गन डायोड: Difference between revisions

From Vigyanwiki
Line 28: Line 28:


  [[ गैलियम आर्सेनाइड |गैलियम आर्सेनाइड]] (GaAs) सहित कुछ अर्धचालक पदार्थों की[[ सेमीकंडक्टर | (सेमीकंडक्टर]])[[ इलेक्ट्रॉनिक बैंड संरचना | की इलेक्ट्रॉनिक बैंड संरचना]] में[[ वैलेंस बैंड | वैलेंस]] और[[ चालन बैंड | चालन बैंड]] के अलावा एक और ऊर्जा बैंड या उप-बैंड होता है जो आमतौर पर अर्धचालक उपकरणों में उपयोग किया जाता है। यह तीसरा बैंड सामान्य चालन बैंड की तुलना में अधिक ऊर्जा पर होता है और तब तक खाली रहता है जब तक इसे इलेक्ट्रॉनों को बढ़ावा देने के लिए ऊर्जा की आपूर्ति नहीं की जाती है। ऊर्जा  [[ बैलिस्टिक कंडक्शन |  बैलिस्टिक इलेक्ट्रॉनों ]] की गतिज ऊर्जा से आती है,अर्थात् चालन बैंड में इलेक्ट्रॉन लेकिन पर्याप्त गतिज ऊर्जा के साथ गतिमान होते हैं जैसे कि वे तीसरे बैंड तक पहुंचने में सक्षम होते हैं।
  [[ गैलियम आर्सेनाइड |गैलियम आर्सेनाइड]] (GaAs) सहित कुछ अर्धचालक पदार्थों की[[ सेमीकंडक्टर | (सेमीकंडक्टर]])[[ इलेक्ट्रॉनिक बैंड संरचना | की इलेक्ट्रॉनिक बैंड संरचना]] में[[ वैलेंस बैंड | वैलेंस]] और[[ चालन बैंड | चालन बैंड]] के अलावा एक और ऊर्जा बैंड या उप-बैंड होता है जो आमतौर पर अर्धचालक उपकरणों में उपयोग किया जाता है। यह तीसरा बैंड सामान्य चालन बैंड की तुलना में अधिक ऊर्जा पर होता है और तब तक खाली रहता है जब तक इसे इलेक्ट्रॉनों को बढ़ावा देने के लिए ऊर्जा की आपूर्ति नहीं की जाती है। ऊर्जा  [[ बैलिस्टिक कंडक्शन |  बैलिस्टिक इलेक्ट्रॉनों ]] की गतिज ऊर्जा से आती है,अर्थात् चालन बैंड में इलेक्ट्रॉन लेकिन पर्याप्त गतिज ऊर्जा के साथ गतिमान होते हैं जैसे कि वे तीसरे बैंड तक पहुंचने में सक्षम होते हैं।
ये इलेक्ट्रॉन या तो [[ फर्मी स्तर ]] से नीचे शुरू होते हैं और उन्हें एक मजबूत विद्युत क्षेत्र को लागू करके आवश्यक ऊर्जा प्राप्त करने के लिए पर्याप्त रूप से लंबे समय से मुक्त पथ दिया जाता है, या उन्हें सही ऊर्जा के साथ एक कैथोड द्वारा इंजेक्ट किया जाता है। आगे के वोल्टेज के साथ, कैथोड में फर्मी स्तर तीसरे बैंड में चलता है, और फर्मी स्तर के आसपास शुरू होने वाले बैलिस्टिक इलेक्ट्रॉनों के प्रतिबिंबों को राज्यों के घनत्व से मेल खाने और अतिरिक्त इंटरफ़ेस परतों का उपयोग करके कम से कम किया जाता है ताकि परावर्तित तरंगों को विनाशकारी रूप से हस्तक्षेप किया जा सके।
ये इलेक्ट्रॉन या तो [[ फर्मी स्तर ]] से नीचे शुरू होते हैं और उन्हें एक मजबूत विद्युत क्षेत्र को लागू करके आवश्यक ऊर्जा प्राप्त करने के लिए पर्याप्त रूप से लंबे समय से मुक्त पथ दिया जाता है, या उन्हें सही ऊर्जा के साथ एक कैथोड द्वारा इंजेक्ट किया जाता है। अग्रिम वोल्टेज के साथ, कैथोड में फर्मी स्तर तीसरे बैंड में चलता है, और फर्मी स्तर के आसपास शुरू होने वाले बैलिस्टिक इलेक्ट्रॉनों के प्रतिबिंबों को घनत्व की अवस्था से मेल खाने और अतिरिक्त इंटरफ़ेस परतों का उपयोग करके कम से कम किया जाता है ताकि परावर्तित तरंगों को विनाशकारी रूप से बाधित किया जा सके।


