स्यूडोग्रुप: Difference between revisions
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
* एक [[जटिल चर]] के उलटे [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] कार्यों के {{mvar|Γ}} छद्म समूह के लिए [[रीमैन सतह]]। | * एक [[जटिल चर]] के उलटे [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] कार्यों के {{mvar|Γ}} छद्म समूह के लिए [[रीमैन सतह]]। | ||
अधिक सामान्यतः, | अधिक सामान्यतः पर, किसी भी पूर्णांक {{mvar|''G''}} संरचना और किसी भी ({{mvar|''G''}}, {{mvar|''X''}}) कई गुना उपयुक्त छद्मसमूह के लिए {{mvar|Γ}} संरचनाओं की विशेष स्थितियाँ हैं I | ||
== स्यूडोग्रुप्स और लाई थ्योरी == | == स्यूडोग्रुप्स और लाई थ्योरी == |
Revision as of 08:17, 11 December 2022
गणित में, छद्म समूह स्थान के खुले समूहों के बीच भिन्नता का एक समूह है, जो समूह-समान और शीफ-समान गुणों को संतुष्ट करता है। यह समूह की अवधारणा का एक सामान्यीकरण है, जो अमूर्त के ज्यामितीय दृष्टिकोण से उत्पन्न हुआ है।[1] सार बीजगणित (जैसे अर्धसमूह, उदाहरण के लिए) के अतिरिक्त अंतर समीकरणों की समरूपता की जांच करने के लिए। छद्म समूहका आधुनिक सिद्धांत 1900 की शुरुआत में एली कार्टन द्वारा विकसित किया गया था।[2][3]
परिभाषा
एक छद्म समूह किसी दिए गए यूक्लिडियन अंतरिक्ष के खुले समूह U पर परिभाषित होमोमोर्फिज्म (क्रमशः, डिफियोमोर्फिज्म) के एक समूह पर कई प्रतिबंध लगाता है या सामान्यतः एक निश्चित स्थलीय स्थान (क्रमशः, अलग करने योग्य कई गुना) का होता है। दो होमियोमोर्फिज्म , h : U → V तथा g : V → W U से W तक होमोमोर्फिज्म की रचना करते हैं,कोई पूछता है कि रचना और व्युत्क्रम के अनुसार छद्मसमूह बंद है।चूंकि, एक समूह के सिद्धांतों के विपरीत, छद्म समूह को परिभाषित करने वाले सिद्धांत विशुद्ध रूप से बीजगणितीय नहीं होते हैं; आगे की आवश्यकताएं होमोमोर्फिज्म को प्रतिबंधित करने और पैच करने की संभावना से संबंधित हैं (शेफ के वर्गों के लिए ग्लूइंग स्वयंसिद्ध के समान)।
अधिक त्रुटिहीन रूप से, एक स्थलीय स्थान 'S पर एक 'छद्म समूह' निम्नलिखित गुणों को संतुष्ट करने वाले 'S के खुले उपसमुच्चय के बीच होमोमोर्फिज्म का एक संग्रह है:[4][5]
- तत्वों का डोमेन g में Γ ढकना S ( ढकना )।
- एक तत्व का प्रतिबंध g में Γ इसके डोमेन में निहित किसी भी खुले समुच्चयमें भी है Γ (प्रतिबंध)।
- रचना g ○ h के दो तत्वों का Γ, जब परिभाषित किया गया है, में है Γ ( संयोजन )।
- के एक तत्व का व्युत्क्रम g में है Γ ( श्लोक में )।
- लेटने का गुण Γ स्थानीय है, यानी अगर g : U → V के खुले सेटों के बीच एक होमोमोर्फिज्म है S तथा U खुले समुच्चय द्वारा कवर किया गया है Ui साथ g के लिए प्रतिबंधित Ui में लेटा हुआ Γ प्रत्येक के लिए i, फिर g में भी है Γ ( स्थानीय )।
परिणामस्वरूप S के किसी भी खुले उपसमुच्चय की पहचान होमोमोर्फिज्म Γ में निहित है।
इसी तरह, एक स्मूथ मैनिफोल्ड X पर एक छद्मसमूह संग्रह के रूप में परिभाषित किया गया है 'Γ के खुले उपसमुच्चय के बीच भिन्नता का X अनुरूप गुणों को संतुष्ट करना (जहां हम होमोमोर्फिज्म को डिफियोमोर्फिज्म से बदल देते हैं)।[6]
X में दो बिंदुओं को एक ही कक्षा में कहा जाता है यदि Γ का तत्व एक दूसरे को भेजता है। छद्मसमूह की कक्षाएँ स्पष्ट रूप से X का विभाजन बनाती हैं; एक छद्मसमूह को सकर्मक कहा जाता है यदि इसकी केवल एक कक्षा हो।
उदाहरण
