अनुक्रमित वर्ग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:
== गणितीय कथन ==
== गणितीय कथन ==


परिभाषा। मान लीजिए {{mvar|I}} तथा {{mvar|X}}  समुच्चय हो और {{mvar|f}} एक समारोह (गणित) ऐसा है कि
परिभाषा। मान लीजिए {{mvar|I}} तथा {{mvar|X}}  समुच्चय हो और {{mvar|f}} एक ऐसा फलन है कि
:<math>\begin{align}
:<math>\begin{align}
  f\colon I &\to X \\
  f\colon I &\to X \\
  f\colon i &\mapsto x_i = f(i),
  f\colon i &\mapsto x_i = f(i),
\end{align}</math>
\end{align}</math>
जहां <math>i</math> का एक तत्व है {{mvar|I}} और छवि <math>f(i)</math> का <math>i</math> समारोह के अनुसार {{mvar|f}} द्वारा निरूपित किया जाता है <math>x_i</math>. उदाहरण के लिए, <math>f(3)</math> द्वारा निरूपित किया जाता है <math>x_3</math>. प्रतीक <math>x_i</math> इंगित करने के लिए प्रयोग किया जाता है <math>x_i</math> का तत्व है {{mvar|X}} द्वारा अनुक्रमित <math>i\in I</math>. कार्यक्रम {{mvar|f}} इस प्रकार तत्वों का एक परिवार स्थापित करता है {{mvar|X}} द्वारा अनुक्रमित {{mvar|I}}, जिसे द्वारा दर्शाया गया है <math>(x_i)_{i \in I}</math>, या केवल {{math|(''x<sub>i</sub>'')}} यदि  सूचकांक समुच्चय को ज्ञात माना जाता है। कभी-कभी कोष्ठक के  अतिरिक्त कोण कोष्ठक या ब्रेसिज़ का उपयोग किया जाता है,चूंकि ब्रेसिज़ के उपयोग से अनुक्रमित परिवारों को समुच्चय के साथ भ्रमित करने का खतरा होता है।
जहां <math>i</math> का एक तत्व है और {{mvar|I}} की छवि <math>f(i)</math> को <math>i</math> फलन के अनुसार {{mvar|f}} द्वारा <math>x_i</math> निरूपित किया जाता है. उदाहरण के लिए, <math>f(3)</math> को <math>x_3</math> द्वारा निरूपित किया जाता है . प्रतीक <math>x_i</math> का उपयोग यह संकेत करने के लिए किया जाता है कि <math>x_i</math>, I द्वारा अनुक्रमित {{mvar|X}} का तत्व है <math>i\in I</math>. कार्यक्रम {{mvar|f}} इस प्रकार {{mvar|I}} द्वारा अनुक्रमित {{mvar|X}} में तत्वों का एक परिवार स्थापित करता है जिसे <math>(x_i)_{i \in I}</math> द्वारा दर्शाया जाता है , या केवल {{math|(''x<sub>i</sub>'')}} यदि  सूचकांक समुच्चय को ज्ञात माना जाता है। कभी-कभी कोष्ठक के  अतिरिक्त कोण कोष्ठक या ब्रेसिज़ का उपयोग किया जाता है,चूंकि ब्रेसिज़ के उपयोग से अनुक्रमित परिवारों को समुच्चय के साथ भ्रमित करने का खतरा होता है।


फलन (गणित) और अनुक्रमित परिवार किसी भी फलन के बाद से औपचारिक रूप से समतुल्य हैं {{math|''f''}} किसी फलन के डोमेन के साथ {{math|''I''}} परिवार को प्रवृत्त करता है {{math|(''f''(''i''))<sub>''i''∈''I''</sub>}} और इसके विपरीत। एक परिवार का एक तत्व होना संबंधित कार्य की सीमा में होने के बराबर है। चूंकि, व्यवहार में, एक परिवार को एक समारोह के अतिरिक्त एक संग्रह के रूप में देखा जाता है।
फलन (गणित) और अनुक्रमित परिवार किसी भी फलन के बाद से औपचारिक रूप से समतुल्य हैं {{math|''f''}} किसी फलन के डोमेन के साथ {{math|''I''}} परिवार को प्रवृत्त करता है {{math|(''f''(''i''))<sub>''i''∈''I''</sub>}} और इसके विपरीत। एक परिवार का एक तत्व होना संबंधित कार्य की सीमा में होने के बराबर है। चूंकि, व्यवहार में, एक परिवार को एक समारोह के अतिरिक्त एक संग्रह के रूप में देखा जाता है।


