त्वरक भौतिकी: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
* [[:hi:माइक्रोवेव इंजीनियरिंग|माइक्रोवेव इंजीनियरिंग]] ( [[:hi:रेडियो आवृत्ति|रेडियो फ्रीक्वेंसी]] रेंज में त्वरण/विक्षेपण संरचनाओं के लिए)। | * [[:hi:माइक्रोवेव इंजीनियरिंग|माइक्रोवेव इंजीनियरिंग]] ( [[:hi:रेडियो आवृत्ति|रेडियो फ्रीक्वेंसी]] रेंज में त्वरण/विक्षेपण संरचनाओं के लिए)। | ||
* [[:hi:ज्यामितीय प्रकाशिकी|ज्योमेट्रिकल ऑप्टिक्स]] (बीम फोकसिंग और बेंडिंग) और [[:hi:लेसर विज्ञान|लेजर फिजिक्स]] (लेजर-पार्टिकल इंटरेक्शन) पर जोर देने के साथ [[: | * [[:hi:ज्यामितीय प्रकाशिकी|ज्योमेट्रिकल ऑप्टिक्स]] (बीम फोकसिंग और बेंडिंग) और [[:hi:लेसर विज्ञान|लेजर फिजिक्स]] (लेजर-पार्टिकल इंटरेक्शन) पर जोर देने के साथ [[:en:Optics|ऑप्टिक्स]] । | ||
* [[:hi:अंकीय संकेत प्रक्रमण|डिजिटल सिग्नल प्रोसेसिंग]] पर जोर देने के साथ [[:hi:अभिकलन|कंप्यूटर प्रौद्योगिकी]] ; उदाहरण के लिए, कण बीम के स्वचालित कार्यसाधन के लिए। | *[[:hi:अंकीय संकेत प्रक्रमण|डिजिटल सिग्नल प्रोसेसिंग]] पर जोर देने के साथ [[:hi:अभिकलन|कंप्यूटर प्रौद्योगिकी]] ; उदाहरण के लिए, कण बीम के स्वचालित कार्यसाधन के लिए। | ||
* [[:hi:प्लाज़्मा (भौतिकी)|प्लाज्मा भौतिकी]], तीव्र बीम के विवरण के लिए। | *[[:hi:प्लाज़्मा (भौतिकी)|प्लाज्मा भौतिकी]], तीव्र बीम के विवरण के लिए। | ||
* | * | ||
Line 13: | Line 13: | ||
कण त्वरक के साथ किए गए प्रयोगों को त्वरक भौतिकी के भाग के रूप में नहीं माना जाता है, लेकिन वे (प्रयोगों के उद्देश्यों के अनुसार) से संबंधित हैं, उदाहरण के लिए, [[कण भौतिकी]], [[:hi:नाभिकीय भौतिकी|परमाणु भौतिकी]], [[:hi:संघनित द्रव्य भौतिकी|संघनित पदार्थ भौतिकी]] या [[:hi:पदार्थ विज्ञान|सामग्री भौतिकी]] । किसी विशेष त्वरक सुविधा में किए गए प्रयोगों के प्रकार उत्पन्न [[:hi:कण पुंज|कण बीम(किरणपुंज)]] की विशेषताओं जैसे औसत ऊर्जा, कण प्रकार, तीव्रता और आयामों द्वारा निर्धारित किए जाते हैं। | कण त्वरक के साथ किए गए प्रयोगों को त्वरक भौतिकी के भाग के रूप में नहीं माना जाता है, लेकिन वे (प्रयोगों के उद्देश्यों के अनुसार) से संबंधित हैं, उदाहरण के लिए, [[कण भौतिकी]], [[:hi:नाभिकीय भौतिकी|परमाणु भौतिकी]], [[:hi:संघनित द्रव्य भौतिकी|संघनित पदार्थ भौतिकी]] या [[:hi:पदार्थ विज्ञान|सामग्री भौतिकी]] । किसी विशेष त्वरक सुविधा में किए गए प्रयोगों के प्रकार उत्पन्न [[:hi:कण पुंज|कण बीम(किरणपुंज)]] की विशेषताओं जैसे औसत ऊर्जा, कण प्रकार, तीव्रता और आयामों द्वारा निर्धारित किए जाते हैं। | ||
== रेडियो फ्रीक्वेंसी (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया == | ==रेडियो फ्रीक्वेंसी (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया== | ||
[[File:A 1.3 GHz nine-cell superconducting radio frequency.JPG|thumb|नाइओबियम गुहा]] | [[File:A 1.3 GHz nine-cell superconducting radio frequency.JPG|thumb|नाइओबियम गुहा]] | ||
