समसंचारी असमानता: Difference between revisions

From Vigyanwiki
No edit summary
Line 186: Line 186:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/11/2022]]
[[Category:Created On 25/11/2022]]
[[Category:Vigyan Ready]]

Revision as of 12:36, 6 December 2022

गणित में, आइसोपेरिमेट्रिक असमानता एक ज्यामिति असमानता (गणित) है जिसमें इस समूह की परिधि और उसकी मात्रा सम्मलित होती है। -आयामी स्थान में असमानता सतह क्षेत्र या परिधि को कम करती है एक समुच्चय का इसकी मात्रा से

,

जहाँ पर एक इकाई क्षेत्र है। समानता तभी होती है जब में एक गोला है .

समतल पर, अर्थात जब , हो तब आइसोपेरिमेट्रिक असमानता बंद वक्र की परिधि के वर्ग और एक समतल क्षेत्र के क्षेत्र को घेरती है। wikt:आइसोपेरिमेट्रिकअंग्रेजी का शाब्दिक अर्थ है जो सामान परिमाप के लिए होता हैं, विशेष रूप से में आइसोपेरिमेट्रिक असमानता बताती है, एक बंद वक्र की लंबाई L और समतल क्षेत्र के A क्षेत्र के लिए जो इसे इस प्रकार घेरता है कि

और यह समानता तब और केवल तभी लागू होती है जब वक्र एक वृत्त के रूप में हो।

आइसोपेरिमेट्रिक समस्या सबसे बड़े संभावित क्षेत्र का समतल आंकड़ा निर्धारित करना है जिसकी सीमा (टोपोलॉजी) में एक निर्दिष्ट लंबाई तक सीमित है।[1] इसे बारीकी से संबंधित डिडो की समस्या एक सीधी रेखा से घिरे अधिकतम क्षेत्र के क्षेत्र और वक्र रेखा चाप (ज्यामिति) के लिए पूछती है, जिनके अंत बिंदु उस रेखा से संबंधित हैं। इसका नाम डिडो (कार्थेज की रानी), पौराणिक संस्थापक और कार्थेज की पहली रानी के नाम पर रखा गया है। आइसोपेरिमेट्रिक समस्या का समाधान एक वृत्त द्वारा दिया गया है और प्राचीन ग्रीस में पहले से ही जाना जाता था। चूंकि, इस तथ्य का पहला गणितीय रूप से कठोर प्रमाण केवल 19वीं शताब्दी में प्राप्त किया गया था। इसके बाद से और भी कई साक्ष्य मिले हैं।

आइसोपेरिमेट्रिक समस्या को कई तरीकों से विस्तारित किया गया है, उदाहरण के लिए, सतहों की विभेदक ज्यामिति पर घटता और उच्च-आयामी स्थानों में क्षेत्रों के लिए। संभवतः 3-आयामी आइसोपेरिमेट्रिक असमानता का सबसे परिचित भौतिक अभिव्यक्ति पानी की एक बूंद का आकार है। अर्थात्, एक बूंद सामान्यतः एक सममित गोल आकार ग्रहण करेगी। चूँकि एक बूंद में पानी की मात्रा स्थिर होती है, पृष्ठ तनाव बूंद को एक ऐसे आकार में धकेल देता है जो बूंद के सतह क्षेत्र को कम कर देता है, अर्थात् एक गोल गोला।

विमान में आइसोपेरिमेट्रिक समस्या

यदि कोई क्षेत्र उत्तल नहीं है, तो परिधि को अपरिवर्तित रखते हुए क्षेत्र के क्षेत्र को बढ़ाने के लिए इसकी सीमा में एक गड्ढा फ़्लिप किया जा सकता है।
किसी दीर्घ आकृति का परिमाप स्थिर रखते हुए तथा क्षेत्रफल बढ़ाते हुए उसे और गोल बनाया जा सकता है।

मौलिक आइसोपेरिमेट्रिक समस्या प्राचीन काल की है।[2] इस समस्या को इस प्रकार कहा जाता है: निश्चित परिधि के तल में सभी बंद वक्र में से कौन सा वक्र (यदि कोई हो) अपने परिबद्ध क्षेत्र के क्षेत्रफल को अधिकतम करता है? इस प्रश्न को निम्नलिखित समस्या के समतुल्य दिखाया जाता है: एक निश्चित क्षेत्र को घेरने वाले तल में सभी बंद वक्रों में से कौन सा वक्र (यदि कोई है) परिमाप को न्यूनतम करता है?