कोई भी समुच्चय {{mvar|X}} एक परिवार को जन्म देता है {{math|(''x<sub>x</sub>'')<sub>''x''∈''X''</sub>}}, जहाँ {{mvar|X}}  को स्वयं  अनुक्रमित किया जाता है (जिसका अर्थ है कि <math>f</math> पहचान कार्य है)।
कोई भी समुच्चय {{mvar|X}} Any set X gives rise to a family (''x<sub>x</sub>'')<sub>''x''∈''X''</sub>, where X is indexed by itself (meaning that
 
is the identity function). एक परिवार को जन्म देता है {{math|(''x<sub>x</sub>'')<sub>''x''∈''X''</sub>}}, जहाँ {{mvar|X}}  को स्वयं  अनुक्रमित किया जाता है (जिसका अर्थ है कि <math>f</math> पहचान कार्य है)।
चूंकि, परिवार समुच्चय से भिन्न होते हैं जिसमें एक ही वस्तु एक परिवार में विभिन्न सूचकांकों के साथ कई बार दिखाई दे सकती है, जबकि एक समुच्चय अलग-अलग वस्तुओं का एक संग्रह होता है। एक परिवार में कोई भी तत्व ठीक एक बार होता है यदि और केवल यदि संबंधित कार्य [[इंजेक्शन|एकैकी]] है।
चूंकि, परिवार समुच्चय से भिन्न होते हैं जिसमें एक ही वस्तु एक परिवार में विभिन्न सूचकांकों के साथ कई बार दिखाई दे सकती है, जबकि एक समुच्चय अलग-अलग वस्तुओं का एक संग्रह होता है। एक परिवार में कोई भी तत्व ठीक एक बार होता है यदि और केवल यदि संबंधित कार्य [[इंजेक्शन|एकैकी]] है।


Line 80: Line 82:
* [[टैग की गई यूनियन]]
* [[टैग की गई यूनियन]]


==इस पेज में लापता आंतरिक लिंक की सूची==
*अंक शास्त्र
*समारोह (गणित)
*किसी फ़ंक्शन का डोमेन
*अगर और केवल अगर
*सेट (गणित)
*सिद्ध
*क्रमित युग्म
*कार्तीय गुणन
*सेट का परिवार
*चौराहा (सेट सिद्धांत)
*ऑपरेटर
==संदर्भ==
==संदर्भ==



Revision as of 22:34, 4 December 2022

गणित में, एक परिवार, या अनुक्रमित परिवार, अनौपचारिक रूप से वस्तुओं का एक संग्रह है, प्रत्येक किसी सूचकांक समुच्चय से एक सूचकांक द्वारा जुड़ा होता है। उदाहरण के लिए, 'वास्तविक संख्याओं का परिवार, पूर्णांकों के समुच्चय द्वारा अनुक्रमित' वास्तविक संख्याओं का एक संग्रह है, जहां एक दिया गया फलन प्रत्येक पूर्णांक के लिए एक वास्तविक संख्या का चयन करता है।

अधिक औपचारिक रूप से, अनुक्रमित परिवार एक फलन है और छवि X के साथ एक गणितीय कार्य है। अधिकांशतः समुच्चय X के तत्वों को परिवार बनाने के रूप में संदर्भित किया जाता है। इस दृष्टि से, अनुक्रमित परिवारों की व्याख्या कार्यों के अतिरिक्त अनुक्रमित तत्वों के संग्रह के रूप में की जाती है। समुच्चय I परिवार का सूचकांक समुच्चय कहा जाता है, और X अनुक्रमित समुच्चय है।

अनुक्रम एक प्रकार का परिवार हैं जिन्हें प्राकृतिक संख्या द्वारा अनुक्रमित किया जाता है। सामान्यतः, सूचकांक समुच्चय I गणनीय होने के लिए प्रतिबंधित नहीं है। उदाहरण के लिए, वास्तविक संख्याओं द्वारा अनुक्रमित प्राकृतिक संख्याओं के उपसमुच्चय के असंख्य परिवार पर विचार किया जा सकता है।