हालांकि इलेक्ट्रोस्टैटिक(विद्युत् स्थैतिक) क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि [[:hi:कॉकरॉफ्ट-वाल्टन जनित्र|कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक]] में, इस विधि में उच्च वोल्टेज पर [[:hi:विद्युत टूटना|विद्युत विकार]] द्वारा दी गई सीमाएं हैं। इसके अलावा, विद्युत् स्थैतिक क्षेत्र अपरिवर्तनवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है। | हालांकि इलेक्ट्रोस्टैटिक(विद्युत् स्थैतिक) क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि [[:hi:कॉकरॉफ्ट-वाल्टन जनित्र|कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक]] में, इस विधि में उच्च वोल्टेज पर [[:hi:विद्युत टूटना|विद्युत विकार]] द्वारा दी गई सीमाएं हैं। इसके अलावा, विद्युत् स्थैतिक क्षेत्र अपरिवर्तनवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है। | ||
Line 23: | Line 23: | ||
ये प्रतिबाधा वेकफील्ड्स(बीम के विद्युत चुम्बकीय क्षेत्र का एक मजबूत युद्ध) को प्रेरित करेंगे जो बाद के कणों के साथ परस्पर प्रभाव डाल सकते हैं। चूंकि इस पारस्परिक प्रभाव का नकारात्मक प्रभाव पड़ सकता है, इसलिए इसका परिमाण निर्धारित करने के लिए, और इसे कम करने के लिए किए जा सकने वाले किसी भी कार्य को निर्धारित करने के लिए अध्ययन किया जाता है। | ये प्रतिबाधा वेकफील्ड्स(बीम के विद्युत चुम्बकीय क्षेत्र का एक मजबूत युद्ध) को प्रेरित करेंगे जो बाद के कणों के साथ परस्पर प्रभाव डाल सकते हैं। चूंकि इस पारस्परिक प्रभाव का नकारात्मक प्रभाव पड़ सकता है, इसलिए इसका परिमाण निर्धारित करने के लिए, और इसे कम करने के लिए किए जा सकने वाले किसी भी कार्य को निर्धारित करने के लिए अध्ययन किया जाता है। | ||
== बीम डायनेमिक्स(किरणपुंज गतिकी) == | ==बीम डायनेमिक्स(किरणपुंज गतिकी) == | ||
कणों के उच्च वेग और चुंबकीय क्षेत्रों के लिए परिणामी [[:hi:लॉरेंज बल|लोरेंत्ज़ बल]] के कारण, दिशा में समायोजन मुख्य रूप से [[:hi:स्थिर चुम्बकिकी|मैग्नेटोस्टैटिक(स्थिरचुंबकीय)]] क्षेत्रों द्वारा नियंत्रित होते हैं जो कणों को विक्षेपित करते हैं। अधिकांश त्वरक अवधारणाओं ( [[:hi:साइक्लोट्रॉन|साइक्लोट्रॉन]] या [[:hi:बीटाट्रॉन|बीटाट्रॉन]] जैसी कॉम्पैक्ट संरचनाओं को छोड़कर) में, इन्हें विभिन्न गुणों और कार्यों के साथ समर्पित [[:hi:विद्युत चुम्बक|विद्युत चुम्बकों]] द्वारा लागू किया जाता है। इस प्रकार के त्वरक के विकास में एक महत्वपूर्ण कदम [[:hi:मजबूत फोकस|मजबूत ध्यान केंद्रित]] करने की समझ थी। <ref>{{Cite journal|last=Courant|first=E. D.|last2=Snyder|first2=H. S.|author-link2=Hartland Sweet Snyder|date=Jan 1958|title=Theory of the alternating-gradient synchrotron|journal=Annals of Physics|volume=3|issue=1|pages=360–408|doi=10.1006/aphy.2000.6012|url=http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/Courant-Snyder-1958.pdf|bibcode=2000AnPhy.281..360C}}</ref> संरचना के माध्यम से बीम का मार्गदर्शन करने के लिए [[:hi:द्विध्रुवी चुम्बक|द्विध्रुवीय चुम्बकों]] का उपयोग किया जाता है, जबकि चतुर्ध्रुवी [[:hi:चतुर्ध्रुव चुम्बक|चुम्बकों]] का उपयोग बीम पर ध्यान केंद्रित करने के लिए किया जाता है, और [[:hi:षट्ध्रुवी चुम्बक|सेक्स्टुपोल चुम्बकों]]( में छह चुंबकीय ध्रुव होते हैं जो एक अक्ष के चारों ओर व्यवस्थित उत्तरी और दक्षिणी ध्रुवों की व्यवस्था में निर्धारित होते हैं) का उपयोग [[:hi:परिक्षेपण|प्रकीर्णन]] प्रभावों के सुधार के लिए किया जाता है। | कणों के उच्च वेग और चुंबकीय क्षेत्रों के लिए परिणामी [[:hi:लॉरेंज बल|लोरेंत्ज़ बल]] के कारण, दिशा में