GAAS में  [[ प्रभावी द्रव्यमान (ठोस-राज्य भौतिकी) |  तीसरे बैंड में इलेक्ट्रॉनों का प्रभावी द्रव्यमान ]] सामान्य चालन बैंड की तुलना में अधिक है, इसलिए  [[ इलेक्ट्रॉन गतिशीलता |  गतिशीलता ]] या उस बैंड में इलेक्ट्रॉनों के बहाव वेग कम है। जैसे -जैसे फॉरवर्ड वोल्टेज बढ़ता है, अधिक से अधिक इलेक्ट्रॉन तीसरे बैंड तक पहुंच सकते हैं, जिससे वे धीमी गति से आगे बढ़ सकते हैं, और डिवाइस के माध्यम से वर्तमान कम हो जाता है। यह वोल्टेज/वर्तमान संबंध में नकारात्मक अंतर प्रतिरोध का एक क्षेत्र बनाता है।
GAAS में  [[ प्रभावी द्रव्यमान (ठोस-राज्य भौतिकी) |  तीसरे बैंड में इलेक्ट्रॉनों का प्रभावी द्रव्यमान ]] सामान्य चालन बैंड की तुलना में अधिक है, इसलिए  [[ इलेक्ट्रॉन गतिशीलता |  गतिशीलता ]] या उस बैंड में इलेक्ट्रॉनों के बहाव वेग कम है। जैसे -जैसे फॉरवर्ड वोल्टेज बढ़ता है, अधिक से अधिक इलेक्ट्रॉन तीसरे बैंड तक पहुंच सकते हैं, जिससे वे धीमी गति से आगे बढ़ सकते हैं, और डिवाइस के माध्यम से वर्तमान कम हो जाता है। यह वोल्टेज/वर्तमान संबंध में नकारात्मक अंतर प्रतिरोध का एक क्षेत्र बनाता है।

Revision as of 22:24, 20 July 2022

एक रूसी निर्मित गन डायोड

गन डायोड, डायोड का ही एक रूप होता है, यह इलेक्ट्रॉन हस्तांतरित यन्त्र (टेड) के रूप में भी जाना जाता है, यह  दो-टर्मिनल वाला सेमीकंडक्टर इलेक्ट्रॉनिक घटक है जो नकारात्मक प्रतिरोध के साथ, उच्च-आवृत्ति में उपयोग किया जाता है। यह 1962 में भौतिक विज्ञानी जे बी गन द्वारा खोजे गए गन प्रभाव पर आधारित है। इसका सबसे बड़ा उपयोग इलेक्ट्रॉनिक ऑसिलेटर में माइक्रोवेव  उत्पन्न करने के लिए होता है, इसका अनुप्रयोग रडार स्पीड गन, माइक्रोवेव रिले डेटा लिंक ट्रांसमीटर, और स्वचालित डोर ओपनर में होता हैं।

इसका आंतरिक निर्माण अन्य डायोड के विपरीत होता है, जिसमें एन-डोपेड सेमीकंडक्टर सामग्री होती है, जबकि अधिकांश डायोड में पी और एन-डोपेड क्षेत्र होते हैं। इसलिए यह दोनों दिशाओं में आचरण करता है और अन्य डायोड की तरह वैकल्पिक करंट को ठीक नहीं कर सकता है, यही कारण है कि कुछ स्रोत डायोड 'शब्द का उपयोग नहीं करते हैं, लेकिन टेड को पसंद करते हैं। गन डायोड में, तीन क्षेत्र मौजूद हैं: उनमें से दो प्रत्येक टर्मिनल पर बहुत अधिक रूप से एन-डोप किए गए हैं, जिनके बीच हल्के एन-डोप की गई सामग्री की एक पतली परत  होती है। जब डिवाइस पर एक वोल्टेज लागू किया जाता है, तो विद्युत ढाल पतली मध्य परत में सबसे बड़ा हो जाता है। यदि वोल्टेज बढ़ता है, तो परत के माध्यम से वर्तमान में वृद्धि होगी, लेकिन अंततः, उच्च क्षेत्र मूल्यों पर, मध्य परत के प्रवाहकीय गुणों को बदलाव हो जाता है, जिसके कारण प्रतिरोधकता बढ़ जाती है, और वर्तमान मूल्यों  के लोप का कारण बनती है। इसका मतलब यह है कि गन डायोड में नकारात्मक अंतर प्रतिरोध का एक क्षेत्र होता है, जो वर्तमान -वोल्टेज की विशेषता के विपरीत होता है, जिसमें लागू वोल्टेज की वृद्धि, वर्तमान में कमी का कारण बनती है। यह संपत्ति इसे को बढ़ाने की अनुमति देता है,तथा रेडियो फ्रीक्वेंसी एम्पलीफायर के रूप में कार्य करता है, या एक डीसी वोल्टेज के साथ अभिनत होने पर अस्थिर और दोलन बना देता है।