किसी दिए गए ज्यामितीय संरचना को संरक्षित करने वाले छद्मसमूह द्वारा उदाहरणों का एक व्यापक वर्ग दिया गया है। उदाहरण के लिए, यदि (X, g) एक रीमैनियन कई गुना है, तो इसके स्थानीय आइसोमेट्री का छद्मसमूह है; यदि (X, ω) एक सहानुभूतिपूर्ण मैनिफोल्ड है, तो किसी के पास स्थानीय सिम्प्लेक्टोमोर्फिज्म का छद्मसमूह है; आदि। इन छद्म समूहों को इन संरचनाओं की स्थानीय समरूपता के समुच्चय के रूप में माना जाना चाहिए।
समरूपता और ज्यामितीय संरचनाओं के छद्म समूह
अतिरिक्त संरचनाओं के साथ मैनिफोल्ड्स को प्रायः एक निश्चित स्थानीय मॉडल के समरूपता के छद्म समूह का उपयोग करके परिभाषित किया जा सकता है। अधिक त्रुटिहीन रूप से, एक छद्म समूह Γ दिया गया , एक स्थलीय स्थान S पर एक Γ-एटलस में S पर एक मानक एटलस होता है जैसे कि निर्देशांक के परिवर्तन (अर्थात संक्रमण मानचित्र) Γ से संबंधित हैंI Γ के समतुल्य वर्ग को Γ- भी कहा जाता हैI S पर संरचनाI
विशेष रूप से,जब Γ Rn के सभी स्थानीय रूप से परिभाषित भिन्नताओं का छद्म समूह है, तो चिकनी एटलस और एक चिकनी संरचना की मानक धारणा को पुनः प्राप्त करता है। अधिक सामान्यतः, निम्नलिखित वस्तुओं को एक स्थलीय स्थान S पर Γ संरचनाओं के रूप में परिभाषित किया जा सकता है:
- विहित यूक्लिडियन मीट्रिक के साथ Rn के आइसोमेट्री के Γ छद्मसमूह के लिए फ्लैट कई गुना, रीमैनियन संरचनाएं;
- सहानुभूतिपूर्ण संरचना, Γ के लिए कैनोनिकल सिम्प्लेक्टिक फॉर्म के साथ R2n के सिम्प्लेक्टोमोर्फिज्म के छद्मसमूह ;
- विश्लेषणात्मक कई गुना, Γ Rn के (वास्तविक-) लिए विश्लेषणात्मक भिन्नता के छद्मसमूह के लिए;
- एक जटिल चर के उलटे होलोमॉर्फिक फलन कार्यों के Γ छद्म समूह के लिए रीमैन सतह।
अधिक सामान्यतः पर, किसी भी पूर्णांक G संरचना और किसी भी (G, X) कई गुना उपयुक्त छद्मसमूह के लिए Γ संरचनाओं की विशेष स्थितियाँ हैं I
स्यूडोग्रुप्स और लाई थ्योरी
सामान्य तौर पर, स्यूडोग्रुप्स का अध्ययन लाइ_ग्रुप#इनफिनिट-डायमेंशनल_ली_ग्रुप्स|अनंत-डायमेंशनल लाइ ग्रुप्स के संभावित सिद्धांत के रूप में किया गया था। एक यूक्लिडियन अंतरिक्ष की उत्पत्ति के निकट (गणित) में परिभाषित कार्यों के छद्म समूह नामक एक स्थानीय झूठ समूह की अवधारणा E, वास्तव में लाइ समूह की मूल अवधारणा के करीब है, ऐसी स्थिति में जहां परिवर्तन सम्मिलित हैं, कई गुना के माध्यम से समकालीन परिभाषा की तुलना में मापदंडों की एक सीमित संख्या पर निर्भर करते हैं। कार्टन की उपलब्धियों में सम्मिलित बिंदुओं को स्पष्ट करना था, जिसमें यह बिंदु भी सम्मिलित है कि एक स्थानीय लाई समूह हमेशा एक वैश्विक समूह को जन्म देता है, वर्तमान अर्थों में (ली के तीसरे प्रमेय का एक एनालॉग, एक समूह का निर्धारण करने वाले लाई बीजगणित पर)। औपचारिक समूह अभी तक झूठ समूहों के विनिर्देशन के लिए एक और दृष्टिकोण है, असीम रूप से। चूंकि, यह ज्ञात है कि स्थानीय टोपोलॉजिकल समूहों के पास वैश्विक समकक्ष नहीं हैं।
अनंत-आयामी स्यूडोग्रुप्स के उदाहरण प्रचुर मात्रा में हैं, जो कि सभी भिन्नताओं के स्यूडोग्रुप से प्रारम्भ होते हैं E. रुचि मुख्य रूप से डिफियोमोर्फिज्म के उप-छद्मसमूहों में है, और इसलिए उन वस्तुओं के साथ जिनके पास सदिश क्षेत्रों का झूठा बीजगणित एनालॉग है। कंप्यूटर बीजगणित की प्रगति को देखते हुए इन वस्तुओं का अध्ययन करने के लिए लाई और कार्टन द्वारा प्रस्तावित तरीके अधिक व्यावहारिक हो गए हैं।
1950 के दशक में, कार्टन के सिद्धांत को शिंग-शेन चेर्न द्वारा सुधारा गया था, और स्यूडोग्रुप्स के लिए एक सामान्य विरूपण सिद्धांत कुनिहिको कोडैरा द्वारा विकसित किया गया था।[7] और डी.सी. स्पेंसर।[8] 1960 के दशक में सजातीय बीजगणित को मूल आंशिक अंतर समीकरण प्रश्नों पर लागू किया गया था, जिसमें अति-निर्धारण;चूंकि इससे पता चला कि सिद्धांत का बीजगणित संभावित रूप से बहुत भारी है। उसी दशक में वर्तमान बीजगणित के आकार में पहली बार अनंत-आयामी झूठ सिद्धांत के सैद्धांतिक भौतिकी के लिए रुचि दिखाई दी।