समायोजन मुख्य रूप से [[:hi:स्थिर चुम्बकिकी|मैग्नेटोस्टैटिक(स्थिरचुंबकीय)]] क्षेत्रों द्वारा नियंत्रित होते हैं जो कणों को विक्षेपित करते हैं। अधिकांश त्वरक अवधारणाओं ( [[:hi:साइक्लोट्रॉन|साइक्लोट्रॉन]] या [[:hi:बीटाट्रॉन|बीटाट्रॉन]] जैसी कॉम्पैक्ट संरचनाओं को छोड़कर) में, इन्हें विभिन्न गुणों और कार्यों के साथ समर्पित [[:hi:विद्युत चुम्बक|विद्युत चुम्बकों]] द्वारा लागू किया जाता है। इस प्रकार के त्वरक के विकास में एक महत्वपूर्ण कदम [[:hi:मजबूत फोकस|मजबूत ध्यान केंद्रित]] करने की समझ थी। <ref>{{Cite journal|last=Courant|first=E. D.|last2=Snyder|first2=H. S.|author-link2=Hartland Sweet Snyder|date=Jan 1958|title=Theory of the alternating-gradient synchrotron|journal=Annals of Physics|volume=3|issue=1|pages=360–408|doi=10.1006/aphy.2000.6012|url=http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/Courant-Snyder-1958.pdf|bibcode=2000AnPhy.281..360C}}</ref> संरचना के माध्यम से बीम का मार्गदर्शन करने के लिए [[:hi:द्विध्रुवी चुम्बक|द्विध्रुवीय चुम्बकों]] का उपयोग किया जाता है, जबकि चतुर्ध्रुवी [[:hi:चतुर्ध्रुव चुम्बक|चुम्बकों]] का उपयोग बीम पर ध्यान केंद्रित करने के लिए किया जाता है, और [[:hi:षट्ध्रुवी चुम्बक|सेक्स्टुपोल चुम्बकों]]( में छह चुंबकीय ध्रुव होते हैं जो एक अक्ष के चारों ओर व्यवस्थित उत्तरी और दक्षिणी ध्रुवों की व्यवस्था में निर्धारित होते हैं) का उपयोग [[:hi:परिक्षेपण|प्रकीर्णन]] प्रभावों के सुधार के लिए किया जाता है। | ||
Line 36: | Line 36: | ||
गति के सामान्य समीकरण [[:hi:आपेक्षिकता सिद्धांत|आपेक्षिकीय]] [[:hi:हैमिल्टनी यांत्रिकी|हैमिल्टनियन यांत्रिकी]] से उत्पन्न होते हैं, लगभग सभी मामलों में [[:hi:पैराएक्सियल सन्निकटन|पैराएक्सियल(पराक्षीय) सन्निकटन]] का उपयोग करते हैं। यहां तक कि दृढ़ता से अरेखीय चुंबकीय क्षेत्रों के मामलों में, और पैराएक्सियल(पराक्षीय) सन्निकटन के बिना, एक उच्च स्तर की अचूकता के साथ एक इंटीग्रेटर के निर्माण के लिए एक लाई ट्रांसफॉर्म का उपयोग किया जा सकता है। | गति के सामान्य समीकरण [[:hi:आपेक्षिकता सिद्धांत|आपेक्षिकीय]] [[:hi:हैमिल्टनी यांत्रिकी|हैमिल्टनियन यांत्रिकी]] से उत्पन्न होते हैं, लगभग सभी मामलों में [[:hi:पैराएक्सियल सन्निकटन|पैराएक्सियल(पराक्षीय) सन्निकटन]] का उपयोग करते हैं। यहां तक कि दृढ़ता से अरेखीय चुंबकीय क्षेत्रों के मामलों में, और पैराएक्सियल(पराक्षीय) सन्निकटन के बिना, एक उच्च स्तर की अचूकता के साथ एक इंटीग्रेटर के निर्माण के लिए एक लाई ट्रांसफॉर्म का उपयोग किया जा सकता है। | ||
== मॉडलिंग कोड == | ==मॉडलिंग कोड== | ||
एक्सेलेरेटर(त्वरक) भौतिकी के विभिन्न पहलुओं के प्रतिरूपण के लिए कई अलग-अलग सॉफ्टवेयर(प्रक्रिया सामग्री) पैकेज उपलब्ध हैं। उन तत्वों को मॉडल करना चाहिए जो विद्युत और चुंबकीय क्षेत्र बनाते हैं, और फिर उन क्षेत्रों के भीतर आवेशित कण विकास को मॉडल करना चाहिए। [[:hi:यूरोपीय नाभिकीय अनुसंधान संगठन|सर्न]] द्वारा डिज़ाइन किया गया बीम(किरणपुंज) डायनेमिक्स के लिए एक लोकप्रिय कोड MAD, या [[:hi:त्वरक भौतिकी सम्बन्धी सॉफ्टवेयर|मेथोडिकल एक्सेलेरेटर डिज़ाइन]] है। | एक्सेलेरेटर(त्वरक) भौतिकी के विभिन्न पहलुओं के प्रतिरूपण के लिए कई अलग-अलग सॉफ्टवेयर(प्रक्रिया सामग्री) पैकेज उपलब्ध हैं। उन तत्वों को मॉडल करना चाहिए जो विद्युत और चुंबकीय क्षेत्र बनाते हैं, और फिर उन क्षेत्रों के भीतर आवेशित कण विकास को मॉडल करना चाहिए। [[:hi:यूरोपीय नाभिकीय अनुसंधान संगठन|सर्न]] द्वारा डिज़ाइन किया गया बीम(किरणपुंज) डायनेमिक्स के लिए एक लोकप्रिय कोड MAD, या [[:hi:त्वरक भौतिकी सम्बन्धी सॉफ्टवेयर|मेथोडिकल एक्सेलेरेटर डिज़ाइन]] है। | ||
