सामान्य स्थिति: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 65: | Line 65: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 24/11/2022]] | [[Category:Created On 24/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:16, 6 December 2022
This article needs additional citations for verification. (May 2014) (Learn how and when to remove this template message) |
बीजगणितीय ज्यामिति और कम्प्यूटेशनल ज्यामिति में, सामान्य स्थिति बिंदुओं के एक समूह या अन्य ज्यामितीय वस्तुओं के लिए सामान्य संपत्ति की धारणा है। इसका अर्थ है सामान्य स्तिथि की स्थिति,जो कुछ और विशेष या संयोग स्थितियों के विपरीत संभव है, जिसे विशेष स्थिति कहा जाता है। इसका यथार्थ अर्थ भिन्न- भिन्न समायोजन में भिन्न - भिन्न होता है।
उदाहरण के लिए, सामान्यतः, समतल में दो रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं।यह भी कहा जाता है कि दो सामान्य रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, जिसे एक सामान्य बिंदु की धारणा द्वारा औपचारिक रूप दिया जाता है। इसी तरह, समतल में तीन सामान्य बिंदु रेखा नहीं हैं; यदि तीन बिंदु संरेख हैं, तो यह एक अध: पतन है।
यह धारणा गणित और इसके अनुप्रयोगों में महत्वपूर्ण है, क्योंकि पतित स्थितियों में असाधारण उपचार की आवश्यकता हो सकती है; उदाहरण के लिए, सामान्य प्रमेय बताते समय या उसके यथार्थ विवरण देते समय, और कंप्यूटर प्रोग्राम लिखते समय (देखें जेनेरिक-केस जटिलता)।
सामान्य रैखिक स्थिति
d-डायमेंशनल एफ़िन स्पेस (d-आयामी यूक्लिडियन अंतरिक्ष एक सामान्य उदाहरण ) में बिंदुओं का एक समूह सामान्य रैखिक स्थिति में होता है यदि उनमें से कोई k (k - 2) -डायमेंशनल फ्लैट में K = 2, 3, ..., d+1 नहीं होता है। इन स्थितियों में काफी अतिरेक होता है, क्योंकि यदि स्थिति कुछ मान k0 के लिए है,तो इसे 2 ≤ k ≤ k0 के साथ सभी k के लिए भी धारण करना चाहिए। इस प्रकार, डी-डायमेंशनल एफ़िन स्पेस में कम से कम D+1 अंक वाले समूह के लिए सामान्य स्थिति में होने के लिए, यह पर्याप्त है कि कोई हाइपरप्लेन डी पॉइंट्स से अधिक नहीं है - बिंदु किसी भी अधिक रैखिक संबंधों को संतुष्ट नहीं करते हैं। सामान्य रेखीय स्थिति में अधिक से अधिक d + 1 बिंदुओं के एक समूह को भी आत्मीयता से स्वतंत्र कहा जाता है (यह सदिशों की रैखिक स्वतंत्रता का परिशोधन अनुरूप है, या अधिक सटीक रूप से अधिकतम रैंक का)[1] और सामान्य रेखीय स्थिति में d + 1अंक एफ़िन डी-स्पेस एक एफ़िन आधार हैं। अधिक जानकारी के लिए संबंध परिवर्तन देखें।
इसी प्रकार, एक n-आयामी वेक्टर अंतरिक्ष में n वैक्टर रैखिक रूप से स्वतंत्र होते हैं यदि और केवल तभी वे बिंदु जो प्रक्षेपण स्थान में परिभाषित होते हैं ( n − 1) सामान्य रैखिक स्थिति में हैं।
यदि बिंदुओं का एक समूह सामान्य रेखीय स्थिति में नहीं है, तो इसे पतित स्थिति या पतित विन्यास कहा जाता है, जिसका अर्थ है कि वे एक रेखीय संबंध को संतुष्ट करते हैं जिसको हमेशा धारण करने की आवश्यकता नहीं होती है।
एक मौलिक अनुप्रयोग यह है कि, समतल में, पाँच बिंदु एक शंकु का निर्धारण करते हैं, जब तक कि बिंदु सामान्य रैखिक स्थिति में हैं (कोई तीन संरेख नहीं हैं)।
अधिक सामान्यतः
इस परिभाषा को आगे सामान्यीकृत किया जा सकता है: बीजगणितीय संबंधों के एक निश्चित वर्ग (जैसे शांकव खंड) के संबंध में सामान्य स्थिति में बिंदुओं के बारे में बात की जा सकती है। बीजगणितीय ज्यामिति में इस तरह की स्थिति का अधिकांशतः सामना करना पड़ता है, जिसमें बिंदुओं को उनके माध्यम से गुजरने वाले वक्रों पर स्वतंत्र अनुबंध लगाने चाहिए।
