प्रोस्थफेरेसिस: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Approximate multiplication and division using formulas from trigonometry}} {{More citations needed|date=May 2019}} Prosthaphaeresis (ग्रीक ''πρ...")
 
No edit summary
Line 1: Line 1:
{{Short description|Approximate multiplication and division using formulas from trigonometry}}
{{Short description|Approximate multiplication and division using formulas from trigonometry}}
{{More citations needed|date=May 2019}}
{{More citations needed|date=May 2019}}
Prosthaphaeresis (ग्रीक ''προσθαφαίρεσις'' से) 16वीं सदी के अंत और 17वीं सदी की शुरुआत में [[त्रिकोणमिति]] के सूत्रों का उपयोग करके अनुमानित [[गुणा]] और भाग (गणित) के लिए इस्तेमाल किया गया एक [[कलन विधि]] था। 1614 में लघुगणक के आविष्कार से पहले के 25 वर्षों के लिए, यह उत्पादों को जल्दी से अनुमानित करने का एकमात्र ज्ञात सामान्य रूप से लागू तरीका था। इसका नाम [[ग्रीक भाषा]] के ''प्रोस्थेसिस'' (πρόσθεσις) और ''एफेरेसिस'' (ἀφαίρεσις) से आया है, जिसका अर्थ है जोड़ और घटाव, प्रक्रिया में दो चरण।<ref>{{cite journal | author = Pierce, R. C., Jr.  |date=January 1977 | title = लघुगणक का एक संक्षिप्त इतिहास| journal = The Two-Year College Mathematics Journal | volume = 8 | issue = 1 | pages = 22–26 | publisher = Mathematical Association of America| doi = 10.2307/3026878 | jstor = 3026878 }}</ref><ref>[http://people.math.harvard.edu/~knill/history/burgi/prost.pdf Prosthaphaeresis], by Brian Borchers</ref>
प्रोस्थफेरेसिस (ग्रीक से ''προσθαφαίρεσις'') 16 वीं शताब्दी के अंत और 17 वीं शताब्दी की शुरुआत में [[त्रिकोणमिति]] के सूत्रों का उपयोग करके अनुमानित [[गुणा]] और विभाजन के लिए इस्तेमाल किया गया एक [[कलन विधि]] था। 1614 में लघुगणक के आविष्कार से पहले 25 वर्षों के लिए, यह उत्पाद की अनुमानित उपयोगिता का एकमात्र प्रचलित माध्यम था। इसका नाम [[ग्रीक भाषा]] के ''प्रोस्थेसिस'' (πρόσθεσις) और ''एफेरेसिस'' (ἀφαίρεσις) से आया है, जिसका अर्थ है जोड़ और घटाव, प्रक्रिया में दो चरण।<ref>{{cite journal | author = Pierce, R. C., Jr.  |date=January 1977 | title = लघुगणक का एक संक्षिप्त इतिहास| journal = The Two-Year College Mathematics Journal | volume = 8 | issue = 1 | pages = 22–26 | publisher = Mathematical Association of America| doi = 10.2307/3026878 | jstor = 3026878 }}</ref><ref>[http://people.math.harvard.edu/~knill/history/burgi/prost.pdf Prosthaphaeresis], by Brian Borchers</ref>
 