== किरणपुंज डायग्नोस्टिक्स == | ==किरणपुंज डायग्नोस्टिक्स== | ||
किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण समूह के विभिन्न गुणों को मापने की अनुमति देते हैं। | किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण समूह के विभिन्न गुणों को मापने की अनुमति देते हैं। | ||
Line 48: | Line 48: | ||
बीम(किरणपुंज) डायग्नोस्टिक्स(नैदानिक) की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है। | बीम(किरणपुंज) डायग्नोस्टिक्स(नैदानिक) की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है। | ||
== मशीन सहिष्णुता == | ==मशीन सहिष्णुता== | ||
इस पैमाने की मशीनों में घटकों, क्षेत्र तीव्रता आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन विषयो पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है। | इस पैमाने की मशीनों में घटकों, क्षेत्र तीव्रता आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन विषयो पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है। | ||
Line 58: | Line 58: | ||
{{portal|Physics}} | {{portal|Physics}} | ||
* [[पार्टिकल एक्सेलेटर|पार्टिकल एक्सेलेटर(]]कण त्वरक) | *[[पार्टिकल एक्सेलेटर|पार्टिकल एक्सेलेटर(]]कण त्वरक) | ||
* [[:hi:भौतिकी में प्रकाशनों की सूची|त्वरक भौतिकी के लिए महत्वपूर्ण प्रकाशन]] | *[[:hi:भौतिकी में प्रकाशनों की सूची|त्वरक भौतिकी के लिए महत्वपूर्ण प्रकाशन]] | ||
* [[:hi:श्रेणी:त्वरक भौतिकी|श्रेणी:त्वरक भौतिकी]] | *[[:hi:श्रेणी:त्वरक भौतिकी|श्रेणी:त्वरक भौतिकी]] | ||
* [[:hi:श्रेणी:त्वरक भौतिक विज्ञानी|श्रेणी:त्वरक भौतिक विज्ञानी]] | *[[:hi:श्रेणी:त्वरक भौतिक विज्ञानी|श्रेणी:त्वरक भौतिक विज्ञानी]] | ||
* [[:hi:श्रेणी:कण त्वरक|श्रेणी:कण त्वरक]] | *[[:hi:श्रेणी:कण त्वरक|श्रेणी:कण त्वरक]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
* {{cite book | url=https://books.google.com/books?id=v9SoaCWFgigC&q=Accelerator+physics | title=Advances of accelerator physics and technologies | publisher=World Scientific | year=1993 | access-date=March 9, 2012 | last1 = Schopper | first1 = Herwig F. | isbn = 978-981-02-0957-5 }} | *{{cite book | url=https://books.google.com/books?id=v9SoaCWFgigC&q=Accelerator+physics | title=Advances of accelerator physics and technologies | publisher=World Scientific | year=1993 | access-date=March 9, 2012 | last1 = Schopper | first1 = Herwig F. | isbn = 978-981-02-0957-5 }} | ||
* {{cite book | title=Particle accelerator physics 2. Nonlinear and higher-order beam dynamics | publisher=Springer | year=1995 | last1 = Wiedemann | first1 = Helmut | isbn = 978-0-387-57564-3 |oclc = 174173289}} | *{{cite book | title=Particle accelerator physics 2. Nonlinear and higher-order beam dynamics | publisher=Springer | year=1995 | last1 = Wiedemann | first1 = Helmut | isbn = 978-0-387-57564-3 |oclc = 174173289}} | ||