उदाहरण के लिए, पांच बिंदु एक शंकु का निर्धारण करते हैं, लेकिन सामान्यतः छह बिंदु एक शंकु पर नहीं होते हैं, इसलिए शंकु के संबंध में सामान्य स्थिति में होने के लिए यह आवश्यक है कि कोई भी छह बिंदु एक शंकु पर न हो।
द्विनियमित मानचित्रों के अंतर्गत सामान्य स्थिति को संरक्षित रखा जाता है - यदि छवि बिंदु किसी संबंध को संतुष्ट करते हैं, तो एक द्विनियमित मानचित्र के अंतर्गत इस संबंध को मूल बिंदुओं पर वापस खींचा जा सकता है। विचारणीय है कि वेरोनीज़ मानचित्र द्विनियमित है; जैसा कि वेरोनीज़ मानचित्र के अंतर्गत अंक उस बिंदु पर डिग्री d बहुपद का मूल्यांकन करने के अनुरूप हैं, यह इस धारणा को औपचारिक रूप देता है कि सामान्य स्थिति में बिंदु उनके माध्यम से गुजरने पर स्वतंत्र रैखिक स्थिति लागू करते हैं।
सामान्य स्थिति के लिए मूल अनुबंध यह है कि अंक आवश्यकता से कम डिग्री की उप-प्रकार पर नहीं होने चाहिए हैं; समतल में दो बिंदु संपाती नहीं होने चाहिए, तीन बिंदु एक रेखा पर नहीं होने चाहिए, छह बिंदु एक शंकु पर नहीं होने चाहिए, दस बिंदु एक घन पर नहीं होने चाहिए, और इसी तरह उच्च डिग्री के लिए।
चूंकि यह पर्याप्त नहीं है। जबकि नौ बिंदु एक घन का निर्धारण करते हैं, नौ बिंदुओं के विन्यास हैं जो घन के संबंध में विशेष हैं, अर्थात् दो घनों का प्रतिच्छेदन। दो घनो का चौराहा, जो है अंक (बेज़ाउट के प्रमेय द्वारा), विशेष है कि सामान्य स्थिति में नौ अंक एक अद्वितीय घन में समाहित हैं, जबकि यदि वे दो घनों में निहित हैं तो वे वास्तव में एक पेंसिल (1-पैरामीटर रैखिक प्रणाली) में समाहित हैं घन, जिनके समीकरण दो घनो के समीकरणों के प्रक्षेपी रैखिक संयोजन हैं। इस प्रकार बिंदुओं के ऐसे होने अपेक्षा से अधिक वाले घनो पर एक कम स्थिति लागू करते हैं, और तदनुसार एक अतिरिक्त बाधा को संतुष्ट करते हैं, अर्थात् केली-बचराच प्रमेय कि किसी भी घन में आठ बिंदुओं में आवश्यक रूप से नौवां सम्मिलित होता है। अनुरूप वर्णन उच्च डिग्री के लिए धारण करते हैं।
समतल में या बीजगणितीय वक्र पर बिंदुओं के लिए, सामान्य स्थिति की धारणा 'नियमित विभाजक ' की धारणा द्वारा बीजगणितीय रूप से यथार्थ बनाई जाती है, और संबद्ध रेखा के उच्च शीफ कोहोलॉजी समूहों के गायब होने से मापा जाता है। बंडल (औपचारिक रूप से, उलटा शीफ)। जैसा कि शब्दावली दर्शाती है, यह सहज ज्ञान युक्त ज्यामितीय चित्र की तुलना में अधिक तकनीकी है, इसी तरह चौराहे संख्या की औपचारिक परिभाषा के लिए परिष्कृत बीजगणित की आवश्यकता होती है। यह परिभाषा बिंदुओं के समूह के अतिरिक्त हाइपरसर्फ्स के उच्च आयामों में सामान्यीकरण करती है, और नियमित विभाजकों को 'अत्यधिक विभाजक' के विपरीत माना जाता है, जैसा कि सतहों के लिए रीमैन-रोच प्रमेय में चर्चा की गई है।
ध्यान दें कि सामान्य स्थिति में सभी बिंदु अनुमानित रूप से समतुल्य नहीं होते हैं, जो कि एक बहुत मजबूत स्थिति है; उदाहरण के लिए, रेखा में कोई भी विशिष्ट बिंदु सामान्य स्थिति में हैं, लेकिन प्रक्षेपी परिवर्तन केवल 3-सकर्मक हैं, जिसमें 4 बिंदुओं का क्रॉस अनुपात है।
विभिन्न ज्यामिति
भिन्न -भिन्न ज्यामिति बाधाऐ भिन्न -भिन्न धारणाओं को अनुमति देती हैं। उदाहरण के लिए, वृत्त एक अवधारणा है जो यूक्लिडियन ज्यामिति में समझ में आता है, लेकिन रेखागणित या प्रक्षेपी ज्यामिति में नहीं, जहां वृत्तों को दीर्घवृत्त से भिन्न नहीं किया जा सकता है, क्योंकि कोई वृत्त को दीर्घवृत्त तक निचोड़ सकता है। इसी तरह, एक परवलय संबंध ज्यामिति में एक अवधारणा है, लेकिन प्रक्षेपी ज्यामिति में नहीं, जहां एक परवलय केवल एक प्रकार का शंकु है। बीजगणितीय ज्यामिति में अत्यधिक उपयोग की जाती है, प्रक्षेपी ज्यामिति है, जिसमें संबंध ज्यामिति महत्वपूर्ण है लेकिन बहुत कम उपयोग की जाती है।