 
== इतिहास और प्रेरणा ==
== इतिहास और प्रेरणा ==


[[Image:RechtwKugeldreieck.svg|right|thumb|250px|गोलाकार त्रिभुज]]16वीं शताब्दी के यूरोप में, लंबी यात्राओं पर जहाजों का [[आकाशीय नेविगेशन]] उनकी स्थिति और पाठ्यक्रम को निर्धारित करने के लिए [[समाचार पत्र]] पर बहुत अधिक निर्भर करता था। खगोलविदों द्वारा तैयार किए गए ये विशाल चार्ट समय के विभिन्न बिंदुओं पर तारों और ग्रहों की स्थिति को विस्तृत करते हैं। इनकी गणना करने के लिए उपयोग किए जाने वाले मॉडल [[गोलाकार त्रिकोणमिति]] पर आधारित थे, जो गोलाकार त्रिकोणों के कोणों और चाप की लंबाई से संबंधित हैं (चित्र देखें, दाएं) जैसे सूत्रों का उपयोग करके
[[Image:RechtwKugeldreieck.svg|right|thumb|250px|गोलाकार त्रिभुज]]16 वीं शताब्दी में यूरोप द्वारा लंबी यात्राओं पर जहाजों का [[खगोलीय संचालन]] उनकी स्थिति और पाठ्यक्रम निर्धारित करने के लिए यथेष्ठ था। खगोलशास्त्रियों द्वारा बनाए गए इन विशालकाय चार्ट में समय पर विभिन्न स्थानों पर तारों और ग्रहों की स्थिति का विस्तार किया गया। इनकी गणना करने के लिए उपयोग किए जाने वाले मॉडल [[गोलाकार त्रिकोणमिति]] पर आधारित थे, जो गोलाकार त्रिकोणों के कोणों और चाप की लंबाई से संबंधित है (आरेख देखें, दाएं) जैसे सूत्रों का उपयोग करके


: <math>\cos a = \cos b \cos c + \sin b \sin c \cos \alpha</math>
: <math>\cos a = \cos b \cos c + \sin b \sin c \cos \alpha</math>
Line 13: Line 11:
जहाँ a, b और c संगत चापों द्वारा गोले के केंद्र पर अंतरित कोण हैं।
जहाँ a, b और c संगत चापों द्वारा गोले के केंद्र पर अंतरित कोण हैं।


जब इस तरह के सूत्र में एक मात्रा अज्ञात है, लेकिन अन्य ज्ञात हैं, तो अज्ञात मात्रा की गणना गुणन, विभाजन और त्रिकोणमितीय तालिका लुकअप की श्रृंखला का उपयोग करके की जा सकती है। खगोलविदों को इस तरह की हजारों गणनाएँ करनी पड़ीं, और क्योंकि गुणन का सबसे अच्छा तरीका उपलब्ध था, गुणन एल्गोरिथ्म # लंबा गुणन था, इस समय का अधिकांश समय उत्पादों को गुणा करने में लगाया गया था।
जब ऐसे सूत्र में एक मात्रा अज्ञात हो, लेकिन अन्य ज्ञात हों, तो गुणनफल, प्रभागों और त्रिकोणमितीय सारणी खण्डों की शृंखला के उपयोग से अज्ञात मात्रा का परिकलन किया जा सकता है। खगोलविदों को इस तरह की हजारों गणनाएँ करनी पड़ीं, और क्योंकि उपलब्ध गुणन की सबसे अच्छी विधि दीर्घ गुणन थी, इस समय का अधिकांश समय उत्पादों को गुणन करने में व्यतीत होता था।