* {{cite book | url=https://books.google.com/books?id=VTc8Sdld5S8C&q=Accelerator+physics | title=Accelerator physics | publisher=[[World Scientific]] | year=2004 | edition = 2nd | last1 = Lee | first1 = Shyh-Yuan | isbn = 978-981-256-200-5 }} | *{{cite book | url=https://books.google.com/books?id=VTc8Sdld5S8C&q=Accelerator+physics | title=Accelerator physics | publisher=[[World Scientific]] | year=2004 | edition = 2nd | last1 = Lee | first1 = Shyh-Yuan | isbn = 978-981-256-200-5 }} | ||
* {{cite book | *{{cite book | ||
| editor1-last = Chao | editor1-first = Alex W. | | editor1-last = Chao | editor1-first = Alex W. | ||
| editor2-last = Tigner | editor2-first = Maury | | editor2-last = Tigner | editor2-first = Maury | ||
Line 80: | Line 80: | ||
| url = http://cds.cern.ch/record/384825 | | url = http://cds.cern.ch/record/384825 | ||
}} | }} | ||
* {{cite book | title=Reviews of Accelerator Science and Technology Volume 6 | publisher=World Scientific | year=2014 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-4583-24-4| doi=10.1142/9079 }} | *{{cite book | title=Reviews of Accelerator Science and Technology Volume 6 | publisher=World Scientific | year=2014 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-4583-24-4| doi=10.1142/9079 }} | ||
* {{cite book | title=Reviews of Accelerator Science and Technology Volume 5 | publisher=World Scientific | year=2013 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-4449-94-6| doi=10.1142/8721 }} | *{{cite book | title=Reviews of Accelerator Science and Technology Volume 5 | publisher=World Scientific | year=2013 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-4449-94-6| doi=10.1142/8721 }} | ||
* {{cite book | title=Reviews of Accelerator Science and Technology Volume 4 | publisher=World Scientific | year=2012 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-438-398-1| doi=10.1142/8380 }} | *{{cite book | title=Reviews of Accelerator Science and Technology Volume 4 | publisher=World Scientific | year=2012 | last1 = Chao | first1 = Alex W. | last2 = Chou | first2 = Weiren | isbn = 978-981-438-398-1| doi=10.1142/8380 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [https://uspas.fnal.gov/ यूनाइटेड स्टेट्स पार्टिकल एक्सेलेरेटर स्कूल] | *[https://uspas.fnal.gov/ यूनाइटेड स्टेट्स पार्टिकल एक्सेलेरेटर स्कूल] | ||
* [http://cbp.lbl.gov/ यूसीबी/एलबीएल बीम भौतिकी साइट] | *[http://cbp.lbl.gov/ यूसीबी/एलबीएल बीम भौतिकी साइट] | ||
* [http://www.bnl.gov/bnlweb/history/focusing.asp अल्टरनेटिंग ग्रैडिएंट कॉन्सेप्ट पर बीएनएल पेज] | *[http://www.bnl.gov/bnlweb/history/focusing.asp अल्टरनेटिंग ग्रैडिएंट कॉन्सेप्ट पर बीएनएल पेज] | ||
{{Physics-footer}} | {{Physics-footer}} | ||
] | ] | ||