गणितीय कथन

परिभाषा। मान लीजिए I तथा X समुच्चय हो और f एक ऐसा फलन है कि

जहां का एक तत्व है और I की छवि को फलन के अनुसार f द्वारा निरूपित किया जाता है. उदाहरण के लिए, को द्वारा निरूपित किया जाता है . प्रतीक का उपयोग यह संकेत करने के लिए किया जाता है कि , I द्वारा अनुक्रमित X का तत्व है . कार्यक्रम f इस प्रकार I द्वारा अनुक्रमित X में तत्वों का एक परिवार स्थापित करता है जिसे द्वारा दर्शाया जाता है , या केवल (xi) यदि सूचकांक समुच्चय को ज्ञात माना जाता है। कभी-कभी कोष्ठक के अतिरिक्त कोण कोष्ठक या ब्रेसिज़ का उपयोग किया जाता है,चूंकि ब्रेसिज़ के उपयोग से अनुक्रमित परिवारों को समुच्चय के साथ भ्रमित करने का खतरा होता है।

फलन (गणित) और अनुक्रमित परिवार किसी भी फलन के बाद से औपचारिक रूप से समतुल्य हैं f किसी फलन के डोमेन के साथ I परिवार को प्रवृत्त करता है (f(i))iI और इसके विपरीत। एक परिवार का एक तत्व होना संबंधित कार्य की सीमा में होने के बराबर है। चूंकि, व्यवहार में, एक परिवार को एक समारोह के अतिरिक्त एक संग्रह के रूप में देखा जाता है।

कोई भी समुच्चय X Any set X gives rise to a family (xx)xX, where X is indexed by itself (meaning that

is the identity function). एक परिवार को जन्म देता है (xx)xX, जहाँ X को स्वयं अनुक्रमित किया जाता है (जिसका अर्थ है कि पहचान कार्य है)। चूंकि, परिवार समुच्चय से भिन्न होते हैं जिसमें एक ही वस्तु एक परिवार में विभिन्न सूचकांकों के साथ कई बार दिखाई दे सकती है, जबकि एक समुच्चय अलग-अलग वस्तुओं का एक संग्रह होता है। एक परिवार में कोई भी तत्व ठीक एक बार होता है यदि और केवल यदि संबंधित कार्य एकैकी है।

एक अनुक्रमित परिवार एक समुच्चय परिभाषित करता है ,अर्थात I की छविf के नीचे.मानचित्रण के बाद से f एकैकी फलन होने की आवश्यकता नहीं है, वहां सम्मिलितहो सकता है साथ ij ऐसा है कि xi = xj. इस प्रकार, , कहाँ पे |A| समुच्चय की प्रमुखता को दर्शाता है A. उदाहरण के लिए, अनुक्रम प्राकृतिक संख्या द्वारा अनुक्रमित छवि समुच्चय है . इसके अतिरिक्त समुच्चय किसी भी संरचना के बारे में जानकारी नहीं रखता है I. इसलिए, परिवार के अतिरिक्त समुच्चय का उपयोग करने से कुछ जानकारी खो सकती है। उदाहरण के लिए, परिवार के सूचकांक समुच्चय पर ऑर्डरिंग परिवार पर ऑर्डरिंग को प्रेरित करती है, लेकिन संबंधित छवि समुच्चय पर कोई ऑर्डरिंग नहीं होती है।

उदाहरण

अनुक्रमित सदिश

उदाहरण के लिए, निम्नलिखित वाक्य पर विचार करें:

The vectors v1, ..., vn are linearly independent.

यहां (vi)i ∈ {1, ..., n} सदिश के एक परिवार को दर्शाता है। ii}}-वें सदिश vi केवल इस परिवार के संबंध में समझ में आता है, क्योंकि समुच्चय अनियंत्रित हैं इसलिए नहीं है i समुच्चय का -वां सदिश। इसके अतिरिक्त, रैखिक स्वतंत्रता को एक संग्रह की संपत्ति के रूप में परिभाषित किया गया है; इसलिए यह महत्वपूर्ण है कि वे सदिश समुच्चय या परिवार के रूप में रैखिक रूप से स्वतंत्र हों। उदाहरण के लिए, यदि हम विचार करें n = 2 तथा v1 = v2 = (1, 0) एक ही सदिश के रूप में, फिर उनमें से समुच्चय में केवल एक तत्व होता है (एक समुच्चय (गणित के रूप में) अनियंत्रित विशिष्ट तत्वों का संग्रह होता है) और रैखिक रूप से स्वतंत्र होता है, लेकिन परिवार में एक ही तत्व दो बार होता है (अलग-अलग अनुक्रमित होने के बाद से) और रैखिक रूप से निर्भर है (समान सदिश रैखिक रूप से निर्भर हैं)।

आव्यूह

मान लीजिए कि एक पाठ निम्नलिखित बताता है:

A square matrix A is invertible, if and only if the rows of A are linearly independent.