यह समस्या वैचारिक रूप से भौतिकी में कम से कम कार्रवाई के सिद्धांत से संबंधित है, जिसमें इसे पुन: स्थापित किया जा सकता है: गतिविधि के यह सिद्धांत क्या है जो सबसे बड़े क्षेत्र को घेरता है, प्रयास की सबसे बड़ी अर्थव्यवस्था के साथ? 15वीं शताब्दी के दार्शनिक और वैज्ञानिक, क्यूसा के कार्डिनल निकोलस, घूर्णी क्रिया को मानते थे, वह प्रक्रिया जिसके द्वारा एक वृत्त उत्पन्न होता है, संवेदी छापों के क्षेत्र में, उस प्रक्रिया का सबसे प्रत्यक्ष प्रतिबिंब होता है, जिसके द्वारा ब्रह्मांड का निर्माण होता है। जर्मन खगोलशास्त्री और ज्योतिषी जोहान्स केप्लर ने कॉस्मोग्राफिक मिस्ट्री (द सेक्रेड मिस्ट्री ऑफ द कॉसमॉस, 1596) में सौर प्रणाली की आकृति विज्ञान पर चर्चा करने के लिए आइसोपेरिमेट्रिक सिद्धांत का आह्वान किया।

यद्यपि वृत्त समस्या का एक स्पष्ट समाधान प्रतीत होता है, इस तथ्य को सिद्ध करना अपेक्षाकृत कठिन है। समाधान की दिशा में पहली प्रगति 1838 में स्विस जियोमीटर जैकब स्टेनर द्वारा की गई थी, बाद में एक ज्यामितीय विधि का उपयोग करके जिसे बाद में सिमेट्रिज़ेशन मेथड्स स्टेनर समभागीकरण नाम दिया गया।[3] स्टाइनर ने दिखाया कि यदि कोई हल सम्मलित है, तो वह वृत्त होना चाहिए। स्टेनर की उपपत्ति को बाद में कई अन्य गणितज्ञों ने पूरा किया।

स्टाइनर कुछ ज्यामितीय रचनाओं से शुरू करते हैं जिन्हें सरलता से समझा जा सकता है; उदाहरण के लिए, यह दिखाया जा सकता है कि किसी क्षेत्र को घेरने वाला कोई भी बंद वक्र जो पूरी तरह से उत्तल समुच्चय नहीं है, अवतल क्षेत्रों को पलट कर अधिक क्षेत्र घेरने के लिए संशोधित किया जा सकता है जिससे कि वे उत्तल हो जाएं। आगे यह भी दिखाया जा सकता है कि कोई भी बंद वक्र जो पूरी तरह से सममित नहीं है, झुकाया जा सकता है जिससे कि यह अधिक क्षेत्र घेर सके। एक आकृति जो पूरी तरह से उत्तल और सममित है, वह वृत्त है, चूंकि यह अपने आप में समपरिमितीय प्रमेय (बाहरी लिंक देखें) के एक कठोर प्रमाण का प्रतिनिधित्व नहीं करता है।

एक विमान पर

समपरिमितीय समस्या का समाधान सामान्यतः असमानता के रूप में व्यक्त किया जाता है जो एक बंद वक्र की लंबाई एल और समतलीय क्षेत्र के क्षेत्र A से संबंधित होता है जो इसे घेरता है। 'आइसोपेरिमेट्रिक असमानता' बताती है कि