गन डायोड ऑसिलेटर

वर्तमान-वोल्टेज (iv) एक गुन डायोड की वक्र। यह नकारात्मक प्रतिरोध को थ्रेसहोल्ड वोल्टेज ( V <सब> थ्रेसहोल्ड )

मध्यवर्ती परत के समकालन गुणों के साथ संयुक्त नकारात्मक विभेदक प्रतिरोध, इलेक्ट्रॉनिक ऑसिलेटर में माइक्रोवेव आवृत्तियों और उसके ऊपर के अनुप्रयोग, डायोड के लिए सबसे ज्यादा उपयोगी हैं। एक माइक्रोवेव ऑसिलेटर को केवल डीसी वोल्टेज को अपने नकारात्मक प्रतिरोध क्षेत्र में अभिनत करके बनाया जा सकता है। वास्तव में, डायोड का नकारात्मक अंतर प्रतिरोध लोड सर्किट के सकारात्मक प्रतिरोध को रद्द कर देता है, इस प्रकार शून्य अंतर प्रतिरोध के साथ एक परिपथ बनाता है, जो सहज दोलनों से युक्त होता है। दोलन आवृत्ति आंशिक रूप से मध्य डायोड की अस्तरीया गुणों द्वारा निर्धारित किया जाता है, साथ ही साथ यह बाहरी कारकों द्वारा ट्यून किया जा सकता है। व्यावहारिक ऑसिलेटर्स में, वेवगाइड, माइक्रोवेव गुहिका या वाईआई जे क्षेत्र के रूप में इलेक्ट्रॉनिक गुंजयमान आवृत्ति को नियंत्रित करने के लिए जोड़ा जाता है। डायोड आमतौर पर गुहिका के अंदर लगाया जाता है। डायोड गुंजन के नुकसान के रूप में उत्तपन प्रतिरोध को नस्ट कर देता है, इसलिए यह गुंजयमान आवृत्ति पर दोलनों का उत्पादन करता है। वाईआईजे क्षेत्रों के मामले में गुहिका के आकार को समायोजित करके, या चुंबकीय क्षेत्र को बदलकर आवृत्ति को यंत्रवत् रूप से ट्यून किया जा सकता है। गन डायोड का उपयोग 10 गीगाहर्ट्ज में उच्च (THZ) आवृत्ति रेंज में ऑसिलेटर बनाने के लिए किया जाता है

गैलियम आर्सेनाइड  गन डायोड 200 & nbsp तक की आवृत्तियों के लिए बनाए जाते हैं; GHz;  गैलियम नाइट्राइड  सामग्री 3  [[ Terahertz (यूनिट) तक पहुंच सकती है[1][2]

इतिहास

नासा ईआरसी साइंटिस्ट डब्ल्यू। डिटर स्ट्राब गन प्रभाव के साथ एक प्रयोग आयोजित करता है।

गन डायोड गन प्रभाव पर आधारित होता है, और दोनों को भौतिक विज्ञानी जे बी गन के नाम पर रखा गया है।1962 में आईबीएम में, उन्होंने गैलियम आर्सेनाइड में असंगत प्रयोगात्मक परिणामों को शोर के रूप में स्वीकार करने से इनकार कर दिया, और इसके कारण को निर्धारित कर इसके प्रभाव का पता लगाया। बेल टेलीफोन लेबोरेटरीज के एलन चिनोवेथ ने जून 1965 में दिखाया कि केवल एक हस्तांतरित-इलेक्ट्रॉन तंत्र प्रयोगात्मक परिणामों की व्याख्या कर सकता है।Cite error: Invalid <ref> tag; invalid names, e.g. too manyहस्तांतरित इलेक्ट्रॉन यन्त्र के बारे में और, हाल ही में चार्ज ट्रांसपोर्ट के लिए नॉनलाइनर वेव विधियों पर इसका उल्लेख्य मिलता है।[3]