Revision as of 12:44, 21 July 2022
त्वरक भौतिकी अनुप्रयुक्त भौतिकी की एक शाखा है, जो कण त्वरक के डिजाइन(बनावट), निर्माण और संचालन से संबंधित है। जैसे, गति, हेरफेर और आपेक्षिकीय आवेशित कण बीम के अवलोकन और विद्युत चुम्बकीय क्षेत्रों द्वारा त्वरक संरचनाओं के साथ परस्पर क्रिया अध्ययन के रूप में वर्णित किया जा सकता है।
यह अन्य क्षेत्रों से भी संबंधित है:
- माइक्रोवेव इंजीनियरिंग ( रेडियो फ्रीक्वेंसी रेंज में त्वरण/विक्षेपण संरचनाओं के लिए)।
- ज्योमेट्रिकल ऑप्टिक्स (बीम फोकसिंग और बेंडिंग) और लेजर फिजिक्स (लेजर-पार्टिकल इंटरेक्शन) पर जोर देने के साथ ऑप्टिक्स ।
- डिजिटल सिग्नल प्रोसेसिंग पर जोर देने के साथ कंप्यूटर प्रौद्योगिकी ; उदाहरण के लिए, कण बीम के स्वचालित कार्यसाधन के लिए।
- प्लाज्मा भौतिकी, तीव्र बीम के विवरण के लिए।
कण त्वरक के साथ किए गए प्रयोगों को त्वरक भौतिकी के भाग के रूप में नहीं माना जाता है, लेकिन वे (प्रयोगों के उद्देश्यों के अनुसार) से संबंधित हैं, उदाहरण के लिए, कण भौतिकी, परमाणु भौतिकी, संघनित पदार्थ भौतिकी या सामग्री भौतिकी । किसी विशेष त्वरक सुविधा में किए गए प्रयोगों के प्रकार उत्पन्न कण बीम(किरणपुंज) की विशेषताओं जैसे औसत ऊर्जा, कण प्रकार, तीव्रता और आयामों द्वारा निर्धारित किए जाते हैं।
रेडियो फ्रीक्वेंसी (RF) संरचनाओं के साथ कणों का त्वरण और अंतःक्रिया
हालांकि इलेक्ट्रोस्टैटिक(विद्युत् स्थैतिक) क्षेत्रों का उपयोग करके चार्ज कणों को तेज करना संभव है, जैसे कि कॉक्रॉफ्ट-वाल्टन वोल्टेज गुणक में, इस विधि में उच्च वोल्टेज पर विद्युत विकार द्वारा दी गई सीमाएं हैं। इसके अलावा, विद्युत् स्थैतिक क्षेत्र अपरिवर्तनवादी होने के कारण, अधिकतम वोल्टेज कणों पर लागू होने वाली गतिज ऊर्जा को सीमित करता है।
इस समस्या को दूर करने के लिए, रैखिक कण त्वरक समय-समय पर भिन्न क्षेत्रों का उपयोग करके काम करते हैं। खोखले मैक्रोस्कोपिक(सूक्ष्मदर्शी) संरचनाओं का उपयोग करके इस क्षेत्र को नियंत्रित करने के लिए जिसके माध्यम से कण गुजर रहे हैं (तरंग दैर्ध्य प्रतिबंध), ऐसे त्वरण क्षेत्रों की आवृत्ति विद्युत चुम्बकीय स्पेक्ट्रम के रेडियो आवृत्ति क्षेत्र में स्थित है।
एक कण बीम(किरणपुंज) के चारों ओर की जगह को गैस परमाणुओं के साथ बिखरने से रोकने के लिए खाली कर दिया जाता है, जिसके लिए इसे एक निर्वात कक्ष (या बीम पाइप ) में संलग्न करने की आवश्यकता होती है। बीम का अनुसरण करने वाले मजबूत विद्युत चुम्बकीय क्षेत्रों के कारण, इसके लिए बीम पाइप की दीवारों में किसी भी विद्युत प्रतिबाधा के साथ परस्पर प्रभाव डालना संभव है। यह एक प्रतिरोधक प्रतिबाधा (यानी, बीम पाइप सामग्री की सीमित प्रतिरोधकता) या एक प्रेरणिक/कैपेसिटिव प्रतिबाधा (बीम पाइप के क्रॉस सेक्शन में ज्यामितीय परिवर्तनों के कारण) के रूप में हो सकता है।
ये प्रतिबाधा वेकफील्ड्स(बीम के विद्युत चुम्बकीय क्षेत्र का एक मजबूत युद्ध) को प्रेरित करेंगे जो बाद के कणों के साथ परस्पर प्रभाव डाल सकते हैं। चूंकि इस पारस्परिक प्रभाव का नकारात्मक प्रभाव पड़ सकता है, इसलिए इसका परिमाण निर्धारित करने के लिए, और इसे कम करने के लिए किए जा सकने वाले किसी भी कार्य को निर्धारित करने के लिए अध्ययन किया जाता है।
बीम डायनेमिक्स(किरणपुंज गतिकी)