और यह कि समानता तब और केवल तभी लागू होती है जब वक्र एक वृत्त हो। त्रिज्या R की एक डिस्क का क्षेत्रफल πR2 है और वृत्त की परिधि 2πR है, इसलिए असमानता के दोनों पक्ष 4πR2 के बराबर हैं।

आइसोपेरिमेट्रिक असमानता के कई प्रमाण मिले हैं। 1902 में, एडॉल्फ हर्विट्ज़ ने फूरियर श्रृंखला का उपयोग करते हुए एक छोटा सा प्रमाण प्रकाशित किया, जो मनमाने सुधार योग्य वक्र पर लागू होता है (चिकना नहीं माना जाता)। 1938 में ई. श्मिट द्वारा एक उपयुक्त वृत्त के साथ चिकने सरल बंद वक्र की तुलना के आधार पर एक सुरुचिपूर्ण प्रत्यक्ष प्रमाण दिया गया था। यह केवल चाप लंबाई सूत्र, ग्रीन के प्रमेय से समतल क्षेत्र के क्षेत्र के लिए अभिव्यक्ति और कॉची– का उपयोग करता है। श्वार्ज असमानता किसी दिए गए बंद वक्र के लिए, समपरिमितीय भागफल को उसके क्षेत्रफल और समान परिधि वाले वृत्त के अनुपात के रूप में परिभाषित किया जाता है। यह बराबर है

और समपरिमितीय असमानता कहती है कि Q ≤ 1. समान रूप से, समपरिमितीय अनुपात L2/A कम से कम 4π है प्रत्येक वक्र के लिए एक नियमित n-गॉन का समपरिमितीय भागफल है

एक चिकनी नियमित उत्तल बंद वक्र बनें। इसके पश्चात सबसे सही आइसोपेरिमेट्रिक असमानता निम्नलिखित बताती है

जहाँ पर की लंबाई निरूपित करें से घिरा हुआ क्षेत्र और विग्नर कास्टिक का उन्मुख क्षेत्र , क्रमशः समानता रखती है यदि स्थिर चौड़ाई का एक वक्र है।[4]

गोले पर

मान लीजिए C त्रिज्या के एक गोले पर एक सरल बंद वक्र है। L द्वारा C की लंबाई और A द्वारा C से घिरे क्षेत्र को निरूपित करें। 'गोलाकार समपरिमितीय असमानता' में कहा गया है कि

और यह कि समानता तब और केवल तभी लागू होती है जब वक्र एक वृत्त हो। वास्तव में, एक साधारण बंद वक्र से घिरे गोलाकार क्षेत्र को मापने के दो तरीके हैं, लेकिन पूरक लेने के संबंध में असमानता सममित है।

इस असमानता की खोज पॉल लेवी (गणितज्ञ) | पॉल लेवी (1919) ने की थी जिन्होंने इसे उच्च आयामों और सामान्य सतहों तक भी बढ़ाया।[5]

त्रिज्या R के अधिक सामान्य स्थिति में यह ज्ञात है [6] वह

Rn में

आइसोपेरिमेट्रिक असमानता बताती है कि एक गोले में प्रति दिए गए आयतन का सबसे छोटा सतह क्षेत्र होता है। एक परिबद्ध समुच्चय दिया गया है सतह क्षेत्र के साथ और मात्रा , आइसोपेरिमेट्रिक असमानता स्थिति में

जहाँ पर एक इकाई गोला है। समानता कब होती है में एक गेंद है . समुच्चय पर अतिरिक्त प्रतिबंधों के अनुसार (जैसे उत्तल समुच्चय, बंद नियमित समुच्चय, चिकनी सतह), समानता केवल एक गेंद के लिए होती है। लेकिन पूर्ण व्यापकता में स्थिति अधिक जटिल है। का प्रासंगिक परिणाम श्मिट (1949, Sect. 20.7) (सरल प्रमाण के लिए देखें बेबलर (1957)) में स्पष्ट किया गया है हैडविगर (1957, Sect. 5.2.5) निम्नलिखित नुसार। एक चरम समुच्चय में एक गेंद और एक कोरोना होता है जो न तो मात्रा और न ही सतह क्षेत्र में योगदान देता है। यही है, समानता एक कॉम्पैक्ट समुच्चय के लिए है यदि और केवल यदि एक बंद गेंद सम्मलित है ऐसा है कि तथा उदाहरण के लिए, कोरोना का एक वक्र हो सकता है।

