कार्बोनाइलीकरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 38: | Line 38: | ||
[[ एक्रिलिक एसिड | एक्रिलिक एसिड]] एक बार मुख्य रूप से एसिटिलीन के हाइड्रोकार्बोक्सिलेशन द्वारा तैयार किया गया था।<ref>{{Ullmann|author=Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim|title=Acrylic Acid and Derivatives|year=2003|doi= 10.1002/14356007.a01_161.pub2}}</ref> | [[ एक्रिलिक एसिड | एक्रिलिक एसिड]] एक बार मुख्य रूप से एसिटिलीन के हाइड्रोकार्बोक्सिलेशन द्वारा तैयार किया गया था।<ref>{{Ullmann|author=Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim|title=Acrylic Acid and Derivatives|year=2003|doi= 10.1002/14356007.a01_161.pub2}}</ref> | ||
<nowiki/>: [[File:Acrylic acid synthesis from acethylene.png|290px|thumb|center|रेप्पे केमिस्ट्री का प्रयोग करके ऐक्रेलिक एसिड का संश्लेषण। एक धातु उत्प्रेरक की आवश्यकता है।]] | <nowiki/>:[[File:Acrylic acid synthesis from acethylene.png|290px|thumb|center|रेप्पे केमिस्ट्री का प्रयोग करके ऐक्रेलिक एसिड का संश्लेषण। एक धातु उत्प्रेरक की आवश्यकता है।]]आजकल, हालांकि, ऐक्रेलिक एसिड के लिए पसंदीदा मार्ग [[ प्रोपीन ]] के ऑक्सीकरण पर जोर देता है, जो इसकी कम लागत और [[ एलिल | ऐक्रेलिक]] CH बन्ध की उच्च अभिक्रियाशीलता का शोषण करता है। | ||
[[ हाइड्रोएस्टरीफिकेशन ]] हाइड्रोकार्बोक्सिलेशन | [[ हाइड्रोएस्टरीफिकेशन ]] हाइड्रोकार्बोक्सिलेशन के जैसा होता है, लेकिन इसमें जल के स्थान पर अल्कोहल का प्रयोग किया जाता है।<ref>El Ali, B.; Alper, H. "Hydrocarboxylation and hydroesterification reactions catalyzed by transition metal complexes" In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:Weinheim, 2004. {{ISBN|978-3-527-30613-8}}</ref><ref>{{Cite journal|last1=Ahmad|first1=Shahbaz|last2=Lockett|first2=Ashley|last3=Shuttleworth|first3=Timothy A.|last4=Miles-Hobbs|first4=Alexandra M.|last5=Pringle|first5=Paul G.|last6=Bühl|first6=Michael|date=2019-04-17|title=पी, एन-चेलेटिंग लिगैंड्स के साथ पैलेडियम-उत्प्रेरित एल्केनी एल्कोक्सीकार्बोनाइलेशन पर दोबारा गौर किया गया: एक घनत्व कार्यात्मक सिद्धांत अध्ययन|url=https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp01471c|journal=Physical Chemistry Chemical Physics|language=en|volume=21|issue=16|pages=8543–8552|doi=10.1039/C9CP01471C|pmid=30957820|bibcode=2019PCCP...21.8543A|hdl=10023/19712|s2cid=102347387|issn=1463-9084}}</ref><ref name="pubs.rsc.org">{{Cite journal|last1=Ahmad|first1=Shahbaz|last2=Bühl|first2=Michael|date=2021-08-04|title=एल्केन्स और एल्काइन्स के पीडी-उत्प्रेरित एल्कोक्सीकार्बोनाइलेशन का कम्प्यूटेशनल