कणों के उच्च वेग और चुंबकीय क्षेत्रों के लिए परिणामी लोरेंत्ज़ बल के कारण, दिशा में समायोजन मुख्य रूप से मैग्नेटोस्टैटिक(स्थिरचुंबकीय) क्षेत्रों द्वारा नियंत्रित होते हैं जो कणों को विक्षेपित करते हैं। अधिकांश त्वरक अवधारणाओं ( साइक्लोट्रॉन या बीटाट्रॉन जैसी कॉम्पैक्ट संरचनाओं को छोड़कर) में, इन्हें विभिन्न गुणों और कार्यों के साथ समर्पित विद्युत चुम्बकों द्वारा लागू किया जाता है। इस प्रकार के त्वरक के विकास में एक महत्वपूर्ण कदम मजबूत ध्यान केंद्रित करने की समझ थी। [1] संरचना के माध्यम से बीम का मार्गदर्शन करने के लिए द्विध्रुवीय चुम्बकों का उपयोग किया जाता है, जबकि चतुर्ध्रुवी चुम्बकों का उपयोग बीम पर ध्यान केंद्रित करने के लिए किया जाता है, और सेक्स्टुपोल चुम्बकों( में छह चुंबकीय ध्रुव होते हैं जो एक अक्ष के चारों ओर व्यवस्थित उत्तरी और दक्षिणी ध्रुवों की व्यवस्था में निर्धारित होते हैं) का उपयोग प्रकीर्णन प्रभावों के सुधार के लिए किया जाता है।
त्वरक के प्रक्षेपवक्र (या डिजाइन कक्षा ) पर एक कण केवल द्विध्रुवीय क्षेत्र घटकों का अनुभव करता है, जबकि अनुप्रस्थ स्थिति विचलन वाले कण कक्षा में फिर से केंद्रित हैं। प्रारंभिक गणना के लिए, चतुर्ध्रुवी से अधिक सभी क्षेत्रों के घटकों को छोड़ दे तो, एक समप्रजाति हिल डिफरेंशियल समीकरण
एक गैर-स्थिर फ़ोकसिंग बल , मजबूत फोकसिंग और कमजोर फोकसिंग प्रभाव सहित बीम आवेग से सापेक्ष विचलन वक्रता का प्रक्षेपवक्र त्रिज्या , और पथ की लंबाई ,
इस प्रकार प्रणाली को एक प्राचलिक दोलित्र के रूप में पहचानना। त्वरक के लिए बीम(किरणपुंज) मापदंडों की गणना रे ट्रांसफर मैट्रिक्स विश्लेषण का उपयोग करके की जा सकती है; उदाहरण के लिए, एक चतुर्भुज क्षेत्र ज्यामितीय प्रकाशिकी में एक लेंस के समान होता है, जिसमें बीम(किरणपुंज) फोकस करने के समान गुण होते हैं (लेकिन अर्नशॉ के प्रमेय का पालन करना)।
गति के सामान्य समीकरण आपेक्षिकीय हैमिल्टनियन यांत्रिकी से उत्पन्न होते हैं, लगभग सभी मामलों में पैराएक्सियल(पराक्षीय) सन्निकटन का उपयोग करते हैं। यहां तक कि दृढ़ता से अरेखीय चुंबकीय क्षेत्रों के मामलों में, और पैराएक्सियल(पराक्षीय) सन्निकटन के बिना, एक उच्च स्तर की अचूकता के साथ एक इंटीग्रेटर के निर्माण के लिए एक लाई ट्रांसफॉर्म का उपयोग किया जा सकता है।
मॉडलिंग कोड
एक्सेलेरेटर(त्वरक) भौतिकी के विभिन्न पहलुओं के प्रतिरूपण के लिए कई अलग-अलग सॉफ्टवेयर(प्रक्रिया सामग्री) पैकेज उपलब्ध हैं। उन तत्वों को मॉडल करना चाहिए जो विद्युत और चुंबकीय क्षेत्र बनाते हैं, और फिर उन क्षेत्रों के भीतर आवेशित कण विकास को मॉडल करना चाहिए। सर्न द्वारा डिज़ाइन किया गया बीम(किरणपुंज) डायनेमिक्स के लिए एक लोकप्रिय कोड MAD, या मेथोडिकल एक्सेलेरेटर डिज़ाइन है।
किरणपुंज डायग्नोस्टिक्स
किसी भी त्वरक का एक महत्वपूर्ण घटक नैदानिक उपकरण हैं जो कण समूह के विभिन्न गुणों को मापने की अनुमति देते हैं।
विभिन्न गुणों को मापने के लिए एक विशिष्ट मशीन कई अलग-अलग प्रकार के माप उपकरणों का उपयोग कर सकती है। इनमें समूह की स्थिति को मापने के लिए बीम स्थिति मॉनिटर (बीपीएम), स्क्रीन (फ्लोरोसेंट स्क्रीन, ऑप्टिकल ट्रांजिशन रेडिएशन (ओटीआर) डिवाइस) शामिल हैं जो समूह की रूपरेखा की छवि बनाते हैं, इसके मापने के लिए वायर-स्कैनर बंच चार्ज (यानी, प्रति समूह कणों की संख्या) को मापने के लिए क्रॉस-सेक्शन, और टॉरोइड्स या आईसीटी का उपयोग किया जाता है।
