में अल्प समुच्चय का एक उपयोगी वैकल्पिक लक्षण वर्णन है। एक सामयिक स्थान हो, के सबसेट का परिवार हो जिसमें गैर-रिक्त आंतरिक भाग होते हैं जैसे कि प्रत्येक गैर-रिक्त खुले सेट का एक उपसमुच्चय होता है तथा का कोई उपसमुच्चय हो इसके बाद बानाच-मजूर खेल है बानाच-मजूर खेल में, दो खिलाड़ी, तथा वैकल्पिक रूप से क्रमिक रूप से छोटे तत्वों का चयन करें एक क्रम उत्पन्न करने के लिए खिलाड़ी जीतता है अगर इस अनुक्रम के प्रतिच्छेदन में एक बिंदु होता है ; अन्यथा, खिलाड़ी जीतता है।


यह भी देखें

  • Barrelled space - टोपोलॉजिकल वेक्टर स्पेस का प्रकार
  • Generic property, अवशिष्ट के अनुरूप के लिए
  • Negligible set, अल्प के अनुरूप के लिए
  • Property of Baire बायर की संपत्ति - एक अल्प समुच्चय द्वारा एक खुले समुच्चय का अंतर

टिप्पणियाँ

  1. 1.0 1.1 1.2 Narici & Beckenstein 2011, p. 389.
  2. Schaefer, Helmut H. (1966). "टोपोलॉजिकल वेक्टर स्पेस". Macmillan.
  3. Baire, René (1899). "वास्तविक चर के कार्यों पर". Annali di Mat. Pura ed Appl. 3: 1–123., page 65
  4. Oxtoby, J. (1961). "बेयर स्पेस के कार्टेशियन उत्पाद" (PDF). Fundamenta Mathematicae. 49 (2): 157–166. doi:10.4064/fm-49-2-157-166."Following Bourbaki [...], a topological space is called a Baire space if ..."
  5. 5.0 5.1 Bourbaki 1989, p. 192.
  6. Willard 2004, Theorem 25.2.
  7. Oxtoby 1980, p. 62.
  8. "क्या कोई उपाय शून्य सेट है जो अल्प नहीं है?". MathOverflow.
  9. Banach, S. (1931). "कार्यों के कुछ सेटों के बेयर की श्रेणी के बारे में". Studia Math. 3 (1): 174–179. doi:10.4064/sm-3-1-174-179.
  10. Willard 2004, Theorem 25.5.

ग्रन्थसूची