रूसी गन डायोड ऑसिलेटर।डायोड को गुहा (धातु बॉक्स) के अंदर रखा गया है, जो आवृत्ति को निर्धारित करने के लिए एक गुंजयमान के रूप में कार्य करता है।डायोड का नकारात्मक प्रतिरोध गुहा में माइक्रोवेव दोलनों को उत्तेजित करता है जो आयताकार छेद को वेवगाइड (दिखाया नहीं गया) में विकीर्ण करता है।स्लॉट हेड स्क्रू का उपयोग करके गुहा के आकार को बदलकर आवृत्ति को समायोजित किया जा सकता है।

यह कैसे काम करता है

गैलियम आर्सेनाइड (GaAs) सहित कुछ अर्धचालक पदार्थों की (सेमीकंडक्टर) की इलेक्ट्रॉनिक बैंड संरचना में वैलेंस और चालन बैंड के अलावा एक और ऊर्जा बैंड या उप-बैंड होता है जो आमतौर पर अर्धचालक उपकरणों में उपयोग किया जाता है। यह तीसरा बैंड सामान्य चालन बैंड की तुलना में अधिक ऊर्जा पर होता है और तब तक खाली रहता है जब तक इसे इलेक्ट्रॉनों को बढ़ावा देने के लिए ऊर्जा की आपूर्ति नहीं की जाती है। ऊर्जा    बैलिस्टिक इलेक्ट्रॉनों  की गतिज ऊर्जा से आती है,अर्थात् चालन बैंड में इलेक्ट्रॉन लेकिन पर्याप्त गतिज ऊर्जा के साथ गतिमान होते हैं जैसे कि वे तीसरे बैंड तक पहुंचने में सक्षम होते हैं।

ये इलेक्ट्रॉन या तो फर्मी स्तर से नीचे शुरू होते हैं और उन्हें एक मजबूत विद्युत क्षेत्र को लागू करके आवश्यक ऊर्जा प्राप्त करने के लिए पर्याप्त रूप से लंबे समय से मुक्त पथ दिया जाता है, या उन्हें सही ऊर्जा के साथ एक कैथोड द्वारा इंजेक्ट किया जाता है। अग्रिम वोल्टेज के साथ, कैथोड में फर्मी स्तर तीसरे बैंड में चलता है, और फर्मी स्तर के आसपास शुरू होने वाले बैलिस्टिक इलेक्ट्रॉनों के प्रतिबिंबों को घनत्व की अवस्था से मेल खाने और अतिरिक्त इंटरफ़ेस परतों का उपयोग करके कम से कम किया जाता है ताकि परावर्तित तरंगों को विनाशकारी रूप से बाधित किया जा सके।

GAAS में तीसरे बैंड में इलेक्ट्रॉनों का प्रभावी द्रव्यमान सामान्य चालन बैंड की तुलना में अधिक है, इसलिए गतिशीलता या उस बैंड में इलेक्ट्रॉनों के बहाव वेग कम है। जैसे -जैसे फॉरवर्ड वोल्टेज बढ़ता है, अधिक से अधिक इलेक्ट्रॉन तीसरे बैंड तक पहुंच सकते हैं, जिससे वे धीमी गति से आगे बढ़ सकते हैं, और डिवाइस के माध्यम से वर्तमान कम हो जाता है। यह वोल्टेज/वर्तमान संबंध में नकारात्मक अंतर प्रतिरोध का एक क्षेत्र बनाता है।

जब डायोड पर एक उच्च पर्याप्त क्षमता लागू होती है, तो कैथोड के साथ चार्ज वाहक घनत्व अस्थिर हो जाता है, और कम चालकता के छोटे खंडों को विकसित करेगा, बाकी कैथोड में उच्च चालकता होती है। अधिकांश कैथोड वोल्टेज ड्रॉप पूरे खंड में होगा, इसलिए इसमें एक उच्च विद्युत क्षेत्र होगा। इस विद्युत क्षेत्र के प्रभाव के तहत यह कैथोड के साथ एनोड में चलेगा। दोनों बैंडों में आबादी को संतुलित करना संभव नहीं है, इसलिए कम क्षेत्र की ताकत की सामान्य पृष्ठभूमि में हमेशा उच्च क्षेत्र की ताकत के पतले स्लाइस होंगे। तो व्यवहार में, फॉरवर्ड वोल्टेज में एक छोटी सी वृद्धि के साथ, कैथोड में एक कम चालकता खंड बनाया जाता है, प्रतिरोध बढ़ता है, खंड बार के साथ एनोड के साथ चलता है, और जब यह एनोड तक पहुंचता है तो यह अवशोषित हो जाता है और एक नया खंड बनाया जाता है कुल वोल्टेज स्थिर रखने के लिए कैथोड में। यदि वोल्टेज कम हो जाता है, तो किसी भी मौजूदा स्लाइस को बुझाया जाता है और प्रतिरोध फिर से कम हो जाता है।

