परिबद्ध समुच्चय: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 10:02, 7 December 2022

एक कलाकार की एक सीमित सेट (शीर्ष) और एक असीमित सेट (नीचे) की छाप। नीचे का सेट दाहिनी ओर हमेशा के लिए जारी रहता है।

परिबद्ध और सीमा भिन्न-भिन्न अवधारणाएं हैं; बाद के लिए सीमा देखें। विभाजन में एक वृत्त एक सीमाहीन परिबद्ध समुच्चय है, जबकि आधा तल अबाधित है फिर भी एक सीमा है।

गणितीय विश्लेषण और गणित के संबंधित क्षेत्रों में, एक समुच्चय को 'परिबद्ध' कहा जाता है, यदि यह एक निश्चित अर्थ में परिमित माप का हो। इसके विपरीत, एक समुच्चय जो परिबद्ध नहीं है, 'अपरिबद्ध' कहलाता है। 'परिबद्ध' शब्द का सामान्य टोपोलॉजिकल स्थान में बिना किसी मीट्रिकके कोई अर्थ नहीं है।

वास्तविक संख्या में परिभाषा

ऊपरी सीमा और उसके सर्वोच्च के साथ एक वास्तविक सेट।

वास्तविक संख्याओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि वहाँ कुछ वास्तविक संख्या k सम्मिलित हो जैसे कि k ≥ s S में सभी s के लिए। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। नीचे से घिरा हुआ है और 'निचली सीमा' समान रूप से परिभाषित है।

एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक अंतराल में समाहित होता है।

एक मीट्रिक स्थान में परिभाषा

मीट्रिक स्थान (M, d) का एक उपसमुच्चय 'परिबद्ध' होता है, यदि वहां r > 0 सम्मिलित हो, जैसे कि S में सभी s और t के लिए, हमारे पास d(s, t) <r है।मीट्रिक स्थान (M, d) एक सीमित मीट्रिक स्थान है (या d एक सीमित मीट्रिक है) यदि M स्वयं के उपसमुच्चय के रूप में परिबद्ध है।

सामयिक सदिश स्थानों में परिबद्धता

टोपोलॉजिकल सदिश रिक्त स्थान में, बंधे हुए उपसमुच्चयों के लिए एक भिन्न परिभाषा उपस्थित है जिसे कभी-कभी वॉन न्यूमैन बाध्यता कहा जाता है। यदि टोपोलॉजिकल सदिश स्थान की टोपोलॉजी एक मीट्रिक से प्रेरित होती है जो सजातीय है, जैसा कि आदर्श सदिश रिक्त स्थान के मानदंड से प्रेरित मीट्रिक की स्थिति में है, तो दो परिभाषाएँ मेल खाती हैं।

क्रम सिद्धांत में परिबद्धता

वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि केवल इसकी सीमा ऊपरी और निचली सीमा हो। यह परिभाषा आंशिक रूप से आदेशित समुच्चय के उपसमुच्चय के लिए विस्तार योग्य है। ध्यान दें कि सीमा की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।

आंशिक रूप से क्रमित समुच्चय P के एक उपसमुच्चय S को 'ऊपर परिबद्ध' कहा जाता है यदि P में एक तत्व k ऐसा है कि S में सभी s के लिए k ≥ s है। तत्व k को S का 'ऊपरी परिबद्ध' कहा जाता है। 'नीचे की सीमा' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)

आंशिक रूप से आदेशित समुच्चय P के एक उपसमुच्चय S को 'परिबद्ध' कहा जाता है यदि इसमें ऊपरी और निचला दोनों परिबद्ध हो, या समतुल्य हो, यदि यह एक अंतराल में समाहित है। ध्यान दें कि यह न केवल समुच्चय S का गुणधर्म है बल्कि P के उपसमुच्चय के रूप में समुच्चय S का भी एक गुण है।

एक 'परिबद्ध पोसेट' P (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें सबसे कम और सबसे बड़ा तत्व हो। ध्यान दें कि परिबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और यह कि एक बंधे हुए पॉसेट P का एक उपसमुच्चय S आदेश के रूप में Pपर आदेश के प्रतिबंध के लिए आवश्यक रूप से एक परिबद्ध पॉसेट नहीं है

'Rn' का एक उपसमुच्चय S यूक्लिडियन दूरी के संबंध में परिबद्ध है यदि केवल यह 'Rn' के उपसमुच्चय के रूप में परिबद्ध है| चूंकि, S को उत्पाद क्रम के साथ 'Rn' के उपसमुच्चय के रूप में बांधा जा सकता है,लेकिन यूक्लिडियन दूरी के संबंध में नहीं। के साथ।

क्रमवाचक संख्याओं के एक वर्ग को असीमित या कोफिनल कहा जाता है, जब कोई क्रमसूचक दिया जाता है, तो प्रायः वर्ग का कुछ तत्व इससे बड़ा होता है। इस प्रकार इस स्थिति में अपरिबद्ध का अर्थ स्वयं में अपरिबद्ध नहीं है जबकि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अपरिबद्ध है।

यह भी देखें


संदर्भ

  • Bartle, Robert G.; Sherbert, Donald R. (1982). Introduction to Real Analysis. New York: John Wiley & Sons. ISBN 0-471-05944-7.
  • Richtmyer, Robert D. (1978). Principles of Advanced Mathematical Physics. New York: Springer. ISBN 0-387-08873-3.