सहजता से, एक छद्म समूह एक छद्म समूह होना चाहिए जो पीडीई की एक प्रणाली से उत्पन्न होता है। साहित्य में कई समान लेकिन असमान धारणाएँ हैं;[9][10][11][12][13] सही इस बात पर निर्भर करता है कि किसी के मन में कौन सा अनुप्रयोग है।चूंकि, इन सभी विभिन्न दृष्टिकोणों में (परिमित- या अनंत-आयामी) जेट बंडल सम्मिलित है Γ, जिन्हें लाइ ग्रुपॉयड कहा जाता है। विशेष रूप से, झूठ छद्म समूह को परिमित आदेश कहा जाता है kअगर इसे इसके स्थान से पुनर्निर्मित किया जा सकता है k-जेट (गणित)।
संदर्भ
- ↑ Sophus, Lie (1888–1893). परिवर्तन समूहों का सिद्धांत. B.G. Teubner. OCLC 6056947.
- ↑ Cartan, Élie (1904). "परिवर्तनों के अनंत समूहों की संरचना पर" (PDF). Annales Scientifiques de l'École Normale Supérieure. 21: 153–206. doi:10.24033/asens.538.
- ↑ Cartan, Élie (1909). "निरंतर, अनंत, सरल परिवर्तनों के समूह" (PDF). Annales Scientifiques de l'École Normale Supérieure. 26: 93–161. doi:10.24033/asens.603.
- ↑ Kobayashi, Shoshichi; Nomizu, Katsumi (1963). डिफरेंशियल ज्योमेट्री की नींव, वॉल्यूम I. Wiley Classics Library. New York: John Wiley & Sons Inc. pp. 1–2. ISBN 0470496487.
- ↑ Thurston, William P. (1997). Silvio Levy (ed.). त्रि-आयामी ज्यामिति और टोपोलॉजी. Princeton Mathematical Series. Vol. 35. Princeton University Press. ISBN 0-691-08304-5. MR 1435975.
- ↑ Loomis, Lynn; Sternberg, Shlomo (2014). "Differentiable manifolds". उन्नत कैलकुलस (Revised ed.). World Scientific. pp. 364–372. ISBN 978-981-4583-93-0. MR 3222280.
- ↑ Kodaira, K. (1960). "कुछ जटिल छद्म समूह संरचनाओं की विकृतियों पर". Annals of Mathematics. 71 (2): 224–302. doi:10.2307/1970083. ISSN 0003-486X. JSTOR 1970083.
- ↑ Guillemin, Victor; Sternberg, Shlomo (1966). "स्यूडोग्रुप संरचनाओं का विरूपण सिद्धांत". Memoirs of the American Mathematical Society (64): 0. doi:10.1090/memo/0064. ISSN 0065-9266.
- ↑ Kumpera, Antonio; Spencer, Donald Clayton (1973-01-01). झूठ समीकरण, वॉल्यूम। मैं. Princeton University Press. doi:10.1515/9781400881734. ISBN 978-1-4008-8173-4.
- ↑ Singer, I. M.; Sternberg, Shlomo (1965). "झूठ और कार्टन भाग I के अनंत समूह, (सकर्मक समूह)". Journal d'Analyse Mathématique. 15 (1): 1–114. doi:10.1007/bf02787690. ISSN 0021-7670. S2CID 123124081.
- ↑ Claude., Albert (1984–1987). सकर्मक झूठ छद्मसमूह. Hermann. OCLC 715985799.
- ↑ Kuranishi, Masatake (1959). "सतत अनंत छद्म समूहों के स्थानीय सिद्धांत पर I". Nagoya Mathematical Journal. 15: 225–260. doi:10.1017/s0027763000006747. ISSN 0027-7630.
- ↑ Olver, Peter J.; Pohjanpelto, Juha (2005). "मौरर-कार्टन फॉर्म और लाई स्यूडो-ग्रुप्स की संरचना". Selecta Mathematica. 11 (1): 99–126. doi:10.1007/s00029-005-0008-7. ISSN 1022-1824. S2CID 14712181.
- St. Golab (1939). "Über den Begriff der "Pseudogruppe von Transformationen"". Mathematische Annalen. 116: 768–780. doi:10.1007/BF01597390. S2CID 124962440.
बाहरी संबंध
- Alekseevskii, D.V. (2001) [1994], "Pseudo-groups", Encyclopedia of Mathematics, EMS Press