इस प्रकार, यूक्लिडियन ज्यामिति में तीन गैर-संरेख बिंदु एक वृत्त का निर्धारण करते हैं (जैसा कि वे त्रिकोण के परिवृत्त को परिभाषित करते हैं), लेकिन सामान्य रूप से चार बिंदु ऐसा नहीं करते हैं (वे केवल चक्रीय चतुर्भुज के लिए ऐसा करते हैं), इसलिए सामान्य स्थिति की धारणा के संबंध में मंडलियां, अर्थात् कोई भी चार बिंदु एक वृत्त पर स्थित नहीं होता है। प्रक्षेपी ज्यामिति में, इसके विपरीत, वृत्त शांकवों से भिन्न नहीं होते हैं, और पाँच बिंदु एक शंकु निर्धारित करते हैं, इसलिए वृत्तों के संबंध में सामान्य स्थिति की कोई प्रक्षेपी धारणा नहीं है।
सामान्य प्रकार
सामान्य स्थिति बिंदुओं के विन्यास की एक संपत्ति है, या अधिक सामान्यतः अन्य उपप्रकार (सामान्य स्थिति में रेखाएं, इसलिए कोई तीन समवर्ती और पसंद नहीं है)। सामान्य स्थिति एक बाहरी धारणा है, जो एक उप-प्रकार के रूप में अंत:स्थापन पर निर्भर करती है। अनौपचारिक रूप से, उप-प्रकार सामान्य स्थिति में हैं यदि उन्हें दूसरों की तुलना में अधिक सरलता से वर्णित नहीं किया जा सकता है। सामान्य स्थिति का आंतरिक अनुरूप सामान्य प्रकार है, और एक विविधता से मेल खाता है जिसे अन्य की तुलना में सरल बहुपद समीकरणों द्वारा वर्णित नहीं किया जा सकता है। यह विभिन्न प्रकार के कोडैरा आयाम की धारणा द्वारा औपचारिक रूप से तैयार किया गया है, और इस उपाय से प्रक्षेपी रिक्त स्थान सबसे विशेष प्रकार हैं,चूंकि अन्य समान रूप से विशेष हैं, जिसका अर्थ नकारात्मक कोडैरा आयाम है। बीजगणितीय वक्रों के लिए, परिणामी वर्गीकरण है: प्रक्षेपी रेखा, टोरस, उच्च जीनस सतहें (), और इसी तरह के वर्गीकरण उच्च आयामों में होते हैं, विशेष रूप से बीजगणितीय सतहों के एनरिक्स-कोडैरा वर्गीकरण।
अन्य संदर्भ
प्रतिच्छेदन सिद्धांत में, बीजगणितीय ज्यामिति और ज्यामितीय टोपोलॉजी दोनों में, अनुप्रस्थता की समान धारणा का उपयोग किया जाता है: सामान्य रूप से उप- प्रकार में अनुप्रस्थ रूप से प्रतिच्छेद होता है, जिसका अर्थ बहुलता 1 के साथ होता है, स्पर्शरेखा या अन्य, उच्च क्रम के चौराहों के अतिरिक्त।
समतल में डेलाउने त्रिभुज के लिए सामान्य स्थिति
समतल में वोरोनोई टेसलेशन और डेलाउने त्रिभुजों पर विवेचना करते समय, समतल में बिंदु का एक समूह सामान्य स्थिति में कहा जाता है,यदि उनमें से कोई भी चार एक ही वृत्त पर नहीं होते हैं और उनमें से कोई भी तीन संरेख नहीं होते हैं . सामान्य उठाने वाला रूपांतरण जो डेलाउने त्रिभुज को एक उत्तल पतवार के निचले आधे हिस्से से संबंधित करता है (यानी, प्रत्येक बिंदु p को |p| के बराबर एक अतिरिक्त समन्वय देता है।2) समतलीय दृश्य से संबंध दिखाता है: चार बिंदु एक वृत्त पर स्थित होते हैं या उनमें से तीन ठीक उसी समय संरेख होते हैं जब उनके उठाए गए समकक्ष सामान्य रैखिक स्थिति में नहीं होते हैं।
संक्षेप में: विन्यास स्थान
बहुत सार शब्दों में, सामान्य स्थिति एक विन्यास स्थान की सामान्य संपत्ति की विवेचना है; इस संदर्भ में एक का अर्थ उन गुणों से है जो विन्यास स्थान के सामान्य बिंदु पर या समकक्ष रूप से ज़ारिस्की-खुला समूह पर होते हैं।
यह धारणा सामान्य के माप सिद्धांत की धारणा के साथ मेल खाती है, जिसका अर्थ विन्यास स्थान पर लगभग हर जगह है, या समतुल्य है कि यादृच्छिक रूप से चुने गए बिंदु लगभग निश्चित रूप से (संभाव्यता 1 के साथ) सामान्य स्थिति में होंगे।
टिप्पणियाँ
संदर्भ
- Yale, Paul B. (1968), Geometry and Symmetry, Holden-Day