गन डायोड के निर्माण के लिए सामग्री का चयन करने के लिए उपयोग की जाने वाली प्रयोगशाला विधियों में कोण-हल किए गए फोटोइमिशन स्पेक्ट्रोस्कोपी शामिल हैं।

अनुप्रयोग

रडार स्पीड गन डिस्सैबर्ड।तांबे के रंग के हॉर्न एंटीना के अंत से जुड़ी ग्रे असेंबली गन डायोड ऑसिलेटर है जो माइक्रोवेव उत्पन्न करती है।

उनकी उच्च आवृत्ति क्षमता के कारण, गन डायोड का उपयोग मुख्य रूप से माइक्रोवेव आवृत्तियों और उससे ऊपर का उपयोग किया जाता है।वे इन आवृत्तियों पर किसी भी अर्धचालक उपकरणों की उच्चतम आउटपुट पावर का उत्पादन कर सकते हैं।उनका सबसे आम उपयोग ऑसिलेटर में है, लेकिन उनका उपयोग माइक्रोवेव एम्पलीफायर एस में भी संकेतों को बढ़ाने के लिए किया जाता है।क्योंकि डायोड एक एक-पोर्ट (दो टर्मिनल) डिवाइस है, एक एम्पलीफायर सर्किट को युग्मन को रोकने के लिए आने वाले इनपुट सिग्नल से आउटगोइंग प्रवर्धित सिग्नल को अलग करना होगा।एक सामान्य सर्किट एक प्रतिबिंब एम्पलीफायर है जो संकेतों को अलग करने के लिए सर्कुलेटर का उपयोग करता है।उच्च आवृत्ति दोलनों से पूर्वाग्रह वर्तमान को अलग करने के लिए पूर्वाग्रह टी की आवश्यकता होती है।

सेंसर और माप उपकरण

गन डायोड ऑसिलेटर का उपयोग माइक्रोवेव पावर उत्पन्न करने के लिए किया जाता है[4] एयरबोर्न टकराव परिहार रडार , एंटी-लॉक ब्रेक , ट्रैफ़िक के प्रवाह की निगरानी के लिए सेंसर, कार रडार डिटेक्टर , पैदल यात्री सुरक्षा प्रणाली, दूरी यात्रा रिकॉर्डर, दूरी की यात्रा रिकॉर्डर मोशन डिटेक्टर , स्लो-स्पीड सेंसर (पैदल यात्री और ट्रैफिक मूवमेंट का पता लगाने के लिए 85 किमी/घंटा (50 मील प्रति घंटे)), ट्रैफ़िक सिग्नल कंट्रोलर, ऑटोमैटिक डोर ओपनर, ऑटोमैटिक ट्रैफ़िक गेट्स, प्रोसेस कंट्रोल इक्विपमेंट थ्रूपुट, बर्गलर अलार्म और मॉनिटर करने के लिए प्रोसेस कंट्रोल इक्विपमेंटट्रेनों, दूरस्थ कंपन डिटेक्टरों, घूर्णी गति टैकोमीटर, नमी सामग्री मॉनिटर के पटरी से बचने के लिए अतिचारियों, सेंसर का पता लगाने के लिए उपकरण।