मॉडलिंग|url=https://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp02426d|journal=Physical Chemistry Chemical Physics|language=en|volume=23|issue=30|pages=15869–15880|doi=10.1039/D1CP02426D|pmid=34318843|bibcode=2021PCCP...2315869A|s2cid=236472958|issn=1463-9084}}</ref><ref>{{Cite journal|last1=Ahmad|first1=Shahbaz|last2=Bühl|first2=Michael|date=2019|title=Alkynes और Allenes के Alkoxycarbonylation के लिए P,N Hemilabile Ligands के साथ एक अत्यधिक सक्रिय Pd उत्प्रेरक का डिज़ाइन: एक घनत्व कार्यात्मक सिद्धांत अध्ययन|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201902402|journal=Chemistry – A European Journal|language=en|volume=25|issue=50|pages=11625–11629|doi=10.1002/chem.201902402|pmid=31322770|hdl=10023/20461|s2cid=197665216|issn=1521-3765}}</ref><ref name="ReferenceA">{{Cite journal|last1=Ahmad|first1=Shahbaz|last2=Crawford|first2=L. Ellis|last3=Bühl|first3=Michael|date=2020-11-04|title=पैलेडियम-उत्प्रेरित मेथॉक्सीकार्बोनाइलेशन ऑफ एथीन विथ बिडेंटेट डिफोस्फीन लिगैंड्स: एक घनत्व कार्यात्मक सिद्धांत अध्ययन|url=https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp04454g|journal=Physical Chemistry Chemical Physics|language=en|volume=22|issue=42|pages=24330–24336|doi=10.1039/D0CP04454G|pmid=33104152|bibcode=2020PCCP...2224330A|s2cid=225072802|issn=1463-9084}}</ref> यह अभिक्रिया केवल एथिलीन से [[ मिथाइल प्रोपियोनेट ]] के उत्पादन के लिए नियोजित है:<ref name="ReferenceA"/><ref name="pubs.rsc.org"/> | ||
प्रक्रिया हेरमैन के उत्प्रेरक, | |||
C<sub>2</sub>H<sub>4</sub> + CO + MeOH → CH<sub>3</sub>CH<sub>2</sub>CO<sub>2</sub>Me | |||
प्रक्रिया हेरमैन के उत्प्रेरक, Pd[C<sub>6</sub>H<sub>4</sub>(CH<sub>2</sub>PBu-t)<sub>2</sub>]<sub>2</sub> द्वारा उत्प्रेरित होती है. इसी तरह की परिस्थितियों में, अन्य Pd-डिफॉस्फिन्स [[ पॉलीकीटोन | पॉलीइथाइलीनकेटोन]] के गठन को उत्प्रेरित करते हैं। | |||
=== अन्य अभिक्रियाओं === | === अन्य अभिक्रियाओं === | ||
[[ कोच प्रतिक्रिया | कोच अभिक्रिया]] | [[ कोच प्रतिक्रिया | कोच अभिक्रिया]] हाइड्रोकार्बोक्सिलेशन अभिक्रिया का एक विशेष स्थितिय है जो धातु उत्प्रेरक पर निर्भर नहीं करता है। इसके अतिरिक्त, इस प्रक्रिया को सल्फ्यूरिक एसिड या [[ फॉस्फोरिक एसिड ]] और [[ बोरॉन ट्राइफ्लोराइड ]] के संयोजन जैसे प्रबल एसिड द्वारा उत्प्रेरित किया जाता है। यह अभिक्रिया साधारण ऐल्कीन पर कम लागू होती है। [[ ग्लाइकोलिक एसिड ]] का औद्योगिक संश्लेषण इस प्रकार प्राप्त किया जाता है:<ref>Karlheinz Miltenberger, "Hydroxycarboxylic Acids, Aliphatic" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2003.</ref> | ||