पिछले उदाहरण की तरह, यह महत्वपूर्ण है कि A की पंक्तियाँ एक परिवार के रूप में रैखिक रूप से स्वतंत्र हों, एक समुच्चय के रूप में नहीं। उदाहरण के लिए, आव्यूह पर विचार करें

पंक्तियों के समुच्चय में एक ही तत्व होता है (1, 1) एक समुच्चय अद्वितीय तत्वों से बना है, इसलिए यह रैखिक रूप से स्वतंत्र है, लेकिन आव्यूह व्युत्क्रमणीय नहीं है क्योंकि आव्यूह निर्धारक 0. है। दूसरी ओर, पंक्तियों के परिवार में दो तत्व अलग-अलग अनुक्रमित होते हैं जैसे कि पहली पंक्ति (1, 1) और दूसरी पंक्ति (1,1) इसलिए यह रैखिक रूप से निर्भर है। इसलिए यह कथन सही है यदि यह पंक्तियों के परिवार को संदर्भित करता है, लेकिन गलत है यदि यह पंक्तियों के समुच्चय को संदर्भित करता है। (बयान तब भी सही होता है जब पंक्तियों की व्याख्या मल्टीसेट के संदर्भ में की जाती है, जिसमें तत्वों को भी अलग रखा जाता है लेकिन जिसमें अनुक्रमित परिवार की कुछ संरचना का अभाव होता है।)

अन्य उदाहरण

मान लीजिए n परिमित समुच्चय{1, 2, ..., n} है, जहाँ n एक धनात्मक पूर्णांक है।

  • एक आदेशित जोड़ी (2-ट्यूपल) दो तत्वों के समुच्चय द्वारा अनुक्रमित एक परिवार है, 2 = {1, 2}; आदेशित जोड़ी के प्रत्येक तत्व को 2 समुच्चय के प्रत्येक तत्व द्वारा अनुक्रमित किया जाता है.
  • एक टपल |n-टुपल समुच्चय द्वारा अनुक्रमित एक परिवार है n.
  • एक अनंत अनुक्रम प्राकृतिक संख्याओं द्वारा अनुक्रमित एक परिवार है।
  • एक टपल एक है n-टपल एक अनिर्दिष्ट के लिए n, या एक अनंत क्रम।
  • एक n×m आव्यूह (गणित) कार्टेशियन उत्पाद द्वारा अनुक्रमित एक परिवार है n×m कौन से तत्व क्रमित युग्म हैं, उदा., (2, 5) दूसरी पंक्ति और 5वें कॉलम में आव्यूह तत्व को अनुक्रमित करना।
  • एक नेट (गणित) एक निर्देशित समुच्चय द्वारा अनुक्रमित एक परिवार है।

अनुक्रमित परिवारों पर संचालन

सूचकांक समूह का उपयोग अक्सर रकम और अन्य समान ऑपरेशनों में किया जाता है। उदाहरण के लिए, यदि (ai)iI संख्याओं का एक अनुक्रमित परिवार है, उन सभी संख्याओं का योग द्वारा निरूपित किया जाता है

जब (Ai)iI समुच्चयों का एक परिवार है, उन सभी समुच्चयों के संघ (समुच्चय सिद्धांत) द्वारा निरूपित किया जाता है

इसी प्रकार चौराहे (सेट सिद्धांत) और कार्टेशियन उत्पादों के लिए।

अनुक्रमित उपपरिवार

एक अनुक्रमित परिवार (Bi)iJ एक अनुक्रमित परिवार का उपपरिवार है (Ai)iI, यदि और केवल यदि J का उपसमुच्चय है I तथा Bi = Ai सभी के लिए रखता है i में J.

श्रेणी सिद्धांत में उपयोग

श्रेणी सिद्धांत में समान अवधारणा को आरेख (श्रेणी सिद्धांत) कहा जाता है। एक आरेख श्रेणी सिद्धांत में वस्तुओं के एक अनुक्रमित परिवार को जन्म देने वाला एक फ़ंक्टर है C, अन्य श्रेणी द्वारा अनुक्रमित J, और दो सूचकांकों के आधार पर रूपवाद से संबंधित है।

यह भी देखें

संदर्भ

  • Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993. Cited as EDM (volume).