असमानता का प्रमाण सीधे ब्रून-मिन्कोव्स्की प्रमेय से मिलता है | एक समुच्चय के बीच ब्रून-मिन्कोव्स्की असमानता और त्रिज्या के साथ एक गेंद , अर्थात। . ब्रून-मिन्कोव्स्की असमानता को सत्ता में ले कर , घटाना दोनों ओर से, उन्हें विभाजित करके , और सीमा के रूप में ले रहा है (Osserman (1978); Federer (1969, §3.2.43)).

पूर्ण सामान्यता में (Federer 1969, §3.2.43), आइसोपेरिमेट्रिकअसमानता बताती है कि किसी भी समुच्चय के लिए जिसके समुच्चय के बंद होने का परिमित लेबेस्ग माप है

जहाँ पर (n-1)-आयामी मिन्कोव्स्की सामग्री है, Ln n-आयामी लेबेस्ग माप है, और ωn यूनिट बॉल का आयतन है, यदि S की सीमा सुधार योग्य वक्र है, तो मिन्कोवस्की सामग्री (n-1)-आयामी हौसडॉर्फ माप है।

n-डायमेंशनल आइसोपेरिमेट्रिक असमानता सोबोलेव असमानता के बराबर (पर्याप्त रूप से चिकने डोमेन के लिए) है इष्टतम स्थिरांक के साथ:

सभी के लिए .

हैडमार्ड में कई गुना

हैडमार्ड कई गुना पूरी तरह से गैर-सकारात्मक वक्रता के साथ कई गुना जुड़े हुए हैं। इस प्रकार वे यूक्लिडियन स्थान का सामान्यीकरण करते हैं, जो शून्य वक्रता वाला एक हैडमार्ड मैनिफोल्ड है। 1970 और 1980 के दशक के प्रारंभ में, थिएरी ऑबिन, मिखाइल लियोनिदोविच ग्रोमोव, यूरी बुरागो और विक्टर ज़ल्गलर ने अनुमान लगाया कि यूक्लिडियन समपरिमितीय असमानता

: : : : : : : : : : : : : : : : : : : : : : : :

बंधे हुए समुच्चय के लिए होल्ड करता है हैडमार्ड मैनिफोल्ड्स में, जिसे कार्टन-हैडमार्ड अनुमान के रूप में जाना जाता है।

आयाम 2 में यह पहले से ही 1926 में आंद्रे वेइल द्वारा स्थापित किया गया था, जो उस समय जैक्स हैडमार्ड के छात्र थे।

आयाम 3 और 4 में अनुमान क्रमशः 1992 में ब्रूस क्लिनर और 1984 में क्रिस क्रोक द्वारा सिद्ध किया गया था।

एक मीट्रिक माप अंतरिक्ष में

आइसोपेरिमेट्रिक समस्या पर अधिकांश काम यूक्लिडियन अंतरिक्ष स्थान में चिकनी क्षेत्रों के संदर्भ में किया गया है, या अधिक सामान्यतः रीमैनियन कई गुना में किया गया है। चूंकि, मिन्कोस्की सामग्री की धारणा का उपयोग करके आइसोपेरिमेट्रिक समस्या को अधिक सामान्यता में तैयार किया जा सकता है। होने देना एक मीट्रिक माप स्थान बनें: X मीट्रिक (गणित) d के साथ एक मीट्रिक स्थान है, और μ X पर एक बोरेल माप है। सीमा माप, या मिंकोवस्की सामग्री, X के एक औसत दर्जे का उपसमुच्चय A को lim inf के रूप में परिभाषित किया गया है।