: | : CH<sub>2</sub>O + CO + H<sub>2</sub>O → HOCH<sub>2</sub>CO<sub>2</sub>H | ||
[[ आइसोब्यूटीन ]] का [[ पिवलिक एसिड ]] में | इस अभिक्रिया का एक उदाहरण[[ आइसोब्यूटीन ]] का [[ पिवलिक एसिड ]] में बदलना भी है: | ||
: | :Me<sub>2</sub>C=CH<sub>2</sub> + H<sub>2</sub>O + CO → Me<sub>3</sub>CCO<sub>2</sub>H | ||
कार्बन मोनोऑक्साइड और उपयुक्त उत्प्रेरक जैसे [[ मैंगनीज ]], [[ लोहा ]], या [[ निकल ]] चूर्ण की उपस्थिति में एल्काइल, बेंज़िल, विनाइल, एरिल, और एलिल हैलाइड्स को भी कार्बोनाइलेट किया जा सकता है।<ref>{{cite book|author1=Riemenschneider, Wilhelm |author2=Bolt, Hermann|title=एस्टर, ऑर्गेनिक|journal=Ullmann's Encyclopedia of Industrial Chemistry|year=2000|page=10|doi=10.1002/14356007.a09_565|isbn=978-3527306732}}</ref> | |||
==अकार्बनिक रसायन विज्ञान में कार्बोनाइलीकरण == | ==अकार्बनिक रसायन विज्ञान में कार्बोनाइलीकरण == | ||
{{main| | {{main|धातु कार्बोनिल}} | ||
धातु कार्बोनिल्स, सूत्र | |||
धातु कार्बोनिल्स, सूत्र M(CO)<sub>x</sub>L<sub>y</sub> (M =धातु; L = अन्य [[ लिगैंड ]]) वाले यौगिक संक्रमण धातुओं के कार्बोनाइलीकरण द्वारा तैयार किए जाते हैं। लौह और निकल चूर्ण CO से सीधे अभिक्रिया करके Fe(CO)<sub>5</sub> और Ni(CO)<sub>4</sub> देता है। । अधिकांश अन्य धातुएं सीधे कम मात्रा में कार्बोनिल बनाती हैं, जैसे कि उनके ऑक्साइड या हैलाइड से। कार्बोनिल्स धातु की ऊपर व्यापक रूप से चर्चा की गई ये हाइड्रोफॉर्माइलेशन और रेपपे प्रक्रियाओं में उत्प्रेरक के रूप में कार्य करते हैं।<ref>Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. {{ISBN|978-3-527-29390-2}}</ref> अकार्बनिक यौगिक जिनमें CO लिगेंड्स होते हैं,ये अधिकांश एक फोटोकेमिका के माध्यम से डीकार्बोनाइलेशन से निकल सकते हैं। | |||
Revision as of 19:00, 30 November 2022
कार्बोनाइलीकरण रासायनिक अभिक्रियाओ को संदर्भित करता है जो कार्बन मोनोआक्साइड को कार्बनिक यौगिक और अकार्बनिक यौगिक आणविक में प्रस्तुत करता है। कार्बन मोनोऑक्साइड अधिक मात्रा में उपलब्ध है और आसानी से अभिक्रियाशील है, इसलिए इसे व्यापक रूप से औद्योगिक रसायन विज्ञान में एक अभिकारक के रूप में प्रयोग किया जाता है।[1] कार्बोनिलीकरण शब्द का अर्थ प्रोटीन पक्ष श्रृंखलाओं के ऑक्सीकरण से भी होता है।
कार्बनिक रसायन
कई औद्योगिक रूप से प्रयोगी कार्बनिक रसायन कार्बोनाइलेशन द्वारा तैयार किए जाते हैं, जो अत्यधिक विशिष्ट अभिक्रियाओं हो सकती हैं। कार्बोनाइलीकरण कार्बनिक कार्बोनिल्स का उत्पादन करते हैं, अर्थात् ऐसे यौगिक जिनमें C=O कार्यात्मक समूह होते हैं जैसे एल्डिहाइड , कार्बोज़ाइलिक तेजाब और एस्टर ।[2][3] कार्बोनाइलीकरण कई प्रकार की अभिक्रियाओं का आधार है, जिसमें हाइड्रोफॉर्माइलेशन और रेपे केमिस्ट्री भी सम्मालित हैं। इन अभिक्रियाओं के लिए धातु उत्प्रेरकों की आवश्यकता होती है, जो CO को बांधते और सक्रिय करते हैं।[4] इन प्रक्रियाओं में मध्यवर्ती के रूप में संक्रमण धातु एसाइल कॉम्प्लेक्स शामिल हैं। इस विषय का अधिकांश भाग वाल्टर रेपे द्वारा विकसित किया गया था।