गणितज्ञ, विशेष रूप से वे जो खगोलशास्त्री भी थे, एक आसान तरीके की तलाश कर रहे थे, और त्रिकोणमिति इन लोगों के लिए सबसे उन्नत और परिचित क्षेत्रों में से एक था। प्रोस्थफेरेसिस 1580 के दशक में दिखाई दिया, लेकिन इसके प्रवर्तक निश्चित रूप से ज्ञात नहीं हैं; इसके योगदानकर्ताओं में गणितज्ञ [[इब्न यूनिस]], [[जोहान्स वर्नर]], [[पॉल विटिच]], जोस्ट बर्गी, [[क्रिस्टोफर की]] और फ्रांकोइस विएते शामिल थे। विटिच, यूनिस और क्लेवियस सभी खगोलविद थे और सभी को विधि की खोज के साथ विभिन्न स्रोतों द्वारा श्रेय दिया गया है। इसके सबसे प्रसिद्ध प्रस्तावक [[टाइको ब्राहे]] थे, जिन्होंने इसे ऊपर वर्णित खगोलीय गणनाओं के लिए बड़े पैमाने पर इस्तेमाल किया। इसका उपयोग [[जॉन नेपियर]] द्वारा भी किया गया था, जिन्हें लघुगणक का आविष्कार करने का श्रेय दिया जाता है जो इसे बदल देगा।
गणितज्ञ, विशेष रूप से वे जो खगोलशास्त्री भी थे, एक आसान तरीके की तलाश कर रहे थे, और त्रिकोणमिति इन लोगों के लिए सबसे उन्नत और परिचित क्षेत्रों में से एक था। प्रोस्थफेरेसिस 1580 के दशक में दिखाई दिया, लेकिन इसके प्रवर्तक निश्चित रूप से ज्ञात नहीं हैं; इसके योगदानकर्ताओं में गणितज्ञ [[इब्न यूनिस]], [[जोहान्स वर्नर]], [[पॉल विटिच]], जोस्ट बर्गी, [[क्रिस्टोफर की]] और फ्रांकोइस विएते शामिल थे। विटिच, यूनिस और क्लेवियस सभी खगोलविद थे और सभी को विधि की खोज के साथ विभिन्न स्रोतों द्वारा श्रेय दिया गया है। इसके सबसे प्रसिद्ध प्रस्तावक [[टाइको ब्राहे]] थे, जिन्होंने इसे ऊपर वर्णित खगोलीय गणनाओं के लिए बड़े पैमाने पर इस्तेमाल किया। इसका उपयोग [[जॉन नेपियर]] द्वारा भी किया गया था, जिन्हें लघुगणक का आविष्कार करने का श्रेय दिया जाता है जो इसे बदल देगा।


[[निकोलस कोपरनिकस]] ने अपने 1543 के काम में कई बार प्रोस्थेफेरेसिस का उल्लेख किया है {{lang|la|[[De Revolutionibus Orbium Coelestium]]}}, जिसका अर्थ है पृथ्वी की वार्षिक गति के कारण पर्यवेक्षक के विस्थापन के कारण होने वाला महान लंबन।
[[निकोलस कोपरनिकस]] ने अपने 1543 के काम [[डी रेवोल्यूशनिबस ऑर्बियम कोएलेस्टियम]] में कई बार "प्रोस्थेफेरेसिस" का उल्लेख किया है, जिसका अर्थ है पृथ्वी की वार्षिक गति के कारण पर्यवेक्षक के विस्थापन के कारण "महान लंबन"।


== पहचान ==
== पहचान ==

Revision as of 11:15, 10 December 2022

प्रोस्थफेरेसिस (ग्रीक से προσθαφαίρεσις) 16 वीं शताब्दी के अंत और 17 वीं शताब्दी की शुरुआत में त्रिकोणमिति के सूत्रों का उपयोग करके अनुमानित गुणा और विभाजन के लिए इस्तेमाल किया गया एक कलन विधि था। 1614 में लघुगणक के आविष्कार से पहले 25 वर्षों के लिए, यह उत्पाद की अनुमानित उपयोगिता का एकमात्र प्रचलित माध्यम था। इसका नाम ग्रीक भाषा के प्रोस्थेसिस (πρόσθεσις) और एफेरेसिस (ἀφαίρεσις) से आया है, जिसका अर्थ है जोड़ और घटाव, प्रक्रिया में दो चरण।[1][2]

इतिहास और प्रेरणा

गोलाकार त्रिभुज

16 वीं शताब्दी में यूरोप द्वारा लंबी यात्राओं पर जहाजों का खगोलीय संचालन उनकी स्थिति और पाठ्यक्रम निर्धारित करने के लिए यथेष्ठ था। खगोलशास्त्रियों द्वारा बनाए गए इन विशालकाय चार्ट में समय पर विभिन्न स्थानों पर तारों और ग्रहों की स्थिति का विस्तार किया गया। इनकी गणना करने के लिए उपयोग किए जाने वाले मॉडल गोलाकार त्रिकोणमिति पर आधारित थे, जो गोलाकार त्रिकोणों के कोणों और चाप की लंबाई से संबंधित है (आरेख देखें, दाएं) जैसे सूत्रों का उपयोग करके