जबकि इनमें से कई उपकरण अच्छी तरह से समझी जाने वाली तकनीक पर भरोसा करते हैं, किसी विशेष मशीन के लिए बीम(किरणपुंज) को मापने में सक्षम उपकरण को रूपरेखा करना एक जटिल कार्य है जिसके लिए बहुत विशेषज्ञता की आवश्यकता होती है। न केवल उपकरण के संचालन की भौतिकी की पूरी समझ आवश्यक है, बल्कि यह सुनिश्चित करना भी आवश्यक है कि उपकरण विचाराधीन मशीन अपेक्षित मापदंडों को मापने में सक्षम है।
बीम(किरणपुंज) डायग्नोस्टिक्स(नैदानिक) की पूरी श्रृंखला की सफलता अक्सर पूरी मशीन की सफलता को कम करती है।
मशीन सहिष्णुता
इस पैमाने की मशीनों में घटकों, क्षेत्र तीव्रता आदि के संरेखण में त्रुटियां अपरिहार्य हैं, इसलिए उन विषयो पर विचार करना महत्वपूर्ण है जिसके तहत मशीन संचालित हो सकती है।
इंजीनियर भौतिकविदों को इन परिस्थितियों में मशीन के अपेक्षित व्यवहार के पूर्ण भौतिकी अनुरूपण की अनुमति देने के लिए प्रत्येक घटक के संरेखण और निर्माण के लिए अपेक्षित सहिष्णुता प्रदान करेंगे। कई मामलों में यह पाया जाएगा कि कार्य को अस्वीकार्य स्तर तक नीचा दिखाया गया है, जिसके लिए या तो घटकों की पुन: इंजीनियरिंग की आवश्यकता होती है, या एल्गोरिदम का आविष्कार होता है जो मशीन के प्रदर्शन को डिजाइन स्तर पर वापस 'ट्यून' करने की अनुमति देता है।
प्रत्येक ट्यूनिंग एल्गोरिदम की सापेक्ष सफलता निर्धारित करने के लिए और वास्तविक मशीन पर एल्गोरिदम के संग्रह के लिए अनुशंसाओं की अनुमति देने के लिए विभिन्न त्रुटि स्थितियों के कई सिमुलेशन की आवश्यकता हो सकती है।
यह सभी देखें
- पार्टिकल एक्सेलेटर(कण त्वरक)
- त्वरक भौतिकी के लिए महत्वपूर्ण प्रकाशन
- श्रेणी:त्वरक भौतिकी
- श्रेणी:त्वरक भौतिक विज्ञानी
- श्रेणी:कण त्वरक
संदर्भ
- ↑ Courant, E. D.; Snyder, H. S. (Jan 1958). "Theory of the alternating-gradient synchrotron" (PDF). Annals of Physics. 3 (1): 360–408. Bibcode:2000AnPhy.281..360C. doi:10.1006/aphy.2000.6012.
- Schopper, Herwig F. (1993). Advances of accelerator physics and technologies. World Scientific. ISBN 978-981-02-0957-5. Retrieved March 9, 2012.
- Wiedemann, Helmut (1995). Particle accelerator physics 2. Nonlinear and higher-order beam dynamics. Springer. ISBN 978-0-387-57564-3. OCLC 174173289.
- Lee, Shyh-Yuan (2004). Accelerator physics (2nd ed.). World Scientific. ISBN 978-981-256-200-5.
- Chao, Alex W.; Tigner, Maury, eds. (2013). Handbook of accelerator physics and engineering (2nd ed.). World Scientific. doi:10.1142/8543. ISBN 978-981-4417-17-4.
- Chao, Alex W.; Chou, Weiren (2014). Reviews of Accelerator Science and Technology Volume 6. World Scientific. doi:10.1142/9079. ISBN 978-981-4583-24-4.
- Chao, Alex W.; Chou, Weiren (2013). Reviews of Accelerator Science and Technology Volume 5. World Scientific. doi:10.1142/8721. ISBN 978-981-4449-94-6.
- Chao, Alex W.; Chou, Weiren (2012). Reviews of Accelerator Science and Technology Volume 4. World Scientific. doi:10.1142/8380. ISBN 978-981-438-398-1.
बाहरी संबंध
- यूनाइटेड स्टेट्स पार्टिकल एक्सेलेरेटर स्कूल
- यूसीबी/एलबीएल बीम भौतिकी साइट
- अल्टरनेटिंग ग्रैडिएंट कॉन्सेप्ट पर बीएनएल पेज
]