हाइड्रोफॉर्माइलेशन
हाइड्रोफॉर्माइलेशन में कार्बन मोनोऑक्साइड और हाइड्रोजन दोनों को असंतृप्त कार्बनिक यौगिकों, मेंएल्केनेस के साथ मिलाया किया जाता है। जिसके परिणामस्वरूप एल्डिहाइड उत्पाद बनता हैं:
- RCH=CH2 + H2 + CO → RCH2CH2CHO
अभिक्रिया कराने के लिये धातु उत्प्रेरक की आवश्यकता होती है जो CO को बांधते हैं, जिससे मध्यवर्ती धातु कार्बोनिलस बनते हैं। कई कमोडिटी कार्बोक्जिलिक एसिड, अर्थात् प्रोपियोनिक, ब्यूटिरिक, वैलेरिक, आदि, साथ ही साथ कई कमोडिटी अल्कोहल, अर्थात् प्रोपेनॉल, ब्यूटेनॉल, एमाइल अल्कोहल, हाइड्रोफॉर्माइलेशन द्वारा उत्पादित एल्डिहाइड से प्राप्त होते हैं। इस तरह, हाइड्रोफॉर्माइलेशन अल्केन्स से ऑक्सीजनेट तक के लिए प्रवेश द्वार है।
विकार्बोनिलीकरण
कई कार्बनिक कार्बोनिल्स विकार्बोनिलीकरण से गुजरते हैं। एक साधारण परिवर्तन में एल्डिहाइड का अल्केन्स में रूपांतरित हो जाता है, जो सामान्यतः धातु योगिको द्वारा उत्प्रेरित होता है:[5]
- RCHO → RH + CO
कुछ उत्प्रेरक अत्यधिक सक्रिय होते हैं या विस्तृत क्षेत्र को प्रदर्शित करते हैं।[6]
एसिटिक एसिड और एसिटिक एनहाईड्राइड
कार्बोनाइलीकरण के बड़े पैमाने पर अनुप्रयोग मोनसेंटो एसिटिक एसिड प्रक्रिया और कैटिवा प्रक्रियाएं हैं, जो मेथनॉल को एसिटिक एसिड में परिवर्तित करती हैं। एक अन्य प्रमुख औद्योगिक प्रक्रिया है,जिसमे मिथाइल एसीटेट के संबंधित कार्बोनाइलीकरण द्वारा एसिटिक एनहाइड्राइड तैयार किया जाता है।[7]
ऑक्सीडेटिव कार्बोनाइलीकरण
डाइमिथाइल कार्बोनेट और डाइमिथाइल ऑक्सालेट को कार्बन मोनोऑक्साइड और कोई ऑक्सीडेंट का प्रयोग करकेऔद्योगिक रूप से CO2+ के स्रोत के रूप में उत्पादित किया जाता है।[2]:
2 CH3OH + 1/2 O2 + CO → (CH3O)2CO + H2O
मेथनॉल का ऑक्सीडेटिव कार्बोनाइलीकरण कॉपर (I) लवण द्वारा उत्प्रेरित होता है, जो क्षणिक कार्बोनिल यौगिक बनाते हैं। एल्केन्स के ऑक्सीडेटिव कार्बोनाइलीकरण करने के लिए, पैलेडियम यौगिक का प्रयोग किया जाता है।
हाइड्रोकार्बोक्सिलेशन और हाइड्रोएस्टरीफिकेशन
हाइड्रोकार्बोक्सिलेशन में, अल्कीन और एल्काइनेस आणविक हैं। निकल कार्बोनिल का प्रयोग उत्प्रेरक के रूप में किया जाता है जिसमे एथिलीन से प्रोपियॉनिक अम्ल का उत्पादन करने के लिए इस विधि का औद्योगिक रूप से प्रयोग किया जाता है:[2]
- RCH=CH2 + H2O + CO → RCH2CH2CO2H
आइबुप्रोफ़ेन के औद्योगिक संश्लेषण में, Pd-उत्प्रेरित कार्बोनाइलीकरण के माध्यम से एक बेंज़िलिक अल्कोहल को कार्बोक्जिलिक एसिड में परिवर्तित किया जाता है:[2]