तथा

जहाँ a, b और c संगत चापों द्वारा गोले के केंद्र पर अंतरित कोण हैं।

जब ऐसे सूत्र में एक मात्रा अज्ञात हो, लेकिन अन्य ज्ञात हों, तो गुणनफल, प्रभागों और त्रिकोणमितीय सारणी खण्डों की शृंखला के उपयोग से अज्ञात मात्रा का परिकलन किया जा सकता है। खगोलविदों को इस तरह की हजारों गणनाएँ करनी पड़ीं, और क्योंकि उपलब्ध गुणन की सबसे अच्छी विधि दीर्घ गुणन थी, इस समय का अधिकांश समय उत्पादों को गुणन करने में व्यतीत होता था।

गणितज्ञ, विशेष रूप से वे जो खगोलशास्त्री भी थे, एक आसान तरीके की तलाश कर रहे थे, और त्रिकोणमिति इन लोगों के लिए सबसे उन्नत और परिचित क्षेत्रों में से एक था। प्रोस्थफेरेसिस 1580 के दशक में दिखाई दिया, लेकिन इसके प्रवर्तक निश्चित रूप से ज्ञात नहीं हैं; इसके योगदानकर्ताओं में गणितज्ञ इब्न यूनिस, जोहान्स वर्नर, पॉल विटिच, जोस्ट बर्गी, क्रिस्टोफर की और फ्रांकोइस विएते शामिल थे। विटिच, यूनिस और क्लेवियस सभी खगोलविद थे और सभी को विधि की खोज के साथ विभिन्न स्रोतों द्वारा श्रेय दिया गया है। इसके सबसे प्रसिद्ध प्रस्तावक टाइको ब्राहे थे, जिन्होंने इसे ऊपर वर्णित खगोलीय गणनाओं के लिए बड़े पैमाने पर इस्तेमाल किया। इसका उपयोग जॉन नेपियर द्वारा भी किया गया था, जिन्हें लघुगणक का आविष्कार करने का श्रेय दिया जाता है जो इसे बदल देगा।

निकोलस कोपरनिकस ने अपने 1543 के काम डी रेवोल्यूशनिबस ऑर्बियम कोएलेस्टियम में कई बार "प्रोस्थेफेरेसिस" का उल्लेख किया है, जिसका अर्थ है पृथ्वी की वार्षिक गति के कारण पर्यवेक्षक के विस्थापन के कारण "महान लंबन"।

पहचान

प्रोस्थफेरेसिस द्वारा उपयोग की जाने वाली त्रिकोणमितीय पहचान त्रिकोणमितीय कार्यों के उत्पादों को राशियों से संबंधित करती है। इनमें निम्नलिखित शामिल हैं:

ऐसा माना जाता है कि इनमें से पहले दो जोस्ट बर्गी द्वारा प्राप्त किए गए हैं,[citation needed] किसने उन्हें [टायको?] ब्राहे से संबंधित किया;[citation needed] अन्य इन दोनों से आसानी से अनुसरण करते हैं। यदि दोनों पक्षों को 2 से गुणा किया जाए, तो इन सूत्रों को वर्नर सूत्र भी कहा जाता है।

एल्गोरिथम

उपरोक्त दूसरे सूत्र का उपयोग करते हुए, दो संख्याओं के गुणन की तकनीक इस प्रकार कार्य करती है:

  1. स्केल डाउन: दशमलव बिंदु को बाएँ या दाएँ स्थानांतरित करके, दोनों संख्याओं को बीच के मानों पर स्केल करें तथा , के रूप में जाना जाता है तथा .
  2. व्युत्क्रम कोसाइन: व्युत्क्रम कोज्या तालिका का उपयोग करके, दो कोण खोजें तथा जिनकी कोसाइन हमारे दो मूल्य हैं।
  3. योग और अंतर: दो कोणों का योग और अंतर ज्ञात करें।
  4. कोसाइन औसत करें: कोसाइन टेबल का उपयोग करके योग और अंतर कोणों के कोसाइन का पता लगाएं और उन्हें (उपरोक्त दूसरे सूत्र के अनुसार) उत्पाद देते हुए औसत करें .
  5. स्केल अप करें: उत्तर में दशमलव स्थान को शिफ्ट करें संयुक्त संख्या में हमने प्रत्येक इनपुट के लिए पहले चरण में दशमलव को स्थानांतरित किया है, लेकिन विपरीत दिशा में।