जहाँ पर

A का ε-विस्तार है।

एक्स में आइसोपेरिमेट्रिक समस्या पूछती है कि कितना छोटा हो सकता है दिए गए μ(A) के लिए हो। यदि एक्स सामान्य दूरी और लेबेसेग माप के साथ विमान (गणित) है तो यह प्रश्न क्लासिकल आइसोपेरिमेट्रिक समस्या को प्लेनर क्षेत्रों में सामान्यीकृत करता है जिनकी सीमा आवश्यक रूप से चिकनी नहीं है, चूंकि उत्तर समान हो जाता है।

कार्यक्रम

मीट्रिक माप स्थान का आइसोपेरिमेट्रिक प्रोफ़ाइल कहा जाता है . असतत समूह के केली ग्राफ के लिए आइसोपेरिमेट्रिक प्रोफाइल का अध्ययन किया गया है और रीमैनियन मैनिफोल्ड्स के विशेष वर्गों के लिए (जहां सामान्यतः केवल नियमित सीमा वाले क्षेत्रों को माना जाता है)।

रेखांकन के लिए

ग्राफ़ सिद्धांत में, आइसोपेरिमेट्रिक असमानताएं विस्तारक ग्राफ़ के अध्ययन के केंद्र में हैं, जो विरल ग्राफ हैं जिनमें मजबूत संयोजी गुण हैं। कम्प्यूटेशनल जटिलता सिद्धांत, मजबूत कंप्यूटर नेटवर्क के डिजाइन और त्रुटि-सुधार कोड के सिद्धांत के लिए कई अनुप्रयोगों के साथ विस्तारक निर्माण ने शुद्ध और अनुप्रयुक्त गणित में अनुसंधान को जन्म दिया है।[7]

रेखांकन के लिए आइसोपेरिमेट्रिक असमानताएं निर्देशांक सबसमुच्चय के आकार को उनकी सीमा के आकार से संबंधित करती हैं, जिसे सामान्यतः उपसमुच्चय (एज एक्सपेंशन) छोड़ने वाले किनारों की संख्या या निकटतम वर्टिकल (निर्देशांक एक्सपेंशन) की संख्या से मापा जाता है। एक ग्राफ के लिए और एक संख्या , ग्राफ़ के लिए निम्नलिखित दो मानक आइसोपेरिमेट्रिक पैरामीटर हैं।[8]

  • बढ़त आइसोपेरिमेट्रिकपैरामीटर:
  • निर्देशांक आइसोपेरिमेट्रिक पैरामीटर:

यहां छोड़ने वाले किनारों के समुच्चय को दर्शाता है तथा वर्टिकल के समुच्चय को दर्शाता है जिसमें एक निकटतम है . आइसोपेरिमेट्रिक समस्या में यह समझना सम्मलित है कि पैरामीटर कैसे हैं तथा ग्राफ के प्राकृतिक परिवारों के लिए व्यवहार करें।

उदाहरण: हाइपरक्यूब के लिए आइसोपेरिमेट्रिक असमानताएँ वें आयामी अतिविम वह ग्राफ है जिसके शीर्ष लंबाई के सभी बूलियन वैक्टर हैं , अर्थात समुच्चय . ऐसे दो सदिश एक किनारे से जुड़े हुए हैं यदि वे एक बिट फ्लिप के बराबर हैं, अर्थात उनकी हैमिंग दूरी बिल्कुल एक है।

बूलियन हाइपरक्यूब के लिए आइसोपेरिमेट्रिक असमानताएँ निम्नलिखित हैं।[9]

धार परिमितीय असमानता है

हाइपरक्यूब का किनारा आइसोपेरिमेट्रिक असमानता है . यह बाउंड तंग है, जैसा कि प्रत्येक समुच्चय द्वारा देखा गया है जो कि किसी उपघन के शीर्षों का समुच्चय है