ArCH(CH3)OH + CO → ArCH(CH3)CO2H
एक्रिलिक एसिड एक बार मुख्य रूप से एसिटिलीन के हाइड्रोकार्बोक्सिलेशन द्वारा तैयार किया गया था।[8]
:
आजकल, हालांकि, ऐक्रेलिक एसिड के लिए पसंदीदा मार्ग प्रोपीन के ऑक्सीकरण पर जोर देता है, जो इसकी कम लागत और ऐक्रेलिक CH बन्ध की उच्च अभिक्रियाशीलता का शोषण करता है।
हाइड्रोएस्टरीफिकेशन हाइड्रोकार्बोक्सिलेशन के जैसा होता है, लेकिन इसमें जल के स्थान पर अल्कोहल का प्रयोग किया जाता है।[9][10][11][12][13] यह अभिक्रिया केवल एथिलीन से मिथाइल प्रोपियोनेट के उत्पादन के लिए नियोजित है:[13][11]
C2H4 + CO + MeOH → CH3CH2CO2Me
प्रक्रिया हेरमैन के उत्प्रेरक, Pd[C6H4(CH2PBu-t)2]2 द्वारा उत्प्रेरित होती है. इसी तरह की परिस्थितियों में, अन्य Pd-डिफॉस्फिन्स पॉलीइथाइलीनकेटोन के गठन को उत्प्रेरित करते हैं।
अन्य अभिक्रियाओं
कोच अभिक्रिया हाइड्रोकार्बोक्सिलेशन अभिक्रिया का एक विशेष स्थितिय है जो धातु उत्प्रेरक पर निर्भर नहीं करता है। इसके अतिरिक्त, इस प्रक्रिया को सल्फ्यूरिक एसिड या फॉस्फोरिक एसिड और बोरॉन ट्राइफ्लोराइड के संयोजन जैसे प्रबल एसिड द्वारा उत्प्रेरित किया जाता है। यह अभिक्रिया साधारण ऐल्कीन पर कम लागू होती है। ग्लाइकोलिक एसिड का औद्योगिक संश्लेषण इस प्रकार प्राप्त किया जाता है:[14]
- CH2O + CO + H2O → HOCH2CO2H
इस अभिक्रिया का एक उदाहरणआइसोब्यूटीन का पिवलिक एसिड में बदलना भी है:
- Me2C=CH2 + H2O + CO → Me3CCO2H
कार्बन मोनोऑक्साइड और उपयुक्त उत्प्रेरक जैसे मैंगनीज , लोहा , या निकल चूर्ण की उपस्थिति में एल्काइल, बेंज़िल, विनाइल, एरिल, और एलिल हैलाइड्स को भी कार्बोनाइलेट किया जा सकता है।[15]
अकार्बनिक रसायन विज्ञान में कार्बोनाइलीकरण
धातु कार्बोनिल्स, सूत्र M(CO)xLy (M =धातु; L = अन्य लिगैंड ) वाले यौगिक संक्रमण धातुओं के कार्बोनाइलीकरण द्वारा तैयार किए जाते हैं। लौह और निकल चूर्ण CO से सीधे अभिक्रिया करके Fe(CO)5 और Ni(CO)4 देता है। । अधिकांश अन्य धातुएं सीधे कम मात्रा में कार्बोनिल बनाती हैं, जैसे कि उनके ऑक्साइड या हैलाइड से। कार्बोनिल्स धातु की ऊपर व्यापक रूप से चर्चा की गई ये हाइड्रोफॉर्माइलेशन और रेपपे प्रक्रियाओं में उत्प्रेरक के रूप में कार्य करते हैं।[16] अकार्बनिक यौगिक जिनमें CO लिगेंड्स होते हैं,ये अधिकांश एक फोटोकेमिका के माध्यम से डीकार्बोनाइलेशन से निकल सकते हैं।
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- कार्बनिक मिश्रण
- कई प्रक्रियाएं
- प्रकाश रासायनिक अभिक्रिया
संदर्भ
- ↑ Kiss, Gabor (2001). "पैलेडियम-उत्प्रेरित रेपपे कार्बोनिलेशन". Chemical Reviews. 101 (11): 3435–3456. doi:10.1021/cr010328q. PMID 11840990.
- ↑ 2.0 2.1 2.2 2.3 W. Bertleff; M. Roeper; X. Sava. "Carbonylation". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_217.