उदाहरण के लिए, कहते हैं कि हम गुणा करना चाहते हैं तथा . चरणों का पालन:

  1. स्केल डाउन: प्रत्येक में दशमलव बिंदु को तीन स्थान बाईं ओर शिफ्ट करें। हम पाते हैं तथा .
  2. उलटा कोसाइन: लगभग 0.105 है, और के बारे में है .
  3. योग और अंतर: , तथा .
  4. औसत कोसाइन: के बारे में है .
  5. स्केल अप करें: प्रत्येक के लिए तथा हमने दशमलव बिंदु को तीन स्थान बाईं ओर स्थानांतरित कर दिया है, इसलिए उत्तर में हम छह स्थान दाईं ओर स्थानांतरित करते हैं। परिणाम है . यह वास्तविक उत्पाद के बहुत करीब है, (%0.8% की त्रुटि)।

यदि हम दो प्रारंभिक मूल्यों के कोसाइन का उत्पाद चाहते हैं, जो ऊपर वर्णित कुछ खगोलीय गणनाओं में उपयोगी है, तो यह आश्चर्यजनक रूप से और भी आसान है: केवल चरण 3 और 4 ऊपर आवश्यक हैं।

विभाजित करने के लिए, हम कोज्या के व्युत्क्रम के रूप में छेदक की परिभाषा का उपयोग करते हैं। बाँटने के लिए द्वारा , हम संख्याओं को स्केल करते हैं तथा . की कोसाइन है . फिर यह पता लगाने के लिए त्रिकोणमितीय फ़ंक्शन की तालिका का उपयोग करें का सेकेंट है . इस का मतलब है कि की कोसाइन है , और इसलिए हम गुणा कर सकते हैं द्वारा उपरोक्त प्रक्रिया का उपयोग करना। कोणों के योग का कोसाइन औसत करें, , उनके अंतर के कोसाइन के साथ, ,

दशमलव बिंदु का पता लगाने के लिए स्केलिंग करना अनुमानित उत्तर देता है, .

अन्य फ़ार्मुलों का उपयोग करने वाले एल्गोरिदम समान हैं, लेकिन प्रत्येक अलग-अलग स्थानों में अलग-अलग तालिकाओं (साइन, व्युत्क्रम साइन, कोसाइन और व्युत्क्रम कोसाइन) का उपयोग करता है। पहले दो सबसे आसान हैं क्योंकि उनमें से प्रत्येक के लिए केवल दो तालिकाओं की आवश्यकता होती है। हालाँकि, दूसरे सूत्र का उपयोग करने का अनूठा लाभ है कि यदि केवल एक कोज्या तालिका उपलब्ध है, तो इसका उपयोग निकटतम कोसाइन मान के साथ कोण की खोज करके व्युत्क्रम कोसाइन का अनुमान लगाने के लिए किया जा सकता है।

ध्यान दें कि उपरोक्त एल्गोरिथ्म लघुगणक का उपयोग करके गुणा करने की प्रक्रिया के समान है, जो इन चरणों का पालन करता है: स्केल डाउन करें, लॉगरिदम लें, जोड़ें, व्युत्क्रम लघुगणक लें, स्केल अप करें। यह कोई आश्चर्य की बात नहीं है कि लघुगणक के प्रवर्तकों ने प्रोस्थफेरेसिस का उपयोग किया था। वास्तव में दोनों गणितीय रूप से घनिष्ठ रूप से संबंधित हैं। आधुनिक शब्दों में, प्रोस्थफेरेसिस को जटिल संख्याओं के लघुगणक पर निर्भर होने के रूप में देखा जा सकता है, विशेष रूप से यूलर के सूत्र पर