रेडियो शौकिया उपयोग

उनके कम वोल्टेज ऑपरेशन के आधार पर, गन डायोड बहुत कम संचालित (कुछ-मिलिवाट) माइक्रोवेव ट्रांसीवर एस के लिए माइक्रोवेव फ्रीक्वेंसी जनरेटर के रूप में काम कर सकते हैं, जिन्हें गनप्लेक्सर्स कहा जाता है। वे पहली बार 1970 के दशक के उत्तरार्ध में ब्रिटिश रेडियो एमेच्योर द्वारा उपयोग किए गए थे, और कई गुनप्लेक्सर डिजाइन पत्रिकाओं में प्रकाशित किए गए हैं। वे आम तौर पर लगभग 3 & nbsp; इंच वेवगाइड होते हैं जिसमें डायोड माउंट किया जाता है। एक कम वोल्टेज (12 वोल्ट से कम) प्रत्यक्ष वर्तमान बिजली की आपूर्ति, जो संशोधित को उचित रूप से हो सकता है, का उपयोग डायोड को चलाने के लिए किया जाता है। वेवगाइड एक गुंजयमान गुहा बनाने के लिए एक छोर पर अवरुद्ध होता है और दूसरा छोर आमतौर पर हॉर्न एंटीना को खिलाता है। एक अतिरिक्त मिक्सर डायोड को वेवगाइड में डाला जाता है, और यह अक्सर एक संशोधित एफएम प्रसारण रिसीवर से जुड़ा होता है ताकि अन्य शौकिया स्टेशनों को सुनने में सक्षम हो सके। गनप्लेक्सर्स का उपयोग आमतौर पर 10 गीगाहर्ट्ज और 24 गीगाहर्ट्ज हैम बैंड में किया जाता है और कभी-कभी 22 गीगाहर्ट्ज सुरक्षा अलार्म को डायोड के रूप में संशोधित किया जाता है। लाइसेंस प्राप्त शौकिया बैंड में जाने के लिए विपरीत किनारों पर तांबे या एल्यूमीनियम पन्नी की परतों के साथ। आमतौर पर, मिक्सर डायोड यदि बरकरार है तो इसके मौजूदा वेवगाइड में पुन: उपयोग किया जाता है और इन भागों को बेहद स्थिर संवेदनशील होने के लिए जाना जाता है। अधिकांश वाणिज्यिक इकाइयों पर इस भाग को एक समानांतर रोकनेवाला और अन्य घटकों के साथ संरक्षित किया जाता है और एक संस्करण का उपयोग कुछ आरबी परमाणु घड़ियों में किया जाता है। मिक्सर डायोड कम आवृत्ति अनुप्रयोगों के लिए उपयोगी है, भले ही गन डायोड उपयोग से कमजोर हो, और कुछ शौकिया रेडियो उत्साही ने उन्हें एक बाहरी ऑसिलेटर या एन/2 तरंग दैर्ध्य गन डायोड के साथ उपग्रह खोज और अन्य अनुप्रयोगों के साथ संयोजन में उपयोग किया है।

रेडियो खगोल विज्ञान

गन ऑसिलेटर्स का उपयोग मिलीमीटर-वेव और सबमिलिमीटर-वेव रेडियो एस्ट्रोनॉमी रिसीवर्स के लिए स्थानीय ऑसिलेटर्स के रूप में किया जाता है। गन डायोड को एक कैविटी में लगाया जाता है जो डायोड की मौलिक आवृत्ति से दुगुनी प्रतिध्वनित होती है। गुहा की लंबाई एक माइक्रोमीटर समायोजन द्वारा बदल दी जाती है। 50% ट्यूनिंग रेंज (एक वेवगाइड बैंड) से अधिक 50 मेगावाट से अधिक उत्पादन करने में सक्षम गन ऑसिलेटर उपलब्ध हैं।

सबमिलीमीटर-वेव एप्लिकेशन के लिए गन ऑसिलेटर फ़्रीक्वेंसी को डायोड फ़्रीक्वेंसी मल्टीप्लायर से गुणा किया जाता है।

संदर्भ

  1. वी। ग्रुज़िंस्किस, जे.एच.झाओ, O.Shiktorov और E. Starikov, गन इफेक्ट और THZ फ़्रीक्वेंसी पावर जनरेशन इन n (+)-N-N (+) GAN स्ट्रक्चर्स , मटेरियल साइंस फोरम, 297--298, 34--344, 1999।
  2. ग्रिब्निकोव, जेड.एस., बशीरोव, आर। आर।, और मिटिन, वी। वी। (2001)।नकारात्मक विभेदक बहाव वेग और टेराहर्ट्ज़ पीढ़ी के नकारात्मक प्रभावी द्रव्यमान तंत्र।क्वांटम इलेक्ट्रॉनिक्स में चयनित विषयों के IEEE जर्नल, 7 (4), 630-640
  3. लुइस एल। बोनिला और स्टीफन डब्ल्यू। टिट्सवर्थ, चार्ज ट्रांसपोर्ट के लिए नॉनलाइनियर वेव मेथड्स ', विली-वीसीएच, 2010
  4. द गन इफ़ेक्ट , ओक्लाहोमा विश्वविद्यालय, भौतिकी और खगोल विज्ञान विभाग, पाठ्यक्रम नोट।