शीर्ष संपरिमितीय असमानता है

हार्पर की प्रमेय[10] कहते हैं कि हैमिंग बॉल्स में दिए गए आकार के सभी समुच्चयों में सबसे छोटी निर्देशांक सीमा होती है। हैमिंग बॉल्स ऐसे समुच्चय होते हैं जिनमें हैमिंग वजन के सभी बिंदु अधिक से अधिक होते हैं और हैमिंग वजन का कोई बिंदु इससे बड़ा नहीं है कुछ पूर्णांक के लिए . इस प्रमेय का तात्पर्य है कि कोई भी समुच्चय साथ

संतुष्ट

[11]

एक विशेष स्थिति के रूप में, निर्धारित आकारों पर विचार करें फार्म का

कुछ पूर्णांक के लिए . फिर ऊपर का तात्पर्य है कि सटीक निर्देशांक आइसोपेरिमेट्रिक पैरामीटर है

[12]

त्रिभुजों के लिए समपरिमितीय असमानता

परिमाप p और क्षेत्रफल T के संदर्भ में त्रिभुजों के लिए समपरिमितीय असमानता बताती है कि[13][14]

समबाहु त्रिभुज के लिए समानता के साथ यह अंकगणित और ज्यामितीय साधनों की असमानता के माध्यम से निहित है। am-gm असमानता, एक मजबूत असमानता से जिसे त्रिभुजों के लिए आइसोपेरिमेट्रिक असमानता भी कहा जाता है:[15]

यह भी देखें

टिप्पणियाँ

  1. Blåsjö, Viktor (2005). "आइसोपेरिमेट्रिक समस्या का विकास". Amer. Math. Monthly. 112 (6): 526–566. doi:10.2307/30037526. JSTOR 30037526.
  2. Olmo, Carlos Beltrán, Irene (2021-01-04). "साथियों और मिथकों के बारे में". EL PAÍS (in español). Retrieved 2021-01-14.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. J. Steiner, Einfacher Beweis der isoperimetrischen Hauptsätze, J. reine angew Math. 18, (1838), pp. 281–296; and Gesammelte Werke Vol. 2, pp. 77–91, Reimer, Berlin, (1882).
  4. Zwierzyński, Michał (2016). "बेहतर आइसोपेरिमेट्रिक असमानता और प्लानर ओवल के विग्नर कास्टिक". J. Math. Anal. Appl. 442 (2): 726–739. arXiv:1512.06684. doi:10.1016/j.jmaa.2016.05.016. S2CID 119708226.
  5. Gromov, Mikhail; Pansu, Pierre (2006). "Appendix C. Paul Levy's Isoperimetric Inequality". रीमैनियन और गैर-रिमैनियन स्पेस के लिए मीट्रिक संरचनाएं. Modern Birkhäuser Classics. Dordrecht: Springer. p. 519. ISBN 9780817645830.
  6. Osserman, Robert. "The Isoperimetric Inequality." Bulletin of the American Mathematical Society. 84.6 (1978) http://www.ams.org/journals/bull/1978-84-06/S0002-9904-1978-14553-4/S0002-9904-1978-14553-4.pdf
  7. Hoory, Linial & Widgerson (2006)
  8. Definitions 4.2 and 4.3 of Hoory, Linial & Widgerson (2006)
  9. See Bollobás (1986) and Section 4 in Hoory, Linial & Widgerson (2006)
  10. Cf. Calabro (2004) or Bollobás (1986)
  11. cf. Leader (1991)
  12. Also stated in Hoory, Linial & Widgerson (2006)
  13. Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  14. "त्रिभुजों के लिए समपरिमितीय असमानता".
  15. Dragutin Svrtan and Darko Veljan, "Non-Euclidean Versions of Some Classical Triangle Inequalities", Forum Geometricorum 12, 2012, 197–209. http://forumgeom.fau.edu/FG2012volume12/FG201217.pdf


संदर्भ


बाहरी संबंध