त्रुटि घटाना

यदि सभी ऑपरेशन उच्च परिशुद्धता के साथ किए जाते हैं, तो उत्पाद वांछित के रूप में सटीक हो सकता है। यद्यपि जोड़, अंतर और औसत उच्च परिशुद्धता के साथ गणना करना आसान है, हाथ से भी, त्रिकोणमितीय फ़ंक्शन और विशेष रूप से व्युत्क्रम त्रिकोणमितीय फ़ंक्शन नहीं हैं। इस कारण से, विधि की सटीकता उपयोग की गई त्रिकोणमितीय तालिकाओं की सटीकता और विवरण पर काफी हद तक निर्भर करती है।

उदाहरण के लिए, प्रत्येक डिग्री के लिए एक प्रविष्टि के साथ एक ज्या तालिका 0.0087 तक बंद हो सकती है यदि हम केवल निकटतम-पड़ोसी इंटरपोलेशन करते हैं; हर बार जब हम तालिका के आकार को दोगुना करते हैं (उदाहरण के लिए, प्रत्येक डिग्री के बजाय प्रत्येक आधे डिग्री के लिए प्रविष्टियां देकर) हम इस त्रुटि को आधा कर देते हैं। प्रोस्थेफेरेसिस के लिए तालिकाओं का निर्माण श्रमसाध्य रूप से किया गया था, जिसमें प्रत्येक सेकंड या डिग्री के 3600 वें मान थे।

व्युत्क्रम ज्या और कोसाइन फलन विशेष रूप से कष्टदायक होते हैं, क्योंकि वे -1 और 1 के निकट तीव्र हो जाते हैं। एक समाधान इस क्षेत्र में अधिक तालिका मानों को शामिल करना है। दूसरा तरीका इनपुट को -0.9 और 0.9 के बीच की संख्या में स्केल करना है। उदाहरण के लिए, 950 0.950 के बजाय 0.095 बन जाएगा।

सटीकता बढ़ाने के लिए एक और प्रभावी दृष्टिकोण रैखिक प्रक्षेप है, जो दो आसन्न तालिका मूल्यों के बीच एक मान चुनता है। उदाहरण के लिए, यदि हम जानते हैं कि 45° की ज्या लगभग 0.707 है और 46° की ज्या लगभग 0.719 है, तो हम 45.7° की ज्या का अनुमान 0.707 × (1 - 0.7) + 0.719 × 0.7 = 0.7154 के रूप में लगा सकते हैं। वास्तविक साइन 0.7157 है। रेखीय अंतर्वेशन के साथ संयुक्त केवल 180 प्रविष्टियों वाली कोसाइन की एक तालिका उतनी ही सटीक है जितनी कि एक तालिका के बारे में 45000 इसके बिना प्रविष्टियाँ। यहां तक ​​कि प्रक्षेपित मूल्य का एक त्वरित अनुमान अक्सर निकटतम तालिका मान से बहुत करीब होता है। अधिक विवरण के लिए खोज तालिका देखें।

विपरीत पहचान

गुणा के संदर्भ में योग व्यक्त करने वाले सूत्र प्राप्त करने के लिए उत्पाद सूत्रों में भी हेरफेर किया जा सकता है। हालांकि कंप्यूटिंग उत्पादों के लिए कम उपयोगी, फिर भी ये त्रिकोणमितीय परिणाम प्राप्त करने के लिए उपयोगी हैं:


यह भी देखें

  • स्लाइड नियम # आधुनिक रूप

संदर्भ

  1. Pierce, R. C., Jr. (January 1977). "लघुगणक का एक संक्षिप्त इतिहास". The Two-Year College Mathematics Journal. Mathematical Association of America. 8 (1): 22–26. doi:10.2307/3026878. JSTOR 3026878.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Prosthaphaeresis, by Brian Borchers


इस पेज में लापता आंतरिक लिंक की सूची

  • लोगारित्म
  • प्रभाग (गणित)
  • खगोल विज्ञानी
  • वक्राकार लंबाई
  • घटा हुआ कोण
  • त्रिकोणमितीय समारोह
  • प्रतिशत त्रुटि
  • निकटतम-पड़ोसी प्रक्षेप
  • रेखिक आंतरिक

बाहरी संबंध