- ↑ Arpe, .J.: Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte, 2007, Wiley-VCH-Verlag, ISBN 3-527-31540-3
- ↑ Beller, Matthias; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. (1995). "हाइड्रोफॉर्माइलेशन और कार्बोनिलेशन में प्रगति". Journal of Molecular Catalysis A: Chemical. 104: 17–85. doi:10.1016/1381-1169(95)00130-1.
- ↑ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010.
- ↑ Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R., "A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes", Advanced Synthesis & Catalysis 2006, 348, 2148-2154. doi:10.1002/adsc.200600228
- ↑ Zoeller, J. R.; Agreda, V. H.; Cook, S. L.; Lafferty, N. L.; Polichnowski, S. W.; Pond, D. M. (1992). "ईस्टमैन केमिकल कंपनी एसिटिक एनहाइड्राइड प्रक्रिया". Catalysis Today. 13: 73–91. doi:10.1016/0920-5861(92)80188-S.
- ↑ Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim (2003). "Acrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_161.pub2.
{{cite encyclopedia}}
: CS1 maint: multiple names: authors list (link) - ↑ El Ali, B.; Alper, H. "Hydrocarboxylation and hydroesterification reactions catalyzed by transition metal complexes" In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:Weinheim, 2004. ISBN 978-3-527-30613-8
- ↑ Ahmad, Shahbaz; Lockett, Ashley; Shuttleworth, Timothy A.; Miles-Hobbs, Alexandra M.; Pringle, Paul G.; Bühl, Michael (2019-04-17). "पी, एन-चेलेटिंग लिगैंड्स के साथ पैलेडियम-उत्प्रेरित एल्केनी एल्कोक्सीकार्बोनाइलेशन पर दोबारा गौर किया गया: एक घनत्व कार्यात्मक सिद्धांत अध्ययन". Physical Chemistry Chemical Physics (in English). 21 (16): 8543–8552. Bibcode:2019PCCP...21.8543A. doi:10.1039/C9CP01471C. hdl:10023/19712. ISSN 1463-9084. PMID 30957820. S2CID 102347387.
- ↑ 11.0 11.1 Ahmad, Shahbaz; Bühl, Michael (2021-08-04). "एल्केन्स और एल्काइन्स के पीडी-उत्प्रेरित एल्कोक्सीकार्बोनाइलेशन का कम्प्यूटेशनल मॉडलिंग". Physical Chemistry Chemical Physics (in English). 23 (30): 15869–15880. Bibcode:2021PCCP...2315869A. doi:10.1039/D1CP02426D. ISSN 1463-9084. PMID 34318843. S2CID 236472958.
- ↑ Ahmad, Shahbaz; Bühl, Michael (2019). "Alkynes और Allenes के Alkoxycarbonylation के लिए P,N Hemilabile Ligands के साथ एक अत्यधिक सक्रिय Pd उत्प्रेरक का डिज़ाइन: एक घनत्व कार्यात्मक सिद्धांत अध्ययन". Chemistry – A European Journal (in English). 25 (50): 11625–11629. doi:10.1002/chem.201902402. hdl:10023/20461. ISSN 1521-3765. PMID 31322770. S2CID 197665216.
- ↑ 13.0 13.1 Ahmad, Shahbaz; Crawford, L. Ellis; Bühl, Michael (2020-11-04). "पैलेडियम-उत्प्रेरित मेथॉक्सीकार्बोनाइलेशन ऑफ एथीन विथ बिडेंटेट डिफोस्फीन लिगैंड्स: एक घनत्व कार्यात्मक सिद्धांत अध्ययन". Physical Chemistry Chemical Physics (in English). 22 (42): 24330–24336. Bibcode:2020PCCP...2224330A. doi:10.1039/D0CP04454G. ISSN 1463-9084. PMID 33104152. S2CID 225072802.
- ↑ Karlheinz Miltenberger, "Hydroxycarboxylic Acids, Aliphatic" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2003.
- ↑ Riemenschneider, Wilhelm; Bolt, Hermann (2000). एस्टर, ऑर्गेनिक. p. 10. doi:10.1002/14356007.a09_565. ISBN 978-3527306732.
{{cite book}}
:|journal=
ignored (help) - ↑ Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-527-29390-2